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Abstract: This study presents the method of fixed-photon-energy double-imaging photoelectron pho-
toion coincidence (i2PEPICO) utilized to investigate the dissociation of state-selected ions. Vacuum
ultraviolet (VUV) synchrotron radiation at one fixed photon energy of hν = 21.2 eV, the He(I) atomic
resonance energy, is employed as a light source to ionize molecules. Various dynamic information
including time-of-flight (TOF) mass spectra, mass-selected photoelectron spectra (PES), and electron
and ion kinetic energy correlation diagrams corresponding to each mass are obtained efficiently with
the multiplexed capabilities of i2PEPICO, thereby revealing the detailed dissociation mechanisms
of ions. As representative examples, dissociation of state-selected O2

+ ions prepared in the b4∑g
−

and B2∑g
− electronic states and CH3F+ ions in the X2E, A2A1, and B2E states were selected and

investigated.

Keywords: double imaging photoelectron photoion coincidence; oxygen; methyl fluoride; photoelec-
tron spectrum; vacuum ultraviolet

1. Introduction

Vacuum ultraviolet (VUV) photoionization and dissociative photoionization of gas-
phase molecules are fundamental photon–matter reactions in nature and have been the
subject of numerous experimental and theoretical studies [1–3]. In the past few decades,
photoelectron spectroscopy (PES) and photoionization mass spectrometry (PIMS) as univer-
sal analysis methods have provided valuable insight into molecular structure and chemical
reactivity. Building on the established capabilities of PES [1] and PIMS [4,5], photoelectron
photoion coincidence spectroscopy (PEPICO), based upon the detection of both electrons
and ions in coincidence, can provide a complete picture of the photoionization and disso-
ciative photoionization outcome. Moreover, the PEPICO scheme is also a powerful method
to prepare and analyze state-selected cations.

A wealth of PEPICO techniques have been developed around pulsed sources, mak-
ing use of their time structure to measure the 3D momentum of electrons and ions in
coincidence and thereby allowing for an event-per-event full-vectorial correlation mea-
surement [6–9]. However, the present study will focus only on the use of continuous light
sources. Depending on the different photoionization light sources and electron analyzers
used, two main PEPICO approaches have been implemented. (i) In earlier PEPICO appli-
cations, a relatively simple narrowband source such as a He(I) atomic discharge lamp at
hν = 21.2 eV was used as photoionizing light source, and electrons with different kinetic
energies were assessed with an electrostatic analyzer and measured in coincidence with
ions [10,11]. (ii) A broadband continuum light source, such as an Ar or He Hopfield contin-
uum discharge lamp and synchrotron radiation, is equipped with a VUV monochromator.
This equipment is then used to scan through various ionic states, analyzing either all the
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photoelectrons in coincidence with a given ion—to measure mass-tagged photoionization
efficiency (PIE) curves [12] or angle-resolved constant-ionic-state (CIS) spectra [13,14]—or
only near-zero kinetic energy electrons, commonly referred to as threshold photoelectrons,
in the so-called threshold PEPICO (TPEPICO) scheme [15,16]. TPEPICO has the advan-
tages of high collection efficiency and high-energy resolution for threshold photoelectrons,
particularly when the strategy of electron velocity-map imaging (VMI) is used [17,18].
Another difference between TPEPICO and fixed-photon-energy PEPICO is that the former
is especially sensitive to autoionizing resonances [12,19]. The rapid development of the
third generation synchrotron facilities offer high-flux, high energy resolution and easily
tuneable VUV photons in photoionization, which has led to TPEPICO becoming popular,
especially among the chemistry-oriented community.

In recent years, the state-of-the-art method of double-imaging photoelectron–photoion
coincidence (i2PEPICO), which employs double-imaging detection for both electrons and ions,
has been utilized at several synchrotron facilities in the world, such as the Photon Factory [20],
Hefei National Synchrotron Radiation Laboratory [21], SOLEIL synchrotron [22] and Swiss
Light Source [23]. The i2PEPICO provides valuable information in various fields of physics
and chemistry (for example, see section V of Ref. [16]). In particular, threshold photoelec-
tron spectrum (TPES) and mass-selected TPES, corresponding to each mass with energy
resolution down to the sub-meV level [24], can be obtained by scanning synchrotron pho-
ton energy and have the potential to identify transient and final products in chemical
reactions [25–29]. However, the scanning is very time-consuming and usually needs several
hours or even days to acquire a high resolution TPES. The long-time scanning is challenging
in terms of light source and sample stability. In addition, the availability of synchrotron
beamtime is very limited, and usually only a few days per year can be obtained for a
given project.

