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Abstract: Extended interphases are playing an increasingly important role in electrochemical energy
storage devices and, in particular, in lithium-ion and lithium metal batteries. With this in mind we
initially address the differences between the concepts of interface and interphase. After that, we
discuss in detail the mechanisms of solid electrolyte interphase (SEI) formation in Li-ion batteries.
Then, we analyze the methods for interphase characterization, with emphasis put on in-situ and
operando approaches. Finally, we look at the near future by addressing the issues underlying
the lithium metal/electrolyte interface, and the emerging role played by the cathode electrolyte
interphase when high voltage materials are employed.

Keywords: interphase; batteries; characterization

1. Introduction

There is a growing discussion about the meaning and the role of interface/interphase
in functional materials and devices [1]. Indeed, an interface is a two-dimensional boundary
between phases in thermodynamic equilibrium. On the other hand, this could be seen
just as a theoretical statement, as dynamic equilibrium will take place at the atomic scale.
As an example, non-zero equilibrium exchange currents exist when electrodes are placed
in ionic solutions [2]. Therefore, in the nanometer and sub-nanometer range, the concept
of interface must be replaced by (or considered together with) that of interphase, a three-
dimensional layer which in the solid state can be characterized by a different crystalline
structure, microstructure, physico-chemical and functional properties with respect to the
parent phases in contact [3]. Obviously, the role of the interphase becomes more and more
important as particle/phase dimensions decrease.

Extended interphases are of relevance in electrochemical devices such as batteries, fuel
cells, sensors and supercapacitors. Concerning lithium-ion batteries (LIBs), which at present
are the market choice for both automotive and grid storage [4], a fundamental role to date
has been played by the solid electrolyte interphase (SEI) between the anode (graphite) and
the liquid electrolyte [5,6]. SEI is a passivation layer in the range ~0.01–0.1 µm, due to
electrolyte degradation products which are formed at low electric potential during the first
cycles of the battery. Mechanical and chemical SEI stability is of paramount importance
for the life cycle of state-of-the-art LIBs (generation 3a) which operate below 4.3 V vs.
Li+/Li [6]. Next generation batteries (generations 3b and 4) will work at higher potential
(up to 4.8 V), which will cause a major role of the cathode/electrolyte interphase (CEI),
formed by the high voltage decomposition of both cathode and electrolyte [7,8]. This will
require a careful tailoring of the electrolyte/cathode interface. The higher the voltage, the
more important the interfacial control.

In this perspective we will address the role of the interphases in lithium batteries. We
will put emphasis on the mechanisms and reactions at the basis of SEI formation (Section 2).
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Then, we will focus on advanced (in-situ, operando) investigation methods for interphase
characterization and monitoring (Section 3). Finally, we will give a look into the next future
by considering some relevant issues including Li-metal dendrites control, dynamic SEI
formation, CEI control and the role of carbon (Section 4).

2. Mechanisms of SEI Formation
The Graphite/SEI Intephase

The history of the development of graphite in LIBs is the most significant example of
the importance of controlling interfaces in energy storage [9]. The possibility of intercalating
lithium ions in graphite to form the LiC6 structure was known since 1975, thanks to
experiments carried out in molten lithium and compressed graphite [10]. However, earlier
experiments in presence of liquid electrolytes failed due to the delamination of graphite
in the presence of carbonate solvents, in particular propylene carbonate (PC), at that time
the most favorable solvent in terms of a compromise between dielectric properties and
viscosity [11]. The electrochemical reversible intercalation of lithium in graphite at room
temperature was successfully demonstrated firstly in polymer electrolytes (poly(ethylene
oxide), PEO) [12], and later in mixtures of liquid carbonates including ethylene carbonate
(EC) [13]. Similar investigations were also carried out at the same time in Japan [14],
which led to the first LIB in 1991 [15], and to the wide use of graphite since 1993 [16].
The role of EC in enabling the reversibility of the intercalation reaction was understood
in the framework of the solid electrolyte interface (SEI) model developed a few years
earlier by Peled [5] to explain the unusual stability of some solvents in extremely reducing
conditions, i.e., in contact with alkali metals. Thus, the formation during the first lithiation
(first cathodic reaction) of a stable and compact SEI is the key to understand the working
mechanism of graphite at potential lower than 0.8 V vs. Li+/Li (Figure 1). This SEI was
widely investigated, and its nature is described in a number of reviews [17,18].
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Figure 1. Schematic representation of the SEI at the electrolyte/graphite interface highlighting the
inorganic and organic chemical nature of the layer.

