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Abstract: Recently, very rapid growth has been observed in the innovations and use of natural-fiber-
based materials and composites for acoustic applications due to their environmentally friendly nature,
low cost, and good acoustic absorption capability. However, there are still challenges for researchers
to improve the mechanical and acoustic properties of natural fiber composites. In contrast, synthetic
fiber-based composites have good mechanical properties and can be used in a wide range of structural
and automotive applications. This review aims to provide a short overview of the different factors
that affect the acoustic properties of natural-fiber-based materials and composites. The various factors
that influence acoustic performance are fiber type, fineness, length, orientation, density, volume
fraction in the composite, thickness, level of compression, and design. The details of various factors
affecting the acoustic behavior of the fiber-based composites are described. Natural-fiber-based
composites exhibit relatively good sound absorption capability due to their porous structure. Surface
modification by alkali treatment can enhance the sound absorption performance. These materials
can be used in buildings and interiors for efficient sound insulation.

Keywords: acoustic; natural fibers; composites; sound absorption coefficient; noise attenuation

1. Introduction

Recent advancement in controlling noise through sound absorption provides an
opportunity to investigate various porous materials including fiber-based composites.
Commercially available sound absorption materials are of three types, i.e., fibrous, granu-
lar, and cellular. Fibrous sound absorption materials are further divided into two categories,
natural and synthetic, based on fiber origin. Interest in fiber-based composites is grow-
ing very rapidly due to their lightweight and high performance in several applications.
Such composite materials receive great attention because of their wide range of applica-
tions in automotive, wind energy, sports, aerospace, and civil engineering applications.
Fiber-based composite is the combination of fibers and matrix and the resultant material
with improved mechanical properties compared with individual fibers and matrix [1,2].
Further, the natural-fiber-based composites are gaining importance because of their en-
vironmentally friendly nature. Natural-fiber-based composites have advantages such as
high abrasive resistance, low emission of toxic fumes with heat, high specific strength, light
weight, low cost, and eco-friendliness [3,4]. There are different types of sound absorbers,
which include hollow resonant structures, porous structures, and composites, which also
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have a unique sound absorbing capability while interacting with different intensities and
frequencies. In the beginning, asbestos-based materials were used as a sound absorber,
but later, they were replaced with advanced alternatives. Asbestos was the material earlier
used for soundproofing and sound insulation in 1800s in the US during the industrial
revolution. Some properties of asbestos are non-flammability, non-corrosiveness, and good
electrical insulation. It was one of the most widely used materials for soundproof applica-
tions in roofs, offices, houses, and roof ceilings in schools, etc. Asbestos consists of mineral
fibers like anthophyllite, tremolite, crocidolite, amosite, actinolite, and chrysotile [5].

At the initial stage, there was a lack of understanding about the harmful effects of
asbestos on animal and human health. Later, researchers found that asbestos is carcinogenic
and hazardous to humans as well as animals. Since then, most countries around the world
have banned the use of asbestos. Especially the European Union took very strict action and
banned the use, import, and export of asbestos. Some industries use synthetic fibers as an
alternative to asbestos fibers [6,7]. For synthetic fibers, often the starting materials used
are cellulose or natural polymers. It was found that synthetic fibers are also hazardous
for human health. Inhalation of synthetic fiber can cause lung injury, which leads to
cancer [8–10].

Researchers are also working on the addition of granular materials to the fiber based
composites, which significantly enhance flow resistivity and bulk density of the composite
for increasing the chances of low-frequency sound absorption. However, the incorporation
of such materials causes increased environmental pollution and CO2 emission, which cause
global warming. Many sustainable natural fibers such as coir, banana, sugarcane, jute,
and sisal are available for designing potential sound absorbers [11].

2. Acoustic Properties of Fibrous Materials and Composites

The sound absorption coefficient (SAC) can be calculated by measuring the total
amount of sound energy absorbed by the materials. The range of SAC lies between 0 to 1,
in which 1 represents the highest absorption, while 0 shows no absorption at all. Absorption
of low-frequency sound waves, e.g., 500 Hz, is very difficult as compared to high-frequency
sound waves. Propagation of sound waves through a medium without any absorption and
loss of frequency is known as transmission [12,13]. The transmission coefficient (t) is the
fraction of incident energy that is not reflected or absorbed. The transmission loss can be
defined as 10log(t) dB. When the sound waves strike surfaces, some part is absorbed, while
the rest is reflected [14,15].