In i2PEPICO setups, two position-sensitive detectors (PSDs) are installed to collect
electrons and ions, respectively, and their 2D/3D momentum distributions can be unrav-
elled through analysis of their images. As all the electrons with a specific range of kinetic
energy are collected, threshold photoelectrons along with other energetic electrons can
be detected and correlated to their corresponding ions in coincidence. In other words,
i2PEPICO simultaneously combines the advantages of TPEPICO (high collection efficiency)
and the earlier PEPICO (broad kinetic energy coverage) in a multiplex format. Therefore,
when moderate electron energy resolution is sufficient for beamtime-limited experiments,
it is not necessary to continuously scan the synchrotron photon energy since these experi-
ments can be performed at just one or two fixed photon energies, while much information
can be gathered given the multiplexed-capabilities of i2PEPICO [30]. Ion imaging also
has the ability to measure kinetic energy release (KER) and angular distributions of ions
correlating to definite electron binding energies [31], and to select a region of interest (ROI)
in complex mixtures, such as the ones produced in a flow tube [25], in order to increase the
detection dynamic range by removing the background. Fixed-photon-energy i2PEPICO
can be operated with high efficiency, saving synchrotron beamtime, as demonstrated in
the probing of sample mixtures [24], reaction intermediates, and isomers [32–34]. The
emergence of new VUV/XUV light sources, either high repetition (>1 kHz) lasers [35] or
lamps at fixed photon energy [36,37], makes table-top i2PEPICO experiments attractive
and available.

In this work, we present an illustration of i2PEPICO at fixed photon energy to study
the dissociation of state-selected ions. The experiments are performed at a single fixed
photon energy, hν = 21.2 eV, and detailed dynamical information can be obtained owing
to the multiplexed capabilities of i2PEPICO. As representative examples, the dissociation
of state-selected O2

+ ions, prepared in the b4Σg
− and B2Σg

− electronic states [8,38–40],
and CH3F+ ions, in the X2E, A2A1 and B2E low-lying electronic states [31,41–43], have
been selected for investigation. A large array of information on the dissociation, including
photoionization time-of-flight (TOF) mass spectra, mass-selected PES, and electron and ion
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kinetic energy correlation diagrams corresponding to each mass, are obtained efficiently
and applied to reveal the dissociation mechanisms.

2. Materials and Methods

The experiments were carried out with an i2PEPICO spectrometer, DELICIOUS 3 [22],
on the VUV beamline DESIRS [44] at synchrotron SOLEIL, France. The configuration
of the i2PEPICO spectrometer installed inside the SAPHIRS permanent photoionization
end-station has already been introduced in detail before [45], so only a brief description
is presented here. As shown in Figure 1, the i2PEPICO spectrometer is composed of an
electron VMI spectrometer, coupled to a modified Wiley–McLaren TOF 3D momentum
ion-imaging analyzer, in order to measure electrons and ions in coincidence, owing to
delay-line anode-based PSDs. Briefly, a VMI design has been applied on the electron
side of the i2PEPICO spectrometer to collect electrons and analyze their kinetic energy
and angular distribution. On the ion side, a modified Wiley–McLaren 3D momentum
imaging spectrometer has been installed to measure the ion momentum vector event-by-
event without the need for image inversion, presenting a good compromise between mass
and kinetic energy resolution. In addition, by tuning the potentials on the two gridless
electrodes located inside the second ion-acceleration region, one can change between
momentum and space imaging, the latter being very helpful for molecular-beam alignment.
The detailed voltage setting of these electrodes can be found in the literature [22]. A custom-
made PSD (40 mm diameter) is placed at the end of the Wiley–McLaren TOF ion analyzer
and a commercial PSD (Roentdek DLD80, 80 mm diameter) is installed on the electron side
to collect electron signals. The eight electronic signals from the two PSDs, plus another
two fast signals taken from the electron and ion multichannel plates (MCPs), are amplified,
discriminated, and fed into a custom-made time-to-digital converter (TDC) for analysis. A
multi-start/multi-stop (MS/MS) data acquisition scheme is used in coincidence to get a
preferable signal-to-noise ratio and a random spread of false coincidences over the temporal
window, providing a better noise subtraction [46].
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Figure 1. A schematic diagram of the experimental setup, including the i2PEPICO spectrometer and
the jet, differential, and ionization chambers.