At the graphite interface, the interphase is made up of a dense layer of nanometric
grains of inorganic salts (Li2CO3, LiF, Li2O) formed by the decomposition reaction of the
electrolyte. This dense layer prevents the contact between the active material and the
electrolyte itself, arresting its further decomposition but allowing, at the same time, Li
ions to pass through. Between the dense inorganic layer and the solution bulk there is a
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secondary layer made by organic compounds such as poly(olefins) and carbonates, which
are also produced by the decomposition of the solvent. The role of this external layer,
having much higher ionic conductivity, is fundamental because it favors the formation
of the dense inner layer, preventing the penetration of small molecules into the graphite
structure which could lead to delamination. This can explain the contradictory behavior
between EC and PC, two very similar molecules that differ just for the presence of a
methyl group attached to the ring. In fact, upon reduction, EC generates three dimensional
branched polymeric chains which passivate the internal shell, while PC forms ternary
radicals which can give substituted olefins or linear polymeric chains unable to form a
dense protecting layer [19,20].

The nature and the thickness of the SEI layer depends on two main factors: the surface
morphology and the electrolyte composition. Battery-grade graphite for LIBs has usually
spherical morphology with micrometric particle sizes. This guarantees the presence of
an extended edge plane surface responsible for the lithium-ion intercalation, which does
not take place through the denser basal planes [9]. The anisotropic nature of the graphite
structure has also an effect on the nature of the SEI layers. The “real” SEI is indeed observed
only at the edge plane interface, with a thickness of about 35 nm and the already described
chemical composition [21]. In contrast, the basal SEI is thinner (7 nm), it is made mainly by
organic decomposition products, it continues to grow during cycling, and it has the only
role of surface passivation without ion transport properties [22,23].

Since 1990, the improvement of the performance of graphite anodes was obtained
thanks to the more careful control of the SEI, obtained by working on both passivation and
ion transport properties [24]. Thus, additives such as vinylene carbonate (VC) [25] and
fluoroethylene carbonate (FEC) [26] were developed to improve the graphite first cycle
Coulomb efficiency, the rate capability and the capacity retention.

3. Interphase Investigation Methods

LIBs active components and materials were successfully characterized with traditional
ex-situ approaches (e.g., X-rays diffraction, electrochemical impedance spectroscopy (EIS)),
which are easy to implement, generally inexpensive, and accessible in many laboratories.
Ex-situ characterization of pure pristine components (e.g., cathode and anode powders
or electrodes deposited on the current collectors) led to reliable information on both the
structure and functional properties of such materials, allowing researchers to infer their
behavior when embodied in the final device and under working conditions.

On the contrary, ex-situ investigation of LIB interfaces/interphases can be challenging,
as this involves the disassembly of the cell to expose the layer of interest. This operation
can lead to modification of the peculiar microstructure and texture of the surface itself and
can also alter the composition of these layers, mainly due to H2O/O2 exposure even at very
low concentrations. For these reasons, the in-situ (full device, not working) and operando
(full device under working conditions) approaches, even if more expensive, less accessible,
and more challenging are better tools for the investigation of the formation, structure, and
evolution of LIBs interphases.

The major limitation for the implementation of in-situ and operando methods is the
need of dedicated experimental set-up, dedicated cell design, and cell assembly. A second
relevant point to be considered for the investigation of the interphases is their intrinsic
nature of 3D layers with variable thickness, complex microstructure and composition.
Thus, when considering the investigation technique of choice, spatial resolution must be
considered in addition to sensitivity and selectivity.

Moreover, as the interphase is a layer evolving under working conditions, also time
resolution is a relevant parameter for dynamic characterization of the SEI and CEI. Indeed,
both SEI and CEI may undergo significant evolution during the working cycles of the
battery in terms of volumetric expansion/contraction, phase transitions, parasitic reactions
and both reversible and irreversible phases formation. Finally, a thorough evaluation may
require spanning over several orders of magnitude both in spatial and time domains, and
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thus inevitably resorts to the use of multi-techniques approach offering complementary
information. In the following, the most relevant techniques are discussed with some
examples of application in the study of LIBs interphases. Table 1 reports the main ad-
vantages and disadvantages of the different techniques with respect to their capability of
investigating interfaces/interphases.

