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Abstract: The intensive global use of glyphosate has led to the evolution of glyphosate resistant
(GR) weed species, including the economically damaging horseweed (Conyza sumatrensis). We
evaluated the glyphosate resistance mechanisms of C. sumatrensis. While 5-enolpyruvylshikimate-
3-phosphate synthase activity was similar between the glyphosate resistant (GR) and nonresistant
biotypes, plants from the GR population accumulated lower shikimate levels than susceptible ones,
suggesting the absence of target-site resistance mechanisms. Decreases over time in glyphosate
concentrations in GR leaves were not accompanied by increases in glyphosate concentrations in their
stem and roots, indicating lower glyphosate distribution rates in GR plants. The early appearance
of aminomethylphosphonic acid (the main glyphosate metabolite) in leaves, as well as its presence
only in the stems and roots of GR plants, suggests faster glyphosate metabolism in GR plants than
in susceptible ones. GR plants treated with glyphosate also showed greater antioxidant (ascorbate
peroxidase [APX] and catalase [CAT]) and cytochrome P450-enzyme activities, indicating their
great capacity to avoid glyphosate-induced oxidative stress. Three non-target mechanisms (reduced
glyphosate translocation, increased metabolism, and increased antioxidant activity) therefore confer
glyphosate resistance in C. sumatrensis plants. This is the first time that APX, CAT and P450-enzyme
activities are related to GR in C. sumatrensis.
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1. Introduction

Glyphosate [N-(phosphonomethyl)glycine], the active ingredient in numerous trade
formulations used for total vegetation control, is a postemergence, broad-spectrum, non-
selective systemic herbicide [1]. After the introduction of glyphosate-resistant (GR) com-
mercial crop plants, glyphosate became the most widely used herbicide in the world [2].
Its herbicidal effect is due to the inhibition of 5-enolpyruvylshikimate-3-phosphate syn-
thase (EPSPS), inhibiting the biosynthesis of the amino acids phenylalanine, tyrosine, and
tryptophan [3].

Glyphosate is intensively used in Brazil for weed control in areas cultivated with
GR crops [4] as preemergence herbicides are rarely used in that country and other poste-
mergence treatments increase weed control costs [5]. With the wide use of that herbicide,
increased concentrations of glyphosate have been observed in environments and deleteri-
ous effects of the harbicie have been observed in non-target organisms, like algae, aquatic
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insects and plants [6–9]. Moreover, as a result of its indiscriminate use, GR weed biotypes
are emerging very quickly [4]. The annual cost of glyphosate resistance in soybean crops
alone in Brazil is estimated to be between $3.7 and 6.0 billon Brazilian Reais, reaching R$9.0
billon when considering the 5% productivity losses due to competition from GR weeds [10].
The first case of weed glyphosate resistance (in Lolium rigidum) was reported in 1996, twenty
years after the introduction of the herbicide–which was considered an indicator of the slow
development of weed resistance [11]. By 2022, however, the International Survey of Her-
bicide Resistant Weeds reported 340 cases of glyphosate resistant weeds in 29 countries,
involving a total of 51 species, eleven of which occur in Brazil (Amaranthus palmeri, A.
hybridus, Chloris elata, Conyza bonariensis, Conyza canadensis, Coniza sumatrensis, Digitaria
insularis, Echinochloa crus-galli var. crus-galli, Eleusine indica, Euphorbia heterophylla, and
Lolium perene ssp. multiflorum) (www.weedscience.com; access on 22 May 2022)Horseweeds
(Conyza spp.) are among the most common weeds found growing among perennial and
annual crops [12]. Its presence in soybean crops reduces yields by up to 90% in relation
to areas cultivated in the absence of those weeds [13,14]. Horseweed has been mainly
controlled in soybean and corn plantations by the use of glyphosate [15], although horse-
weed control using that herbicide is no longer satisfactory due to the growing resistance of
some biotypes [12,15,16]. Conyza weed plants are highly adaptable, extremely competitive,
and easily dispersed [17]. Considering the particularly successful acquisition of herbicide
resistance by horseweed, and the economic losses associated with its presence among crops,
a better understanding the mechanisms involved in the weed resistance to glyphosate has
become increasingly important for defining new strategies for its management.