In our routine experiments, to get high-resolution energetic and spectroscopic in-
formation, TPES and mass-selected TPES (TPEPICO spectra) are measured by scanning
synchrotron photon energy with a small step size and selecting only the threshold photo-
electrons using a hot-electron subtraction method. The i2PEPICO scheme at fixed photon
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energy can yield electron images correlated to a specific mass and 3D or 2D ion momentum.
These filtered electron images are then processed by an Abel inversion algorithm [47] to
recover mass-selected and KER-selected PES. The electron and ion kinetic energy correla-
tion diagrams corresponding to each mass at fixed photon energy are obtained from the
coincidence of photoelectron and ion images, and then the detailed dynamic information
in dissociation can be acquired. After the upgrade of the SAPHIRS end-station [45], the
electron kinetic energy resolution of the i2PEPICO spectrometer has been improved down
to 2.8% (∆E/E) while the mass resolution reaches 1700 (mass 1700 and 1701 being separated
at half-maximum of their peaks) with a repeller voltage of 500 V.

On the beamline, synchrotron radiation emitted from an undulator is dispersed by
a 6.65 m normal-incidence monochromator used here with a 200 lines/mm grating. In
the present experiments, the synchrotron photon energy is not scanned, and is fixed at
hν = 21.2 eV. Commercial O2 or CH3F gas without further purification is expanded through
a 50-µm-diameter nozzle and traverse two 1.0-mm-diameter skimmers in the SAPHIRS end-
station. The synchrotron photon beam, the molecular beam, and the axis of the i2PEPICO
spectrometer are crossed at right angles in the photoionization region. The typical working
pressures in the jet, differential, and ionization chambers of SAPHIRS are ~10−3, 10−5, and
10−6 Pa, respectively, with the continuous molecular beam on.

3. Dissociation of State-Selected O2
+ Ion

Dissociative photoionization of oxygen, which has been studied by many groups
before [8,38–40], is selected as a prototype to demonstrate the performances of i2PEPICO at
fixed photon energy. The oxygen molecule belongs to the point group of D∞h and its X3∑g

−

ground state has an electron configuration of (1σg)2(1σu)2(2σg)2(2σu)2(3σg)2(1πu)4(1πg)2.
Due to the open-shell electron configuration, a great deal of ionic states of O2

+ can
be prepared and have been identified in the energy range of 12.0–21.2 eV. For exam-
ple, the b4∑g

− and B2∑g
− electronic states are formed by the ejection of a 3σg outer-

valence electron and these two states show a long vibrational progression in PES [8,39,40].
The adiabatic ionization energies of the b4∑g

− and B2∑g
− electronic states locate at

18.1713 and 20.2983 eV, respectively [48,49]. The high vibrational levels of the b4∑g
−

state and the B2∑g
− electronic state are unstable and pre-dissociate to an O atom and an

O+ atomic ion fragments. Two dissociation limits of O2
+, O+(4S) + O(3P) at 18.733 eV and

O+(4S) + O(1D) at 20.700 eV, are involved in the present energy range and have been
identified in the dissociation [8,38–40].

3.1. Time-of-Flight Mass Spectrum and Ion Images

The TOF mass spectrum of O2 is recorded at the fixed photon energy of hν = 21.2 eV
and presented in Figure 2a, with 10-times-magnified data in blue. Two peaks at m/z = 16
and 32 are observed in the mass spectrum and assigned as the O+ fragment ion and the O2

+

parent ion, respectively. In contrast to the intense and sharp mass peak of the O2
+ parent

ion, the O+ fragment ion peak has a wider width, reflecting a large kinetic energy released
in the dissociation.

The ion images of the O2
+ parent ion and the O+ fragment ion are shown in Figure 2b,c.

Due to the speed of the molecular beam, the ion images are slightly off-center on the
detector. The propagation direction of the molecular beam is from east to west along the
horizontal axis of the images. As most of the kinetic energy released in the photoionization
of molecular oxygen has been carried away by the accompanied electrons, the O2

+ parent
ion appears as a small spot in the ion image due to the fine ion-velocity focusing of the
i2PEPICO spectrometer [22]. In agreement with the wide peak of the mass spectrum, the
O+ fragment ion appears as a large pattern in the ion image of Figure 2c. In addition,
in accordance with the two limits O+(4S) + O(3P) and O+(4S) + O(1D) involved in the
dissociation, two concentric rings can be identified in the O+ fragment ion image.
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Figure 2. (a) Time-of-flight mass spectrum, (b) the O2
+ parent ion image, and (c) the O+ fragment

ion image.