3.1. Diffraction-Based Techniques

Diffraction techniques are among the most exploited methods to characterize battery
materials, and chiefly the electrodes [27–31]. The main advantages offered by diffraction
methods are: (i) the versatility related to use different radiation sources (Xrays, neutron,
electrons, offering complementary information, penetration depth, and sensitivity), (ii) the
non-destructive nature of the measurement, and (iii) the possibility to detect both crystalline
and amorphous components. However, some major complications must be considered
when the in-situ and operando approaches are considered. Indeed, dedicated cells with
specific design are needed to minimize the undesired radiation interaction with battery
components such as case, current collectors and separators [27]. Moreover, special radiation
sources (e.g., synchrotron [30]) are required to allow for fast acquisitions. Finally, this is a
bulk technique which does not allow spatial resolution, but for tomography and microto-
mography applications (see Section 3.4) [30]. Finally, depending on the selected radiation
source (laboratory X-rays, synchrotron light, neutrons, electrons) the data acquisition time
can vary significantly, highly impacting on the possible time resolution.

The structural and compositional evolution of the electrode was reported by several
publications [27–37]. The investigation of SEI formation with diffraction techniques is still
challenging and only few examples were reported based on XRD [32–34] and neutron
diffraction [35–37]. The use of in-situ fast XRD measurements allowed for the detection of
the formation of LiF crystallites on the graphene surface and for revealing their texture [32];
the compositional analysis of the SEI layer was further confirmed by XPS analysis. XRD
allowed also for the monitoring of the degradation of the cathode material and the SEI
formation mechanism [34]. Neutron diffraction experiments were exploited for the analysis
of commercial 18,650-type cell and the structural evolution of the electrodes and the SEI
layer were reported [37].

With respect to X-rays, neutron diffraction offers higher sensitivity to detect lithium
and other light elements, and thus can be preferred for the investigation of SEI layers. At the
same time, neutron diffraction measurements require big facilities and longer acquisition
times due to the lower intensity of the incident radiation beams. The information that can
be obtained on the interphases is related to the identification of the constituent phases and
their crystal/amorphous structures. Many of the components in the SEI and CEI layers
are organic, amorphous, or small inorganic crystals, thus the analysis of the total diffuse
radiation, and in particular the use of pair distribution function (PDF) can be also exploited
to better characterize these species [38,39].

3.2. X-rays/Electron Absorption Spectroscopies

Beside diffraction, X-rays are a versatile probe due to the wide range of interactions
with matter, including absorption and reflection. X-rays absorption spectroscopy (XAS), is
indeed a powerful tool for the investigation of the atomic structure of the LIBs materials
and constituents, leading to the identification of local coordination and oxidation numbers
of the different atomic species. It offers good sensitivity and selectivity, can be used for
the characterization of crystalline and amorphous components, and the acquisitions are
generally fast enough to allow for operando studies under cycling on the time scale of
the electrochemical processes [28,40–43]. As for XRD, high-intensity sources are preferred
for in-situ analysis, thus synchrotron light can be required together with dedicated cell
assembly including special precautions (e.g., free-standing electrodes, inert atmosphere,
use of specific electrodes [44,45]). As for the diffraction studies, also in this case the
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investigation of the interphases is still challenging but some pioneering works have been
reported [43–47].

Similar to XAS, X-rays photoelectron spectroscopy (XPS), was widely exploited for
the ex-situ characterization of electrode surfaces. In-situ XPS is now receiving particular
attention for the characterization of interfaces due to the ability: (i) to detect almost all the
elements with very low detection limits, and (ii) to perform a surface-sensitive analysis.
Both laboratory and synchrotron radiation can be exploited for such analyses [48]. One
of the major limitations is the requirement of ultrahigh vacuum, which is not compatible
with the commonly used liquid electrolytes and with the non-conductive nature of the SEI
layer. While ex-situ SEI characterization has been widely exploited and reviewed [48,49],
in-situ investigations are still facing the challenges of cell design and proper experimental
setup [50–53]. However, it is exploited to monitor the composition of the species formed
during the electrochemical reaction at the electrode surface with no spatial resolution. A
significant example of the combined application of XRD, XAS, and XPS measurements
was reported by Deng et al. who were able to follow the cathode surface degradation
mechanism and products in an all-solid state LIBs system [43]. In particular, XPS analysis
was exploited for the identification of the chemical species and compounds constituting
the CEI layer, formed upon oxidation of the cathode reacting with the solid electrolyte,
demonstrating the ability of this technique to address such issues.