There are mainly two methods of measurement reported for sound absorption: the
reverberation chamber method and the impedance tube method. The reverberation cham-
ber method is widely used for a bigger sample size in order to determine the sound
absorption coefficient [16]. The sample is mounted inside a sound insulated reverberation
room/chamber. The walls, roof, floor, etc., are highly reflective. The sound in different fre-
quencies is generated by a source and is allowed to propagate in all directions. The sample
absorbs part of the sound energy, and the rest is reflected or diffused or even transmitted.
This method involves a random incidence sound absorption, and the coefficient is termed
the random incidence sound absorption coefficient.

In the case of a smaller sample size, the normal incidence impedance tube method is
preferred [17,18]. The sound absorption performance of porous materials can be tested by
the two-microphone impedance tube method, as shown in Figure 1. A two-microphone
transfer function impedance tube (ISO-10534-2) in the frequency range of 100–2500 Hz
is used during acoustic testing. It requires relatively small circular samples, either 29 or
100 mm in diameter according to the frequency range (500 to 6.4 kHz or 50 to 500 Hz,
respectively). This method avoids the need to fabricate a large test sample with lateral
dimensions several times the acoustic wavelength. The sound absorption coefficient is
calculated for low as well as high frequency ranges. Average sound absorption coefficient
values are reported.
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Figure 1. Impedance tube method for measurement of sound absorption [17]. 
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brous composite materials [19]. A comparative account of sound absorption in recycled 
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2.1. Classification of Sound in Terms of SAC

The various classes of sound absorption as per ASTM C423—17 are given in Table 1.

Table 1. Classes of the sound absorption coefficient [13].

Range SAC Class

0.90, 0.95, 1.00 A
0.80, 0.85 B

0.60, 0.65, 0.70, 0.75 C
0.30, 0.35, 0.40, 0.50, 0.55 D

0.15, 0.20, 0.25 E
0.00, 0.05, 0.10 F

Based on SAC, the sound absorption performance is classified into 6 classes, A, B,
C, D, E, and F, as shown in Table 1. Category “A” is the most efficient class with the
highest sound absorption coefficient, while category “F” denotes the minimum sound
absorption coefficient.

2.2. Sound-Absorbing Materials

Sound absorbers are divided into resonators, porous absorbers, panel absorbers,
and membranes. Some examples of porous absorbers are open-cell foams, mineral wool,
and carpet. Porous absorbers allow sound and airwaves to pass inside the materials con-
taining channels and cavities. As per the literature, sound absorbers are further categorized
into fibrous, cellular, and granular types. Studies on sound absorption are focused on
fibrous composite materials [19]. A comparative account of sound absorption in recycled
polyurethane foam using various models and experiments is shown in Figure 2.
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Figure 2. Sound absorption behavior based on various models [19]. 
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oil palm, rice straw, sisal, and luffa fibers, were used as reinforcement. The results re-
vealed that physically and chemically treated fibers show a higher sound absorption co-
efficient than untreated fibers. As fiber volume fraction is increased, the sound absorp-
tion coefficient increases as well. Among all samples, the polypropylene/rice straw 
composite showed the highest sound absorption coefficient. Surface modification causes 
further enhancement of the interfacial adhesion, which significantly enhances mechanical 
properties. Mihai Bratu et al. investigated the acoustic behavior of different composites 
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Figure 2. Sound absorption behavior based on various models [19].

The normal incidence sound absorption coefficient was measured for samples of 2 cm
thickness using the impedance tube method. Experimental results were compared with
two established theoretical models. The Dunn and Davern model is a semi-empirical model
used to describe the acoustic behavior. This model determines the real and imaginary parts
of the characteristic propagation constant and the characteristic wave impedance. It takes
into account the air flow resistivity (N s/m4) and frequency (Hz) [19].

The Voronina model uses simple analytical functions that depend on the porosity of
the material, the frequency, and the average pore diameter. A quantitative estimation of
sound absorption in porous material is determined using structural characteristics. Using
this model, the sound wave impedance and propagation constant are calculated from the
porosity and average pore diameter for a material [19].