3.2. Mass-Selected Electron Images and Photoelectron Spectra

The mass-selected electron images corresponding to the O2
+ parent ion and the O+

fragment ion are shown in Figure 3a,c. The polarization of VUV photons is linear [44] and
along the horizontal axis of the images. The upper-half portions of the electron images
represent the raw data and the lower-halves correspond to the results from the pBasex Abel
inversion algorithm [47]. Two main rings can be observed in the electron image of the O2

+

parent ion along with some weaker structures. The electron image of the O+ fragment ion
has much richer structures, as illustrated by the number of concentric rings that can be
clearly identified.
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Figure 3. Mass-selected electron images and their corresponding photoelectron spectra, (a,b) the O2

+

parent ion, (c,d) the O+ fragment ion.

The mass-selected PES corresponding to the O2
+ parent and the O+ fragment ions

obtained from the two electron images are presented in Figure 3b,d, respectively. The
extraction electric field of the i2PEPICO spectrometer was set at 104 V/cm, and under
these experimental conditions, the electrons with kinetic energy of less than ~4.2 eV can
be mapped on the electron PSD and detected without discrimination. One can see that in
the electron binding energy range of 17.0~21.2 eV, three electronic states of O2

+ have been
populated with the present photons and are assigned in the PES. The A2Πu electronic state
is stable and can be observed in the mass-selected PES of the O2

+ parent ion. However, due
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to the limitation of the electron kinetic energy resolution for fast electrons, the vibrational
series of the A2Πu electronic state are not resolved in the PES. At hν = 21.2 eV, the electrons
emitted from the A2Πu electronic state can take 3–4 eV kinetic energies, and their absolute
energy resolution is about 0.2 eV (a slight dependent on the electron kinetic energy), which
is larger than the vibrational spacing (0.07–0.11 eV) of the A2Πu electronic state [45,50]. The
lower vibrational levels of the b4∑g

− electronic state are stable and show some partially
resolved vibrational structures in the PES of Figure 3b. With the increase of the electron-
binding energy, the electron signals of the O2

+ parent ion disappear at ~18.8 eV in Figure 3b.
The electron signals of the O+ fragment ion appear at ~18.7 eV in the PES of Figure 3d,

implying that high vibrational levels of the b4∑g
− state are unstable and dissociate into the

O and O+ fragments. In the electron binding energy range of 20.2–21.2 eV, several peaks
can be observed in the PES and are assigned to the v = 0–6 vibrational progressions of the
B2∑g

− state, as consistent with previous findings [8,38–40].
As discussed above, the vibrational levels of the b4∑g

− electronic state are not clearly
discerned in the PES due to the limited electron kinetic energy resolution for fast electrons.
This problem could be overcome by reducing the electron kinetic energy to increase the
absolute energy resolution. For example, after changing the synchrotron photon energy
down to hν = 19.2 eV, the vibrational structures of the b4∑g

− electronic state can be clearly
determined, and assigned in the images and PES as depicted in Figure 4. The present
results clearly show that the v = 0–3 vibrational levels of the b4∑g

− state are stable, the
v = 5–7 vibrational levels totally dissociate into the O+(4S) and O(3P) fragments, and the
v = 4 vibrational level is partially dissociative, according well with previous data [8,38].
Note that the choice of the photon energy is important in the fixed-photon-energy i2PEPICO
experiments because of the compromise between kinetic energy resolution and bandwidth.
Indeed, with 4π transmission analyzers the absolute resolution degrades for faster particles
so that several small-energy windows, i.e., photon energies, might be more advantageous
than a single large-energy window covering several states if the ionization source is easily
tuneable. An extrapolation of this concept is threshold photoelectron spectroscopy, where
the spectrometer bandwidth is narrow and the photon source is continuously tuned [16].
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3.3. Electron and Ion Kinetic Energy Correlation Diagrams

The electron images and the ion images can be correlated together in coincidence to ob-
tain detailed dynamic information on the photoionization and dissociative photoionization.
The electron and ion kinetic energy correlation diagrams corresponding to the O2

+ parent
ion and the O+ fragment ion obtained from the images of Figures 2 and 3 are presented in
Figure 5a,b, respectively, in which their individual KER distributions can be acquired. The
O2

+ parent ions are stable in the A2Πu electronic state and the lower vibrational levels of
the b4∑g

− state.
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Figure 5. Electron and ion kinetic energy correlation diagram corresponding to (a) the O2
+ parent

ion and (b) the O+ fragment ion, with the assignments along the O+(4S) + O(3P) and O+(4S) + O(1D)
dissociation channels. As shown in the inserted color panel, the ion signal intensity increases from
orange to white then blue, with black representing zero.