The mechanisms commonly involved in herbicide resistance acquisition by weeds
include changes in herbicide absorption, vacuolar herbicide sequestration (and consequent
reduced herbicide movement to the target sites), rapid metabolic herbicide detoxification,
herbicide target site alterations, and gene amplification [12,16,18–21]. There is specific
evidence that glyphosate induces oxidative stress [1,22,23] and inhibits cytochrome P450
activity (P450) [24,25] in susceptible plants–raising suspicious that GR weeds have high
antioxidant capacities and low P450 sensitivities. While antioxidant enzymes, such as
superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) may keep
reactive oxygen species (ROS) levels under control (avoiding oxidative damages) in plants,
P450 activity may contribute to herbicide detoxification [22,26]. Investigations of oxidative
metabolism and P450 activity in GR weeds exposed to glyphosate have nonetheless been
very scarce.

We therefore examined the non-target site mechanisms associated with glyphosate
resistance in a Conyza sumatrensis biotype by evaluating the translocation and metabolism
of that herbicide as well as its effects on the shikimate pathway, oxidative metabolism,
and cytochrome P450 activity in both resistant and susceptible horseweed biotypes. We
aimed to understand the physiological mechanisms related to the plant biotype resistance
to glyphosate. We specifically sought to elucidate the roles of antioxidant enzymes and
P450 in glyphosate resistance and thus contribute to the development of techniques (such
as biology engineering) for horseweed management when glyphosate has lost its efficiency
for weed control.

2. Results
2.1. Oxidative Stress Markers

Significant interactions between biotypes, glyphosate concentrations, and times of
exposure were observed for SOD and APX activities (Table S1). Exposure for 24 h to
glyphosate resulted in increased SOD activity in GR plants (R + Gly) in relation to non-
resistant plants (Figure 1A). At 48 h, high SOD activity was observed in all plants exposed
to glyphosate, regardless of their biotype (S/R + Gly) (Figure 1A). At 72 h, glyphosate
exposure increased SOD activity in resistant biotype plants (R + Gly) as compared to GR
plants without glyphosate treatment (R–Gly) (Figure 1A). Regardless of the glyphosate
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treatment (0 or 1080 g ae ha−1), SOD activity at 48 and 72 h was lower in the GR biotype (R
−/+ Gly) in relation to 12 and 24 h of exposure (Figure 1A).
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cytochrome P450 reductase (D) in glyphosate susceptible (S) and resistant (R) Conyza spp. plants
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Regardless of the biotype, glyphosate exposure (S/R + Gly) resulted in increased APX
and CAT activities after 24 h of exposure; however, enzyme activity increases were observed
earlier (after 12 h) in GR-resistant plants (R + Gly) as compared to the susceptible biotype
(S + Gly) (Figure 1B,C). With the exception of susceptible plants exposed to glyphosate
(S + Gly; which did not show significantly different APX activities between 12 h and
72 h), APX activity decreased at 72 h regardless of the biotype and glyphosate exposure
(Figure 1B). CAT activity was greater at 72 h in relation to 48 h of exposure in plants of both
biotypes when exposed to glyphosate (S/R + Gly; Figure 1C).

2.2. NADPH-Cytochrome P450 Reductase Evaluations

Significant interactions between biotypes and glyphosate concentrations were ob-
served in terms of NADPH-cytochrome P450 reductase (P450) activity (Table S1). Regard-
less of the biotype, P450 activity was greater in plants without any exposure to glyphosate
(Figure 1D). When treated with glyphosate, greater P450 activity was observed in GR plants
than in the susceptible biotype (Figure 1D).

2.3. Shikimate Concentrations and EPSPS Activities

Significant interactions between biotypes, glyphosate concentrations, and times of
evaluation were observed in terms of shikimate concentrations in plant leaves (Table S1). In
plants not exposed to glyphosate, leaf shikimate concentrations did not differ between the
two biotypes or in terms of experimental times (Figure 2A). Leaf shikimate concentrations
increased over time in susceptible plants treated with glyphosate, while GR plants did not
demonstrate significantly different shikimate concentrations after 48 or 72 h of glyphosate
exposure (Figure 2A). Leaf EPSPS activities did not significantly differ between biotypes,
but were greater in plants not exposed to glyphosate treatments in relation to those exposed
to that herbicide (Figure 2B).
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(B) in glyphosate susceptible (S) and resistant (R) Conyza spp. plants exposed to 0 (-Gly) or 1080 g
glyphosate (a.e.) ha−1 (+Gly) for 72 h. Values are represented as the mean ± standard error of
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glyphosate concentrations, by the Contrast test (considering p < 0.05).