2.3. Factors Affecting Acoustic Properties of Fibrous Sound-Absorbing Materials and Composites

Materials with the ability to significantly absorb sound energy are known as sound
absorbers. Sound absorption occurs while sound waves pass through a porous material,
and a reduction in sound energy takes place due to friction with the pore walls and
thermal exchange. There are certain factors like fiber size, temperature, porosity, and flow
resistivity, density, thickness, compression, and design or placement that significantly affect
the acoustic properties of fibrous materials and their composites.

2.3.1. Effect of Different Fiber Types

Researchers investigated the acoustic properties of lignocellulosic fibers based com-
posites. Three types of thermoplastic binders, e.g., zein, polylactic acid, and polypropy-
lene, were used. Additionally, two types of thermoset binders, epoxy and unsaturated
polyester (UP), were used for impregnation. Further, five types of fibers, betel nuts, oil palm,
rice straw, sisal, and luffa fibers, were used as reinforcement. The results revealed that
physically and chemically treated fibers show a higher sound absorption coefficient than
untreated fibers. As fiber volume fraction is increased, the sound absorption coefficient
increases as well. Among all samples, the polypropylene/rice straw composite showed the
highest sound absorption coefficient. Surface modification causes further enhancement
of the interfacial adhesion, which significantly enhances mechanical properties. Mihai
Bratu et al. investigated the acoustic behavior of different composites based on waste
fibers and other wastes. Formaldehyde was used as a matrix along with steelworks slag,
fiberglass waste, wood waste, and waste ash from burning shells of plants as filler. The best
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result was obtained for wood waste and glass fiber waste. Therefore, it can be used as an
absorbing panel in industries and automotive, etc. [20].

Yang and Li investigated the acoustic behavior of natural-fiber-based composites.
They used jute, flax, and ramie fibers as a reinforcement and Epoxy resin as a matrix. It was
found that, at a frequency range of 256–2000 Hz, ramie, jute, flax, glass, and carbon fibers
show SAC of 0.6, 0.65, 0.65, 0.35, and 0.45 respectively. The jute fiber-based composite
materials show a sound absorption coefficient of 0.9 at 10,000 Hz frequency, as shown in
Figure 3 [21].

Elammaran Jayamani et al. investigated the acoustic behavior of lignocellulosic agri-
cultural fibers and their composites. Kenaf and rice straws (RS) were used along with
urea-formaldehyde (UF) and polypropylene (PP) as a matrix. It was found that, by in-
creasing the frequency of incident sound waves, the absorption coefficient also increases.
Kenaf-fiber-based urea-formaldehyde composites with a thickness of 1.8 cm showed a
higher sound absorption coefficient as compared to PP-based samples of similar thickness.
It is stated that polymer composites have an average SAC ranging between 0.008–0.065 [22].
Zhang et al. investigated the sound absorption of natural fibers and sandwich composites
structures. Flax fabric was used as reinforcement and epoxy as the matrix. It was found
that flax-fiber-based composites show superior acoustic absorption compared to glass-
fabric-based composites, as shown in Figure 4. Flax fiber composites show relatively better
sound absorption at a wider frequency range. It is due to their fibrous microstructure and
multi-scale micro-morphology [23].
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Zhang et al. evaluated the acoustic properties of various natural-fiber-based com-
posites using the acoustic impedance tube. It was found that jute-fiber-based composites
showed maximum sound absorption performance for a wide range of frequencies, as shown
in Figure 5 [24].
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Maderuelo-Sanz et al. reported on the sound absorption performance of composites
produced from waste tires. The sound absorption coefficient of panels having 2.0 cm
thickness is shown in Figure 6 [26].
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The real and imaginary part of acoustic impedance for panels are shown in Figure 7.
The real part is the resistance associated with energy losses, and the imaginary part is the
reactance, associated with phase changes [26,27].
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Prabhu et al. investigated the sound absorption performance of sisal- and tea-fiber-
waste-based composites. As shown in Figure 8, tea-fiber-based composite samples with
thickness 1.5 cm exhibited better sound absorption coefficients as compared to other
fibers [28].
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Tiuc et al. investigated the acoustic properties of textile-waste-based rigid polyurethane
closed-cell foam. Textile waste in the portion of 10–50% was used in the composites. As shown
in Figure 9, better sound insulation was achieved as compared to pure polyurethane material
with a thickness of 2 cm [29].
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Elammaran Jayamani et al. investigated the sound absorption coefficient of natural-
fiber-based epoxy composites. They used sugarcane bagasse, kenaf, and coconut fibers in
epoxy composites with a thickness of 1.8 cm. It was found that at the 500–2500 Hz frequency
range, sugarcane fiber composites provide better sound absorption, while coconut fiber
composites also have good sound absorption at 2500–4000 and 5500–6000 Hz. Due to
higher density, sugarcane-fiber-based composite was found to be a better sound absorber
at relatively lower frequencies. It was also found that coconut-, kenaf-, and sugarcane-fiber-
based composites have sound absorption coefficients of 0.086, 0.086, and 0.085, respectively.