In Figure 5b, the vibrational levels of the b4∑g
− and B2∑g

− electronic states, together
with the dissociation along the first dissociation limit O+(4S) + O(3P), DL1, and the second
dissociation limit O+(4S) + O(1D), DL2 [8,38–40], have been assigned in the correlation
diagram of the O+ fragment ion. It is shown that the O+ fragment ion firstly appears at the
v = 4 vibrational level of the b4∑g

− electronic state, and then its kinetic energy increases
linearly along the diagonal line of the first dissociation limit DL1, as well as within the
energy range of the B2∑g

− electronic state.
The vibrational levels of the B2∑g

− electronic state are clearly identified in the correla-
tion diagram of Figure 5b and the dissociation of O2

+ ion towards the second dissociation
limit DL2 appears at the v = 4 vibrational level of the B2∑g

− state. We can see that
the dissociation of O2

+ in the B2∑g
− state is mainly towards the first dissociation limit

O+(4S) + O(3P) and the branching ratio of the products towards the second dissociation
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limit O+(4S) + O(1D) is small. The detailed mechanism involved in the dissociation of
state-selected O2

+ ions can be revealed with the aid of dynamics information, as described
in detail in previous publications [8,38–40], in which predissociation via several dissociative
states has been determined.

4. Dissociation of State-Selected CH3F+ Ion

The method of fixed-photon-energy i2PEPICO has also been utilized to investigate
dissociation of state-selected CH3F+ ions. Methyl fluoride has a C3v high symmetry and its
electron configuration in the neutral ground electronic state is (1a1)2(2a1)2(1e)4(3a1)2(2e)4.
Three low-lying electronic states of CH3F+, X2E, A2A1, and B2E, can be prepared after
removing an electron from the three outer valence orbitals, 2e, 3a1, and 1e, respectively,
in the photoionization with VUV photons of hν = 21.2 eV. In addition, the dissociation of
the CH3F+ ion is of fundamental interest and undergoes specific reactions into different
products depending on the ion’s electronic states.

4.1. Time-of-Flight Mass Spectrum and Ion Images

The photoionization TOF mass spectrum of CH3F recorded at the fixed photon energy
of hν = 21.2 eV is presented in Figure 6a. In addition to the most intense peak of the CH3F+

parent ion at m/z = 34, the CH3
+ (m/z = 15) and CH2F+ (m/z = 33) fragment ion peaks

can be clearly observed in the mass spectrum. The peak width of the CH3
+ fragment ion

is much wider than that of the CH3F+ parent ion due to the large kinetic energy released
in the dissociation. In addition, in agreement with our previous results [31,43], the CH2

+

(m/z = 14) and CHF+ (m/z = 32) fragment ions with weak signals are identified in the mass
spectrum as well. The mass peak at m/z = 35 represents ~1% of the CH3F+ peak and is
identified as the 13CH3F+ isotopic parent ion.
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Figure 6. (a) Photoionization time-of-flight mass spectrum of CH3F, with 5-times-magnified data in
blue, (b) the CH3F+ parent ion image, and (c) the CH3

+ fragment ion image.

The images of the CH3F+ parent ion and the CH3
+ fragment ion are measured and

shown in Figure 6b,c. The CH3F+ parent ion exhibits a small off-centered focused spot. In
accordance with the wide peak of the CH3

+ fragment ion in the mass spectrum, the CH3
+

fragment ion image exhibits a large diameter, implying a large kinetic energy released in
the dissociation.

4.2. Mass-Selected Electron Images and Photoelectron Spectra

The total photoelectron image and PES corresponding to all the ions involved in the
photoionization are presented in Figure 7a,b. As shown in the PES, the three low-lying
electronic states of CH3F+, X2E, A2A1 and B2E, have been prepared with hν = 21.2 eV and
assigned. Due to the small energy gap and their natural peak widths, the A2A1 and B2E
electronic excited states fully overlap and appear as a broad band in the PES.
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5-times-magnified data in blue, partially adapted with permission from Ref. [43]. Copyright 2017
American Chemical Society.