3.3. Reflectometry and Scattering

Apart from the chemical composition and structure of the constituents, also morpho-
logical features of the interphase such as roughness, density, and thickness, do play a
crucial role in determining its behavior in the working device. Reflectometry is one of the
best tools to address these aspects. It is generally used for the analysis of surfaces and thin
films and can exploit, similarly to diffraction, different radiation sources (X-rays, neutrons).
X-rays reflectometry (XRR) can monitor the surface in terms of structural information,
density, thickness, roughness of a layer. This can be done during in-situ evolution of the
layer and down to the atomic scale, thus XRR is really promising for the investigation
of the electrodes/electrolyte interface/interphase. Again, up to now only few examples
were reported in literature due to the complexity of the cell scheme and design [54,55].
Neutron reflectometry is similar to XRR as far as the working principles are considered,
but offers higher penetration depth and higher resolution, thus it is particularly appealing
for the SEI investigation under operando conditions [56–58]. Neutron reflectometry was
exploited for the operando investigation of irreversible capacity losses correlated with
SEI formation in a Si-based LIB [56]. Indeed, neutron reflectometry offers the possibility
to obtain quantitative information on the Li concentration in the amorphous SEI layer.
Neutrons are also exploited for the small angle neutron scattering (SANS) and inelastic
neutron scattering (INS) techniques, providing information about the size, shape, volume
of nanostructures of the interphase layers in the range of 5–200 nm [59–64].

3.4. Imaging and Microscopy

The morphology of the interfaces can be monitored by exploiting imaging techniques
based on different radiation sources. X-rays imaging can be declined on several techniques,
including tomography (XRT), and transmission microscopy (XTM), which offer spatial
resolution up to ~20 nm using synchrotron radiation, and can be used to collect 2D images,
as well all to reconstruct 3D images, thus offering a unique insight into the visualization of
interfaces/interphases [36,65–71]. Neutron radiation can also be exploited for acquisition
of 2D and 3D images, so allowing to monitor Li dynamics and distribution, gas evolution
and SEI formation [72–76]. Neutron depth profiling (NDP) was used for the selective
detection of 6Li isotopes to monitor the lithium mass transport within the cell under
working conditions [77–79]. This allows for the detection of both reversible and irreversible
formation of interfacial layers and their evolution. At the same time, this analysis is
more challenging due to: (i) low neutron flux (thus not allowing for fast time resolution),
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(ii) issues related to magnetic interactions and detection of magnetic structures, and (iii)
strong background from hydrogenated species, such as polymer of the binder and separator
and electrolyte components.

More traditional and less demanding microscopy techniques were also exploited for
the investigation of interfaces/interphases. Traditional optical microscopy, OM, offers
relatively low spatial resolution (~200 nm). Therefore, only microstructural features can
be observed, whereas the formation and evolution of the nanometric SEI components is
challenging. Generally, OM is used for the direct observation of dendrites and the follow
up of the electrode evolution in terms of volume and stress cycling [80,81]. Higher spatial
resolution (~10 nm) can be obtained with scanning electron microscopy, SEM. At the same
time, high vacuum and electrically conductive samples are generally needed, which limit
the possible applications for in-situ studies to electrodes and solid and semi-solid elec-
trolytes. Dedicated cells and configurations were developed trying to overcome the major
limitations [82,83] and pioneering works for the study of interface/interphase were already
reported [82,84,85]. Transmission electron microscopy, TEM, suffers of similar and even
greater problems related to sample preparation and cell configuration. Therefore, only a
few setups have been developed to date [86–88]. Resolution at the atomic level and fast
acquisition allow to follow the dynamics of the systems under study. Images and movies
can be obtained, and impressive results were recently reported combining information com-
ing from imaging and diffraction analysis [89–95]. Recently, other innovative techniques
such as scanning electrochemical microscopy, SECM, and cryogenic electron microscopy,
CEM, were proposed for in-situ SEI investigation [96,97]. The variety of experimental
setups, possible techniques, and variety of information that can be obtained were reviewed,
highlighting the versatility of TEM analysis [93]. In particular, TEM was widely exploited
to detect the lithation of the electrode materials, to observe the volumetric expansion of
the electrodes, to detect the growth of passivation layers/particles as it enables for direct
visualization of these phenomena with nanometric resolution and, combining diffraction
information, for the detection of the crystal phases.