Textiles 2021, 1 63

Chen et al. also reported on the acoustic properties of ramie-fiber-based composites with a
thickness of 2.0 cm [30].

2.3.2. Effect of Fiber Size

A change in fiber size may be a change in length or diameter. Fiber size is considered
one of the major factors that affect acoustic properties. Lee et al. investigated the effect of
fiber diameter on the acoustic properties of composites. They used polyester with different
fiber fineness, e.g., 1.25, 2, and 7 deniers. Non-woven samples with a thickness of 2.5 cm
were developed from these fibers by using low melting polyester for binding purposes.
It was found that by reducing fiber diameter, the sound absorption coefficient increases.
It is because airflow resistance increases with smaller fiber diameter [31].

Koizumi et al. concluded that by decreasing fiber diameter, the sound absorption
coefficient increases, as shown in Figure 10. It was described that fiber denier ranging from
1.5 deniers to 6 deniers results in better sound absorption than coarser denier. Further,
it was concluded that by using micro-denier fibers, a dramatic enhancement in sound
absorption coefficient can be achieved [32].

1 

 

G10 

 

 

G18 

 

G19 

Figure 10. SAC comparison of different fiber diameters [32].

Ren et al. described that for achieving efficient SAC with the same volume density,
finer fibers are preferred as compared to coarser fibers. More fibers per unit area result in a
more tortuous path, which results in a higher sound absorption coefficient [33].

Bakri et al. investigated the SAC of banana-fiber-based epoxy composites. The results
revealed that, by decreasing fiber diameter, flow resistivity increases, which causes an
increase in the SAC as shown in Figure 11 [34]. Hasina Mamtaz et al. investigated the
acoustic behavior of various other natural-fiber-based composites with a thickness of
1.8 cm. They also found that fiber diameter is an important parameter for enhancing sound
absorption. By decreasing fiber diameter, SAC increases [35].
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Figure 11. Effect of fiber diameter on SAC of composites [34]. 

Luu et al. researched the acoustic properties of polydisperse fiber networks. They 
used effective fiber diameter for modeling. During reconstruction, they considered two 
types of polydisperse fiber matrix and bi-dispursed fiber matrix. Results reveal that fiber 
diameter has a significant effect on the sound absorption coefficient. A significant in-
crease in the sound absorption coefficient has been observed by decreasing fiber diameter 
[36]. 

Xiang et al. investigated the acoustic properties of kapok fibers. The results revealed 
that long fibers have slightly higher SAC than short fibers. Further, the random orienta-
tion of fibers shows higher SAC than oriented fibers [37]. V. Arumugam et al. conducted 
a study on the effect of fiber orientation on acoustic properties of the glass epoxy lami-
nates. Different stacking sequence was used to investigate its mechanical properties. A 
significant effect on acoustic behavior has been observed by changing the orientation, 
which also changes overall porosity [38]. 

Chen et al. studied the morphology and properties of ramie-fiber-based PLLA 
composites. They used fibers of different lengths. A fiber volume fraction of 30:70 ram-
ie/PLLA was used for composite manufacturing. The acoustic properties of the resultant 
sample were measured through the standing wave tube method. Results revealed that 
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Luu et al. researched the acoustic properties of polydisperse fiber networks. They used
effective fiber diameter for modeling. During reconstruction, they considered two types of
polydisperse fiber matrix and bi-dispursed fiber matrix. Results reveal that fiber diameter
has a significant effect on the sound absorption coefficient. A significant increase in the
sound absorption coefficient has been observed by decreasing fiber diameter [36].