The mass-selected electron images and PES corresponding to the CH3F+ parent ion,
the CH2F+ fragment ion and the CH3

+ fragment ion are shown in Figure 7 as well. In
the mass-selected PES of Figure 7d, the CH3F+ parent ion is populated only in the low-
energy part of the X2E ground state, indicating that its high vibrational levels and the
A2A1 and B2E excited states are dissociative. The CH3F+ parent ions prepared at the high
vibrational levels of the X2E ground state dissociate to the CH2F+ and H fragments, as
shown in the mass-selected PES of CH2F+ in Figure 7f. In addition, the CH3F+ parent ions
prepared in the electron binding energy range of 16–19 eV can dissociate to the CH2F+ and
H fragments as well, with a small branching ratio. The A2A1 and B2E electronic states in
the electron binding energy range of 16–19 eV are fully dissociative and their intensity in
the mass-selected PES of CH3

+ is almost the same as that in the total PES, indicating that
the CH3F+ parent ions prepared in the A2A1 and B2E electronic states primarily dissociate
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to the CH3
+ and F fragments. The signals of the CH2

+ and CHF+ fragment ions are so weak
that their mass-selected electron images and PES (not shown here) are too noisy to provide
any valuable information in the dissociation.

4.3. Electron and Ion Kinetic Energy Correlation Diagrams

The corresponding electron and ion kinetic energy correlation diagrams for the CH3F+

parent ion, the CH2F+ and CH3
+ fragment ions are shown in Figure 8. The CH3F+ parent

ions with almost zero kinetic energy are populated and stable in the low vibrational levels
of the X2E ground state. In the correlation diagram of Figure 8b, the CH2F+ fragment ions
are produced in the high vibrational levels of the X2E ground state, covering the electron
binding energy range of 13–14 eV. As most of the kinetic energy released in the dissociation
has already been removed by the accompanying H fragment, the kinetic energy of the
CH2F+ fragment ion is quite small, slightly broader than that of the CH3F+ parent ion in
Figure 8a.
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In Figure 8c, the A2A1 and B2E electronic states overlap in the electron binding energy
range of 16–19 eV and exhibit a large kinetic energy released in the dissociation. In the
correlation diagram, the contour of the kinetic energy can be divided into two parts from
the dissociation of the A2A1 and B2E electronic states, respectively. The CH3

+ fragment
ion dissociated from the A2A1 state takes a large kinetic energy, whereas the released
kinetic energy from the B2E state is small, in agreement with their different dissociation
mechanisms. Previous studies have shown that the A2A1 electronic state is a repulsive and
directly dissociative state to produce CH3

+ and F fragments, but in the B2E state, the CH3F+

ions firstly perform internal conversion to the high vibrational levels of the X2E ground
state and then statistically dissociate to the CH3

+ and F fragments [31,43].

5. Conclusions

The state-of-the-art method of double-imaging photoelectron photoion coincidence
(i2PEPICO) at a fixed photon energy has been efficiently utilized to investigate dissociation
dynamics of state-selected ions. The present experiments are mainly performed at only
one fixed photon energy, hν = 21.2 eV, the He(I) atomic resonant energy, and a great deal
of information in the dissociation has been acquired with the multiplex capabilities of
i2PEPICO. As representative examples, dissociation of state-selected O2

+ ions in the b4∑g
−

and B2∑g
− electronic states and CH3F+ ions in the X2E, A2A1, and B2E electronic states

have been studied. The data of these two fixed-photon-energy i2PEPICO experiments were
accumulated for only 3~4 h, respectively, and their detailed dissociation mechanisms can
be revealed efficiently from the obtained experimental data such as the mass-selected PES
and the electron and ion kinetic energy correlation diagrams corresponding to each mass.
The limitations of fixed-photon-energy i2PEPICO, especially the electron kinetic energy
resolution, have also been discussed, and some upgrade schemes will be taken into account
in future experiments. As demonstrated by the present work, the i2PEPICO experiments
can be combined with other light sources, not only to the tuneable synchrotron radiation,
but also to VUV/XUV laser sources based upon 4-wave mixing and high-harmonic genera-
tion (HHG), as well as modern VUV discharge lamps and excimer sources. In addition,
the advances of the i2PEPICO technique, such as the background removal leading to a
high signal-to-noise ratio and the dynamical range enhancement [28], have the analytical
potential to detect elusive species with electronic fingerprints to decipher isomers [34,51]
and will provide new insights into in situ and real-time analysis of chemical reactions.
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