2.4. Glyphosate and AMPA Concentrations

No glyphosate or AMPA were found in plants not exposed to glyphosate treat-
ments. Significant interactions between biotypes and times of evaluation were observed for
glyphosate and AMPA concentrations in all plant organs (Table S2). While leaf glyphosate
concentrations were greatest after 12 h of exposure, those concentrations were lower after
24 and 72 h in GR plants in relation to susceptible plants (Figure 3A). Leaf glyphosate con-
centrations decreased over time in both biotypes (Figure 3A). Stem and root concentrations
of glyphosate were greater over time in susceptible plants than in GR plants (Figure 3B,C);
glyphosate concentrations in the stems and roots of susceptible plants increased after 24 h
and 48 h of exposure, respectively, but did not significantly differ after different times of
exposure among GR plants (Figure 3B,C).
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AMPA was not detected in either the stems or roots of susceptible plants (Figure 3E,F).
AMPA was detected earlier in the leaves of GR plants than in susceptible plants, being de-
tected after 24 h of exposure in GR plants and at 72 h in the susceptible biotype (Figure 3D);
at 72 h, leaf AMPA concentrations were greater in GR than in susceptible plants (Figure 3D).

3. Discussion

The glyphosate resistance of the GR horseweed populations examined in the present
study was confirmed by the lower shikimate concentrations observed in their leaves in
relation to those found in susceptible plants after herbicide exposure (Figure 2A). Shikimate
accumulation tests, however, do not reveal which type of mechanism [target-site resistance
(TSR) or non-target site resistance (NTSR)] conferred glyphosate resistance [27]. To exclude
the involvement of TSR mechanisms (such as EPSPS mutations or EPSPS gene amplifi-
cation) [28], herbicide target enzymes assays are necessary [29]. The enzymatic activity
of EPSPS were similar between the two horseweed biotypes, whether exposed or not to
glyphosate (Figure 2B), thus excluding the involvement of TSR mechanisms in glyphosate
resistance [28]. We therefore investigated biochemical responses as well as glyphosate
distribution and metabolism in plants, aiming to elucidate possible NTSR mechanisms
involved in their GR tolerance.

NTSR mechanisms have been related to glyphosate weed resistance [30]. Reduced
glyphosate absorption and translocation, as well as its increased metabolism, conferred re-
sistance in saltmarsh aster (Aster squamatus) [28]. In Echinochloa colona, aldo-keto reductase
metabolizes glyphosate and confers resistance [31]. The antioxidant system activity of Ama-
ranthus palmeri was found to be related to glyphosate resistance [32]. Glyphosate resistance
in C. canadensis was related to impaired glyphosate translocation and its metabolism [33],
while lower distribution rates between plant organs assured glyphosate resistance in C.
bonariensis [15]. Similarly, the GR C. sumatrensis population investigated here evidenced
differential glyphosate translocation and metabolism in relation to the sensitive population.
In contrast to susceptible plants, in which glyphosate concentrations decreases over time
were followed by increased glyphosate concentrations in the stems and roots (Figure 3), in
GR plants, no increases in glyphosate concentration were observed in their stems and roots
over time (Figure 3)–indicating that glyphosate translocation differs between the biotypes,
being lower in GR plants. One could argue that decreased leaf uptake of that herbicide
could result in glyphosate resistance in the GR biotype, although the higher glyphosate
concentrations at 12 h observed in GR leaves in relation to susceptible plants eliminates that
hypothesis (Figure 3A). Interestingly, the rate of glyphosate disappearance in the leaves
of GR plants was not followed by its increased translocation. We therefore became inter-
ested in investigating herbicide metabolism. One of the main glyphosate by-products is
AMPA, which has been found in the tissues of plants exposed to glyphosate [34]. The early
appearance of AMPA in the leaves of GR plants, as well as the presence of that metabolite
in their stems and roots, indicate that this biotype can metabolize glyphosate much faster
than susceptible plants. Therefore, similar to previous findings [15,31], we observed that
impaired glyphosate translocation and heightened glyphosate metabolism are mechanisms
related to glyphosate resistance in C. sumatrensis plants.