Xiang et al. investigated the acoustic properties of kapok fibers. The results revealed
that long fibers have slightly higher SAC than short fibers. Further, the random orientation
of fibers shows higher SAC than oriented fibers [37]. V. Arumugam et al. conducted a
study on the effect of fiber orientation on acoustic properties of the glass epoxy laminates.
Different stacking sequence was used to investigate its mechanical properties. A significant
effect on acoustic behavior has been observed by changing the orientation, which also
changes overall porosity [38].

Chen et al. studied the morphology and properties of ramie-fiber-based PLLA com-
posites. They used fibers of different lengths. A fiber volume fraction of 30:70 ramie/PLLA
was used for composite manufacturing. The acoustic properties of the resultant sample
were measured through the standing wave tube method. Results revealed that when sound
hits the surface of the composite, the non-vertical angle fiber with incident wave absorbs
some part of the sound wave. Moreover, the composite with shorter ramie fiber was found
to be a better sound absorber [30].

2.3.3. Effect of Fiber Fraction

Jiang et al. studied and reported the sound absorption performance of seven-hole
hollow polyester fibers (SHPF)-based composite samples with a thickness of 1.5 cm [39].
The influence of increasing fiber fraction on the sound absorption coefficient is shown in
Figure 12. With increasing fraction of hollow fibers, the sound absorption performance is
observed to improve.
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Polyester binders were used as a matrix. It was found that the sound absorption coeffi-
cient of sugarcane fiber is 0.6338 and of banana fiber is 0.6635, and by the combination, it 
reaches up to 0.733 at 2325 Hz frequency. For 20 wt% fiber volume fraction, banana fiber 
has 0.586, sugarcane has 0.71, and a combination of both fibers has 0.73 SAC at 2500 Hz 
frequency. It was also established that by increasing fiber volume fraction, sound ab-
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Figure 12. Effect of hollow fiber fraction on the sound absorption performance of composites [39].

Sheng Jiang investigated the sound absorption coefficient of seven-hole polyester-
based chlorinated polyethylene composite. It was found that the SAC of untreated polyethy-
lene was 0.2 at 100–2500 Hz frequency range. By increasing reinforcement content, remark-
able improvement has been observed in SAC. At 20 wt.% fiber content, SAC is found to be
0.42 for sample thickness of 2 cm. As the thickness of the composites increases, the SAC
also increases. It was found that by increasing reinforcement content, SAC is significantly
improved, as shown in Figure 13 [39].
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Abdul Hakim Abdullah et al. investigated the sound absorption of natural-fiber-
based composites. The study was mainly conducted to find out the SAC of banana fibers,
sugarcane bagasse fibers, and their hybrid composites with thickness of 1 cm. Polyester
binders were used as a matrix. It was found that the sound absorption coefficient of
sugarcane fiber is 0.6338 and of banana fiber is 0.6635, and by the combination, it reaches
up to 0.733 at 2325 Hz frequency. For 20 wt% fiber volume fraction, banana fiber has
0.586, sugarcane has 0.71, and a combination of both fibers has 0.73 SAC at 2500 Hz
frequency. It was also established that by increasing fiber volume fraction, sound absorption
increases [40].

Elammaran Jayammani et al. investigated the acoustic properties of epoxy-based
banana-fiber composites. It was found that by increasing frequency, the sound absorption
coefficient increases. By increasing fiber content, sound absorption also increases. It was
also found that alkali-treated fiber composites have a higher sound absorption coefficient
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as compared to untreated fiber composites. It is because materials with lower molecular
weight were removed, which reduces sound reflection and increases absorption [41].

An inspection of the effect of fiber loading on the sound absorption property of flax
fiber-based composites (FFRC) was conducted and presented in Figure 14 [42].
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Reixach et al. also investigated the acoustic properties of natural-fiber-based com-
posites. The effect of fiber content on the transmission losses for sample thickness 1.1 cm
are shown in Figures 15 and 16. The effect of fiber treatment on the sound absorption
performance was also reported [43].
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porosity, and flow resistivity. For measuring the sound absorption coefficient, cylindrical 
shape commercial-grade treated (TD4) and untreated (TD5) jute were used. 
Two-microphone impedance tubes were used for measuring the sound absorption coef-
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2.3.4. Effect of Fiber Treatment