Atomic force microscopy, AFM, was exploited as alternative to SEM and OM thanks
to the higher resolution (sub-nanometer range), the possibility to obtain 3D images, and
less limitations on the nature of the samples (no needs for conductive samples and full
compatibility with liquids). AFM generates a tomographic image of the surface of the
investigated sample. For these reasons it is particularly suitable for the study of SEI
formation and evolution, particularly for the evaluation of the thickness and stability with
time [98–101].

3.5. Other Spectroscopies and Electrochemistry-Based Approaches

The chemical composition and identification of the species constituting the SEI and
CEI layers may be investigated via the traditional spectroscopic techniques such as FTIR,
Raman or electron energy loss spectroscopy (EELS) [102]. FTIR allows for implementation
of several modes (transmission, reflectance, reflection absorption, attenuated total reflec-
tion) for both ex-situ and in-situ investigations [103,104], and it is generally preferred to
Raman due to strongest signals and fastest acquisition. Moreover, FTIR is highly sensitive
to organic components, thus it can be exploited for the follow up of processes such as elec-
trolyte decompositions, gas evolution, solvent intercalation, SEI formation, identification of
the role of additives, changes in concentration of different species, coordination of different
species near the electrode surface. Similar to FTIR, Raman was exploited using different
cells schemes [105–107]. Raman is generally used for the study of the carbon component
in terms of structure (crystalline vs. amorphous), defect levels, crystallites size, changes
upon lithiation, etc. also allowing for spatial resolution (microRaman setups). EELS, which
exploits the inelastic scattering of electrons (typically provided by TEM) from the sample,
gives information about chemical composition and structure down to the atomic level.

Recently, nuclear magnetic resonance (NMR) was also exploited for the in-situ in-
vestigation of LIBs, thanks to the introduction of high-resolution solid-state techniques,
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sequences for the investigation of paramagnetic compounds, and (micro)imaging methods
(magnetic resonance imaging or MRI) [38,39,108–111]. NMR offers nuclear selectivity, and
the different interactions (magnetic dipolar, electric quadrupolar, chemical shift anisotropy)
can be exploited to better characterize the different components in the electrode and elec-
trolyte. Recently, NMR has been exploited for the study of interfaces, thanks to dynamic
nuclear polarization (DNP) and imaging techniques [112,113].

Other spectroscopic techniques, such as mass spectrometry, MS, [114], Mössbauer
spectroscopy [115], and electron paramagnetic resonance, EPR, [116] have been exploited.
For a systematic classification and discussion on the state-of-the-art techniques and available
procedures for interface/interphase analysis it is possible to refer to dedicated reviews [117–119].

Finally, the investigation of interfaces/interphases can be carried out with the help of
advanced electrochemical techniques, including: (i) electrochemical acoustic analysis [120–122];
(ii) quartz crystal microbalance, EQCM, [123,124]; (iii) electrochemical impedance spec-
troscopy, EIS, [125], and (iv) scanning electrochemical microscopy [126].

Table 1. Pros and cons of some characterization techniques of interest for lithium batteries. A: spatial
resolution; B: temporal resolution/acquisition speed; C: structure/phase selectivity; D: chemical
selectivity; E: sensitivity; F: setup complexity; G: in-situ/operando capabilities; H: cost/accessibility.
Five levels scale: ++, +, =, -, –. N.A.: not applicable/not relevant. See text for acronyms.

Technique Ref. A B C D E F G H

RD [27–34] - + ++ N.A. + = - ++
Synch. Diffr. [29,30] - ++ ++ N.A. ++ ++ –

Neutron diffr. [35,37] – = ++ N.A. = - + –
XAS [28,40–45] - + + + + - - -
XPS [48–53] - + = ++ + – – -

Reflectometry [54–58] + ++ N.A. N.A. - = + =
Opt. Micr. [80,81] - + N.A. N.A. - + - ++