In addition to these already described mechanisms, we report here, for the first time,
evidence for the involvement of antioxidant and P450 enzymes in glyphosate resistance
in C. sumatrensis plants. The higher activities of antioxidant enzymes in GR as opposed to
sensitive A. palmeri populations assured lower lipid peroxidation (an oxidative stress burst)
and was related to plant glyphosate resistance [31,35]. Similarly, we observed greater APX
and CAT activities in GR leaves exposed to glyphosate in relation to susceptible plants. APX
and CAT are important antioxidant enzymes involved in H2O2 scavenging, and therefore
in the avoidance of oxidative bursts caused by the accumulation of reactive oxygen species.
Additionally, the increased activities of those enzymes have been reported in cases of plant
tolerance to xenobiotics [36], including glyphosate [9]. In contrast to H2O2 scavenging
enzymes (APX and CAT), SOD appears not to be involved in glyphosate resistance, as
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enzyme activity differed between the glyphosate exposed biotypes only at 24 h (Figure 1A).
In addition to antioxidant enzyme activities, the biotypes differed in terms of the responses
of P450 to glyphosate (Figure 1D). Glyphosate is a known inhibitor of cytochrome P450
activity (P450) [24,25], but P450 activity in the leaves of GR plants was less sensitive to
glyphosate than in the sensitive biotype.

Cytochrome P450 monooxygenase constitutes the largest family of enzymes in plant
metabolism [37] and is responsible for detoxifying herbicides that are not chemically sim-
ilar, such as ACCase- and ALS-inhibitors [30]. In Lolium spp., for instance, resistance
to pinoxaden and iodosulfuron-mesosulfuron was related to the insensibility of its P450
enzymes, assuring herbicide degradation in resistant biotypes [38]. Similarly, the GR pop-
ulation examined here showed lower sensitivity to glyphosate, which is a known P450
inhibitor in both plants [24,25] and animals [39,40]. However, in contrast to ACCase- and
ALS-inhibitors, there have been no reports implicating P450 in glyphosate metabolism. In
addition to C-P lyase (which degrades glyphosate into sarcosine and inorganic phosphate),
glyphosate oxidoreductase (GOX) activity (which produces AMPA) has been identified
as the main mechanisms of glyphosate degradation in plants [41]. The conversion of
glyphosate to AMPA by GR horseweed plants indicates that that biotype possesses a
GOX-like enzyme, as do other weeds [41–43]. The higher P450 activity observed in GR
horseweed biotypes may therefore not be related to herbicide degradation. P450, however,
is involved in protection against stress in plants through the biosynthesis and regulation of
hormones, fatty acids, sterols, cell wall components, biopolymers, and other defense com-
pounds (such as terpenoids, alkaloids, flavonoids, furanocoumarins, glucosinolates, and
allelochemicals) [44]. Additionally, cytochrome P450 has critical roles in maintaining redox
homeostasis and protecting the organism from toxic ROS accumulations [45]. Silencing the
P450 genes in Apis cerana cerana, for example, resulted in the enhanced activities of peroxi-
dase and CAT. Similarly, the overexpression of P450 genes in tobacco resulted in decreased
oxidative bursts (due to decreased ROS accumulations) when plants were submitted to
drought conditions [46]. Those findings suggest the role of P450 in cell antioxidant defenses.
In this context, in addition to inhibiting amino acid synthesis, the ability of glyphosate to
kill plants has been related to its capacity to induce oxidative stress [1,22,47,48], and the
maintenance of high antioxidant activities may therefore contribute to herbicide resistance
of horseweed plants.

Adverse environmental effects associated with herbicide applications have emerged
in the form of increases in resistant weed populations [49]. Changes in light, temperature
and precipitation regimes, for instance, may collaborate to select plant species able to deal
with ROS stress through the activation of antioxidant systems. In this scenario, climate
changes may favor glyphosate resistance in weeds with the natural ability to cope with ROS
formation and accumulation. The established relationship between antioxidant capacity
and GR in C. sumatrensis therefore suggests avoiding glyphosate applications during
warm weather or during periods of high light intensity-when antioxidant activities tend to
increase in plant cells [50].