Elammaram Jayamani et al. investigated and found that alkali-treated and heat-treated
fiber-based composites have a relatively higher sound absorption coefficient than untreated
composites [44]. They further investigated the effect of alkali treatment on the sound ab-
sorption coefficient of other natural-fiber-based polymer composites. Sisal, rice straws, betel
nuts, luffa, and fruit bunch were used as reinforcement. Further, polymers epoxy, unsatu-
rated polyester (thermoset), and three types of thermoplastic polymers zein, polypropylene,
and polylactic acid were used as a matrix. Fibers were treated with 5 wt% alkali solution.
It was found that the sound absorption coefficient of natural fibers is relatively good due
to the presence of inter-fiber microvoids in the fiber structure. Alkali-treated fiber-based
composites in all cases exhibited a higher sound absorption coefficient compared to un-
treated fiber-based composites. The alkali treatment changes the composition of fibers,
which causes the relative motion between polymers and fibers [45–54]. The influence of
alkali-treated betelnut fiber on SAC for 1 cm thick samples is shown in Figure 17.

Textiles 2021, 1, 1 67 
 

 

 
Figure 16. Transmission loss (TL) for the 30% polypropylene based composites [43]. 

2.3.4. Effect of Fiber Treatment 
Elammaram Jayamani et al. investigated and found that alkali-treated and 

heat-treated fiber-based composites have a relatively higher sound absorption coefficient 
than untreated composites [44]. They further investigated the effect of alkali treatment on 
the sound absorption coefficient of other natural-fiber-based polymer composites. Sisal, 
rice straws, betel nuts, luffa, and fruit bunch were used as reinforcement. Further, poly-
mers epoxy, unsaturated polyester (thermoset), and three types of thermoplastic poly-
mers zein, polypropylene, and polylactic acid were used as a matrix. Fibers were treated 
with 5 wt% alkali solution. It was found that the sound absorption coefficient of natural 
fibers is relatively good due to the presence of inter-fiber microvoids in the fiber struc-
ture. Alkali-treated fiber-based composites in all cases exhibited a higher sound absorp-
tion coefficient compared to untreated fiber-based composites. The alkali treatment 
changes the composition of fibers, which causes the relative motion between polymers 
and fibers [45–54]. The influence of alkali-treated betelnut fiber on SAC for 1 cm thick 
samples is shown in Figure 17. 

 
Figure 17. Influence of betelnut fiber content on sound absorption coefficients of composites [54]. 

S. Fatima and A.R. Mohanty reported a study on the effect of fiber treatment on the 
acoustic properties and fire-retardant properties of jute fiber and its composites. Before 
conducting testing, some physical properties of the fibers were measured, e.g., tortuosity, 
porosity, and flow resistivity. For measuring the sound absorption coefficient, cylindrical 
shape commercial-grade treated (TD4) and untreated (TD5) jute were used. 
Two-microphone impedance tubes were used for measuring the sound absorption coef-
ficient. Results reveal that treatment removes the impurities and the surface becomes 
rougher, which significantly enhances mechanical properties and acoustic absorption of 
the fiber-based composites [55]. 

Figure 17. Influence of betelnut fiber content on sound absorption coefficients of composites [54].

S. Fatima and A.R. Mohanty reported a study on the effect of fiber treatment on the
acoustic properties and fire-retardant properties of jute fiber and its composites. Before con-
ducting testing, some physical properties of the fibers were measured, e.g., tortuosity, poros-
ity, and flow resistivity. For measuring the sound absorption coefficient, cylindrical shape
commercial-grade treated (TD4) and untreated (TD5) jute were used. Two-microphone
impedance tubes were used for measuring the sound absorption coefficient. Results reveal
that treatment removes the impurities and the surface becomes rougher, which significantly
enhances mechanical properties and acoustic absorption of the fiber-based composites [55].
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2.3.5. Effect of Sample Thickness

The sample thickness is one of the most important characteristics that influence the
sound absorption performance. Change of thickness changes several other parameters,
including density and porosity. Coates et al. studied the effect of thickness on the acoustic
behavior of porous materials. Effective absorption of sound is achieved at 1/10th of
the wavelength of incident sound waves in their measurements [54]. Hirabayashi et al.
described that at resonance frequency, peak absorption can occur at one-quarter of the
incident sound wave. It is clear that there is a significant relationship between SAC and
thickness of the materials at high, medium, as well as low frequencies [56]. The material
thickness should be a quarter of the wave length of the sound wave to be an effective
absorber. This is applicable to all measurements involving the impedance tube method
where hard backing is used.