SEM [82,83] + = + ++ ++ - - +
TEM [86–97] ++ + ++ + ++ – – -
AFM [98–101] ++ = = N.A. = + - ++

IR [103,104] = - - ++ - ++ - ++
Raman [105–107] + - - ++ – + - +

NMR/MRI [108–111] = – = ++ – - = =
XRT [65–71] ++ ++ ++ N.A. = + + +
EIS [125] N.A. – N.A. N.A. N.A. ++ ++ ++

4. Future Developments
4.1. The Li/Electrolyte Interface

The intrinsic instability of the Li metal/electrolyte interface is the main obstacle
towards the development of the lithium metal secondary battery (LMB) which is seen
as one of the main breakthroughs in battery business. The implementation of a safe and
reversible lithium platting/stripping process is carried on two development lines: (i) in
the rocking chair configuration (lithiated cathode) it will be possible to develop a quasi-
“lithium less” device, where the anode material is formed in-situ during the first charge,
thus increasing the gravimetric energy, (ii) by using non-lithiated cathodes, overcoming
the intrinsic limitation of intercalation chemistries and enabling the use of high capacity
materials (S, O2).

The presence of a SEI layer on the surface of metallic lithium is again a key point
to improve electrolytes stability, since these latter work outside their thermodynamic
electrochemical window. However, this scenario is completely different with respect
to intercalation materials as graphite. The stripping/plating reaction takes place with
a deep change of the electrode surface: fresh lithium is generated during plating and
consumed during stripping. Thus, new SEI is formed during each plating cycle, with
the corrosion of the metal active material, while the SEI fractures during stripping due
to the generated mechanical strain. These processes have an opposite effect on the cell
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stability/performances: the continuous growth of SEI in plating increases the interfacial
impedance and thus the electrode overpotential, so affecting the rate capability of the
material. At the same time, the fragility of the SEI during stripping boosters for the
formation of lithium fractal structures (dendrites) in the next plating cycle, because the
SEI microfractures become the space zone for fast development of such dendrites [127],
which can propagate fast through the electrolyte, eventually giving internal short circuit
and dramatic cell failures. Moreover, during the successive stripping, dentrites can be
detached from the metal layer originating “death” lithium particles in the electrolyte.

The successful implementation of LMB passes through SEI stabilization, and several
different strategies have been proposed so far (Figure 2) [128]. A first approach is the
use of electrolyte additives to improve the SEI chemical and mechanical stability. One
of the most investigated additives is LiNO3, because nitrates decompose around 1.7 V
vs. Li+/Li promoting the uniform growth of lithium during plating [129]. Moreover, the
addition of polysulfide increases the homogeneity of the fresh metal layer [130]. Other
investigated additives are FEC [131], AlI3 [132], and Cs salts to promote the electrostatic
shield mechanisms [133].

A second way to improve the interfacial properties of the Li/electrolyte interphase
is the pretreatment of the metal to produce an artificial SEI layer before assembling the
cell. From the interfacial point of view, there are two possibilities in this regard: to
build the artificial layer onto the Cu current collector and to use it as a scaffold for the
plating of lithium, or to make the SEI directly on the lithium foil. The former approach
was used with porous carbonaceous materials such as carbon nanospheres [134], or 2D
materials as boron nitride and graphene [135]. During plating, lithium ions can penetrate
the layer and the lithium is deposited between the artificial SEI and the Cu foil. These
SEIs show better mechanical and chemical properties compared to layers formed onto
the lithium foil by electrolyte decomposition, increasing the Coulomb efficiency and the
lifetime of the lithium anodes. Similar results were obtained with a series of protective
layers of inorganic (LiF, Li3N, LiPO4, Al2O3) and organic (NafionTM, polyacrylic acid,
polyacetylene) materials directly attached on the top of the lithium foil. Lithium-containing
inorganic salts can be produced by the reaction of gases on the surface of metallic lithium
(freon or F2 for LiF [136,137], N2 for Li3N), or by chemical reactions in solution (CuF2
for LiF [138]). The deposition of oxides can be performed by atomic layer deposition
(ALD) [139]. In the case of organic materials, different strategies can be used to realize the
protective layer: it can be laminated on the top, as in the case of a few µm NafionTM soaked
with a commercial electrolyte [140], directed formed by the chemical reaction between
the polyacrylic acid and Li [141] or by the in-situ polymerization to obtain conducting
polymers (polyacetylene) [142].
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4.2. Beyond Graphite: Alloys for Negative Electrodes