4. Material and Methods
4.1. Greenhouse Experiments

Conyza sumatrensis (Retz.) E.Waker seeds of both the resistant and susceptible biotypes
were collected among soybean crops in Paraná State, Brazil. A rapid resistance test was
performed to confirm weed susceptibility to glyphosate that involved sowing seeds in
polypropylene pots (0.8 L, 14 × 6 cm) containing a sterile substrate (shells of composted
pine, vermiculite, peat, and fertilizers [nitrogen, phosphorus and potassium]). The pots
were then kept under greenhouse conditions with minimum/maximum temperatures
of 25/32 ◦C and natural light supplemented by sodium vapor lamps to provide a 12 h
photoperiod and an average photosynthetic active radiation of 825 µmol photons m−2 s−1.
When the seedlings were at the rosette stage (4 to 6 leaves), corresponding to the appropriate
stage of herbicide application, the two biotypes were treated with 0 (ultrapure water) or
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1080 g ae ha−1 of glyphosate (Roundup Original, 356 g equivalent acid (ea) L−1, Monsanto,
Brazil), according to the manufacturer’s recommendations for horseweed plants, and using
an experimental backpack sprayer (CO2 pressurized, equipped with two flat-fan nozzles) to
apply the equivalent of 200 L of the syrup per hectare. After 72 h of exposure to glyphosate,
the susceptible (but not the resistant) plants began to show symptoms of intoxication
(chlorosis, necrotic spots, and wilting)–symptoms that were easily noted after 12 days of
exposure (Figure 4). The tests were conducted until the resistant biotype produced seeds
(110 days); no resprouting was observed in susceptible plants exposed to glyphosate.
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pine, vermiculite, peat, and fertilizers [nitrogen, phosphorus and potassium]). The pots 
were then kept under greenhouse conditions with minimum/maximum temperatures of 
25/32 °C and natural light supplemented by sodium vapor lamps to provide a 12 h pho-
toperiod and an average photosynthetic active radiation of 825 µmol photons m−2 s−1. 
When the seedlings were at the rosette stage (4 to 6 leaves), corresponding to the appro-
priate stage of herbicide application, the two biotypes were treated with 0 (ultrapure wa-
ter) or 1080 g ae ha−1 of glyphosate (Roundup Original, 356 g equivalent acid (ea) L−1, Mon-
santo, Brazil), according to the manufacturer’s recommendations for horseweed plants, 
and using an experimental backpack sprayer (CO2 pressurized, equipped with two flat-
fan nozzles) to apply the equivalent of 200 L of the syrup per hectare. After 72 h of expo-
sure to glyphosate, the susceptible (but not the resistant) plants began to show symptoms 
of intoxication (chlorosis, necrotic spots, and wilting)–symptoms that were easily noted 
after 12 days of exposure (Figure 4). The tests were conducted until the resistant biotype 
produced seeds (110 days); no resprouting was observed in susceptible plants exposed to 
glyphosate. 

 
Figure 4. Resistant (A) and susceptible (B) Conyza spp. biotypes exposed to 1080 g glyphosate (ea) 
ha−1 for 12 days. Figure 4. Resistant (A) and susceptible (B) Conyza spp. biotypes exposed to 1080 g glyphosate (ea)

ha−1 for 12 days.

After the confirmation of glyphosate resistance/susceptibility of the biotypes, new
experiments, under the same conditions described above, were performed using a random-
ized block design with five pots per biotype (corresponding to replicates) per treatment, in
a two (herbicide concentrations) x five (times of evaluation) factorial scheme. The plants
were harvested 0, 12, 24, 48 and 72 h after the beginning of the glyphosate treatments.
Evaluations were halted after 72 h of exposure (as the susceptible biotype plants treated
with glyphosate began showing pronounced symptoms of intoxication, including chlorosis
and leaf necrotic spots) to allow evaluations of their metabolic conditions prior to the onset
of acute cell damage and plant death.

Five plants from each biotype and each glyphosate treatment were harvested at each
evaluation time, thoroughly washed with distilled water, and separated into roots, stems,
and leaves. Samples of the fifth and sixth nodes (from the shoot apex), corresponding
to fully expanded leaves, were selected for the enzyme assays. All plant samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C until assayed.

4.2. Enzymatic Evaluations of the Leaves

To study the antioxidant enzymes, 0.1 g of leaves were macerated in 1 mL of an
extraction buffer containing 100 mM potassium buffer (pH 7.8), 100 mM EDTA, 1 mM
L-ascorbate, and 2% polivinilpirrolidona (PVP)-40 (m/v). The protein contents of the
samples were determined using the Bradford method [51]. Superoxide dismutase (SOD;
EC 1.15.1.1) [52], catalase (CAT; EC 1.11.1.6) [53], and ascorbate peroxidase (APX; EC
1.11.1.11) [54] activities were evaluated as oxidative stress markers. The measurements of
NADPH-cytochrome P450 reductase were performed following [55]. EPSPS (EC 2.5.1.19)
was extracted from the leaves according to [56], and its enzymatic activity measured
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according to [57], using an EnzCheckQR phosphate assay Kit (Invitrogen, Carlsbad, CA,
USA). The specific activities of EPSPS were determined in the absence and in the presence
of 100 µM glyphosate (Sigma Aldrich, Brazil), and expressed as phosphate (µmol) liberated
per µg of total soluble protein (determined using Bradford method) per minute.