High-capacity novel negative electrodes for LIBS include materials such as conversions
oxides (SnO2, SiOx) or metalloid elements (Si, Sn) able to make alloys with lithium. Despite
of the obvious chemical differences between the two classes, their working principle in
LIBs is similar, since MOn oxides are converted to M/Li2O composites during the first
cathodic reaction and then the reversible alligation reaction takes place:

xLi+ + yM = LixMy

Thus, in both cases, during cell functioning we should take in consideration the
SEI layers on the metalloid surface, also because the conversion reactions take place at
potentials often higher than the electrolyte decomposition one. These SEIs have similar
problems as in the LMB case, i.e., mechanical instability due to the large volume changes
during alloying and de-alloying, making the mechanisms of SEI formation dynamic and
thus affecting the Coulomb efficiency of the process. The most important example in this
regard is the use of silicon, beside lithium the material with the highest theoretical capacity
for Li ions storage, thanks to the possibility to make alloys up to Li4.4Si and observed
specific capacity exceeding 3500 mAh g−1.

Studies for the implementation of silicon-based negative electrodes initially focused
on the preparation of nanostructures able to allocate volume changes during alloying and
de-alloying reactions, while neglecting the chemical aspects at the surfaces. The result
was the preparation of high specific capacity electrodes with low efficiencies (<99.5%)
and therefore insufficient cycling capabilities [143], so the importance of the study and
control of the interface has re-emerged. The earlier works on the nature of SEI layers on Si
nanostructures revealed its chemical composition, made by LiF, Li2CO3, LiSiOx and organic
compounds [144], as well as its dynamic nature, i.e., the SEI changes with the potential
and the cycling [145]. One of the most promising ways to overcome this issue is to have a
“non-filling” coating wrapping the porous silicon structures [146]. The non-filling coating
is made by a carbon film able to form a stable SEI allowing the penetration of lithium
ions in the ensemble of the porous nanoparticles, wherein they can expand and contract
without mechanical damaging. The same approach was used in the case of micrometric
pomegranate-shaped silicon particles covered by a thin layer of carbon [147]. With these
systems, the life of silicon anodes was extended over 1000 cycles at high current density
and a gravimetric capacity higher than 1000 mAh g−1 (Figure 3).
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4.3. Towards High Voltage: The Emerging Role of the CEI

LIB positive electrodes work at potentials just below the oxidative decomposition
potential of the electrolyte, thus the role of the CEI interphase between the cathode and
the electrolyte is often undervalued. However, in the last years, it emerged as one of the
improving fields to design high energy materials, as well as more sustainable processes in
battery manufacturing. Indeed, the attempts to produce high-capacity positive materials
are not just focused in increasing the capacity, which is limited by the intercalation reaction,
but also in enabling the use of high potential phases, such as the high voltage, Ni-based
spinels (LiNi0.5Mn1.5O4, LNMO) or olivines (LiCoPO4) [148,149]. Moreover, the stability
of Ni-rich materials (both layered oxides and spinels) in water is affected by corrosion
with loss of the transition metal cation, a problem which is limiting the development
of water-based procedure to formulate the electrode layers. Contrary to the graphite,
indeed, the commercial processing of the cathode still requires the use of toxic 1-methyl-2-
pyrrolidone (NMP).

One of the most interesting compounds, the spinel LiNi0.5Mn1.5O4, has a plateau at
4.7 V vs. Li+/Li, which is above the decomposition limit and leads to the formation of CEI.
Apart the stabilization of the bulk structure of the spinel, proper surface engineering can be
used to control the interphase between the active material particles and the electrolyte [150].
Seminal works on the properties of the LiNi0.5Mn1.5O4/electrolyte interface highlighted
that its stability depends on crystal orientation, cations surface distribution, and surface
reconstruction upon cycling [151,152]. The two main strategies to improve the interfacial
properties are: (i) the coating of the active particles, and (ii) the use of electrolyte additives
(see Figure 4). In the former case, a core-shell approach is applied to avoid the dissolution of
transition metal cations and to inhibit the reaction with the electrolyte [153]. The proposed
shells are usually made by ZnO, TiO2, or Al2O3 as nano-shells formed by chemical self-
assembling [154] or ALD [155,156]. From the other part, a better design of the electrolytes
can also enable the reversible operation of high voltage-spinel [157]. CEI-forming additives
include: (i) phosphorous based compounds like (trimethylsilyl)phosphate [158], which
exhibit higher HOMO energy and thus higher decomposition potentials, (ii) carbonyl
molecules, like quercetin [159]; (iii) nitrile containing systems [160]), or different lithium
salts and lithium borates [161,162]. Another possibility is to design electrolytes with high
antioxidative ability, such as sulfone-based solutions [163], phosphate-based systems [164],
fluorinated solvents [165], ionic liquids [166], and highly concentrated solutions [167].