4.3. Glyphosate, AMPA and Shikimate Evaluations

The concentrations of glyphosate, aminomethylphosphonic acid (AMPA), and shiki-
mate in the plants were determined using a LC-MS/MS system composed of a XEVO
TQD triple quadrupole (Walters) mass spectrometer equipped with an electrospray (ESI)
ionization source coupled to an HPLC Varian SYS-LC-240-E equipped with an autosampler,
following Gomes et al. [58]. Glyphosate and AMPA concentrations were measured in the
roots, stems, and leaves, while shikimate was evaluated only in the leaves. Extractions were
performed with 0.4 g of each plant organ, previously thoroughly washed in ultrapure water,
using 50 mL of acidified water (pH 2.5) following Matallo et al. [59]. The plant extracts
were filtered through C18 SPR cartridges (500 mg/6 mL; Applied Separations, Allentown,
PA, USA) previously conditioned with 15 mL of acidified water (pH 2.5) and 5 mL of
methanol. The cartridges containing the samples were washed with 3 mL of 50% methanol
in water (v/v). The eluate was then dried in a SpeedVac machine (RC1010, Thermo), and
the residues resuspended in the mobile phase A. Before injection, the samples were filtered
through nylon syringe filters (13 mm x 0.25 µm, Filtrilo Brazil).

An Ascentis® C18 column (Sigma-Aldrish, São Paulo, Brazil) was used for chromato-
graphic separation, with a mobile phase consisting of 5 mM of ammonium acetate in
water (phase A) and 5 mM of ammonium acetate in methanol (phase B), both pH 7.0. The
mass spectrometry analyses were performed in a negative ion mode. Analytical-grade
glyphosate, AMPA (Pestanal grade, Sigma-Aldrich, São Paulo, Brazil), and shikimate (ana-
lytical standard, Sigma-Aldrich, Brazil) were used to prepare the calibration curves. The
six-point calibration curves showed good linearity for the analytes (r2 ≥ 0.95; p < 0.0001).
For quality control, each sample batch included three blanks, three standards, and three
fortified samples. The recovery rates of all of the compounds were greater than 89%.

4.4. Statistical Analyses

The experiments consisted of combinations of the two biotypes (sensitive and resistant)
and two glyphosate concentrations (0 and 1080 g ea ha−1) allotted to the main plots, and
four evaluation times (0, 12, 24, 48, 72 h) allotted to the subplots and tested in split-plot de-
sign with five replications. Statistical analyses were performed using JMP 7.0 software (SAS
Institute Inc.). Data were tested for normality (Shapiro–Wilk) and homogeneity (Bartlett),
and then statistically evaluated. For the biochemical evaluations, data were submitted
to three-way analyses of variance (ANOVA). Interactions between biotypes, glyphosate
concentrations, and times of evaluation were added to the model. For glyphosate and
AMPA concentrations, data were evaluated by using two-away ANOVA, with interactions
between biotypes and times of evaluation being included in the model. When differences
were detected by ANOVA, the means were compared using the Contrast test (p < 0.05).

5. Conclusions

In addition to the reduced translocation and increased metabolism of glyphosate
already described for C. sumatrensis, increased APX, CAT, and P450 enzyme activities
constitute non-target mechanisms endowing glyphosate resistance. The activities of an-
tioxidant systems and P450 were shown for the first time here to be related to glyphosate
resistance in C. sumatrensis plants. Our findings open new avenue for studies, establishing
cell antioxidant mechanisms as targets for investigating glyphosate resistance in weeds.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/stresses3010005/s1, Table S1: ANOVA for the interactive effects
of biotypes (susceptible and resistant), glyphosate concentrations (0 or 1080 g glyphosate (ae ha−1),
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and times of exposure (12, 24, 48, and 72 h), Table S2: ANOVA for the interactive effects of biotypes
(susceptible and resistant) and times of exposure (12, 24, 48, and 72 h).
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