Among the various cathode materials for future LIB generations, however, the most
promising and investigated compounds in recent years have been the layered oxides of
general composition LiNixMnyCozO2 (NMCXYZ), The general trend in the composition
optimization towards higher energy and low cost is the increase of the Ni amount with
respect to the more toxic Co, also because of the better electrochemical properties of the
couple Ni4+/Ni3+ compared to Co4+/Co3+. Thus, NMC evolution moved from NMC111
to NMC532 and NMC622 of the last commercial generation, aiming towards NMC811
which should be the cathode of the next LIBs. However, this comes with the increase of
both the thermal instability and the solubility of the phase, affecting the capacity retention
and inhibiting the processing in aqueous solution [168]. An intriguing solution to this
problem is the active material surface control, with the preparation of microparticles of
active material with a concentration gradient, which has an excess of Mn and Ni at the
surface and in the bulk, respectively [169]. Despite of the presence of 80% on Ni in the
phase, electrodes based on this kind of NMC811 showed better cyclability compared to the
more stable bulk phase NMA [170].
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Finally, we mention that, in the case of CEI, the large molar amount of carbon additives
used in electrode formulation has an important role in the decomposition of the electrolytes
at high voltage, due to their nanometric size and good electrocatalytic activity, which is at
least comparable with that of active oxides [171], without considering that carbon black
with graphitic domains can intercalate anions at high voltage.

5. Conclusions

Extended interphases play an increasingly important role in determining the func-
tional properties of electrochemical storage devices, especially regarding the long-term
performance stability. While in the past decade the attention was focused on the graphite
anode (SEI), the most recent technological developments place at the center of attention the
interphase between the lithium metal and the electrolyte (liquid or solid), and CEI. Indeed,
the advances in instrumentation setups and cell design allow for the implementation of
in-situ and operando approaches of increasing complexity. This will help to understand
the reaction mechanisms and to develop more sophisticated approaches for interphases
design and control. At the same time, due to the complexity of the considered systems, SEI
and CEI, it is not possible to identify a single technique of choice for the investigation of
the battery interphases and multi-technique approaches should be preferred.
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List of the Acronyms Used in the Text

AFM Atomic Force Microscopy
ALD Atomic Layer Deposition
CEI Cathode Electrolyte Interphase
CEM Cryogenic Electron Microscopy
DNP Dynamic Nuclear Polarization
EC Ethylene Carbonate
EELS Electron Energy Loss Spectroscopy
EIS Electrochemical Impedance Spectroscopy
EPR Electron Paramagnetic Resonance
EQCM Electrochemical Quartz Crystal Microbalance
FEC Fluoroethylene Carbonate
FTIR Fourier Transform Infrared spectroscopy
HOMO Highest Occupied Molecular Orbital
INS Inelastic Neutron Scattering
LIB Lithium-Ion Battery
LMB Lithium Metal Battery
LNMO LiNi0.5Mn1.5O4
MRI Magnetic Resonance Imaging
MS Mass Spectroscopy
NDP Neutron Depth Profiling
NMA Nickel-Manganese-Aluminum oxide
NMCXYZ LiNixMnyCozO2
NMP 1-methyl-2-pyrrolidone
NMR Nuclear Magnetic Resonance
OM Optical Microscopy
PC Propylene Carbonate
PDF Pair Distribution Function
PEO Poly(ethylene oxide)
SANS Small Angle Neutron Scattering
SECM Scanning ElectroChemical Microscopy
SEI Solid Electrolyte Interphase
SEM Scanning Electron Microscopy
TEM Transmission Electron Microscopy
VC Vinylene carbonate
XAS X-rays Absorption Spectroscopy
XPS X-rays Photoelectron Spectroscopy
XRD X-rays Diffraction
XRR X-rays Reflectometry
XRT X-rays Tomography
XTM X-rays Transmission Microscopy
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