Ibrahim et al. also described that increasing thickness causes an increase in SAC.
At relatively higher frequencies, sound absorption increases nonlinearly [57]. The influence
of thickness on SAC is shown in Figures 18–20 from the reported literature [58].

1 
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Figure 18. SAC of 2.5 cm thick wool samples [57].
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Figure 19. SAC of 1 cm thick wool samples [57].
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coefficient was observed. They investigated the acoustic properties of a seven-hole hol-
low-polyester-fiber-based chlorinated polyethylene (CPE) composite. Polyester fiber 
with 10Dtex fineness and 60 mm length was used in the study. During composite man-
ufacturing, a fiber volume fraction of 65:35 and a reinforcement/matrix was used with 
three different thickness levels of 1, 2, and 3 mm. Test results conclude that by increasing 
the thickness of the sample, the sound absorption coefficient will also be increased, as 
shown in Figure 21 [59]. 
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higher sound absorption coefficient was obtained by increasing the thickness of compo-
sites. 

Figure 20. Effect of thickness on SAC [58].

Jiang et al. reported that by increasing the thickness of seven-hole polyester fiber
and chlorinated polyethylene composite, a significant improvement in sound absorp-
tion coefficient was observed. They investigated the acoustic properties of a seven-hole
hollow-polyester-fiber-based chlorinated polyethylene (CPE) composite. Polyester fiber
with 10Dtex fineness and 60 mm length was used in the study. During composite manufac-
turing, a fiber volume fraction of 65:35 and a reinforcement/matrix was used with three
different thickness levels of 1, 2, and 3 mm. Test results conclude that by increasing the
thickness of the sample, the sound absorption coefficient will also be increased, as shown
in Figure 21 [59].
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The effect of thickness on the sound absorption coefficient is shown in Figure 22. A higher
sound absorption coefficient was obtained by increasing the thickness of composites.
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They also validated the experimental measurement with the Johnson–Champoux–
Allard (JCA) model, as shown in Figure 24. The Johnson–Champoux–Allard (JCA) model 
involves non-acoustical physical parameters, e.g., flow resistivity, tortuosity, porosity, 
viscous characteristic length, and thermal characteristic length. This model is widely 
used to describe the propagation of sound in porous media. 
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Hasina Mamtaz et al. investigated the sound absorption coefficient of fibro-granular
epoxy composites. Coconut/coir fiber was used along with rice husk grain as a granular
filler material. The results shown in Figure 23 reveal that by increasing thickness, the SAC
of composites also increases [35].

Textiles 2021, 1, 1 70 
 

 

 
Figure 22. Influence of thickness of composites on sound absorption coefficients [59]. 

Hasina Mamtaz et al. investigated the sound absorption coefficient of fibro-granular 
epoxy composites. Coconut/coir fiber was used along with rice husk grain as a granular 
filler material. The results shown in Figure 23 reveal that by increasing thickness, the 
SAC of composites also increases [35]. 

 
Figure 23. Effect of sample thickness on SAC [35]. 

They also validated the experimental measurement with the Johnson–Champoux–
Allard (JCA) model, as shown in Figure 24. The Johnson–Champoux–Allard (JCA) model 
involves non-acoustical physical parameters, e.g., flow resistivity, tortuosity, porosity, 
viscous characteristic length, and thermal characteristic length. This model is widely 
used to describe the propagation of sound in porous media. 
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They also validated the experimental measurement with the Johnson–Champoux–
Allard (JCA) model, as shown in Figure 24. The Johnson–Champoux–Allard (JCA) model
involves non-acoustical physical parameters, e.g., flow resistivity, tortuosity, porosity,
viscous characteristic length, and thermal characteristic length. This model is widely used
to describe the propagation of sound in porous media.
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Figure 24. The sound absorption coefficient of fibro-granular composite to validate the analytical
outcome through impedance tube measurement [35].
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Taban et al. studied the sound absorption of palm-fruit-fiber-based composites. The ef-
fects of fiber density and sample thickness are shown in Figure 25 [60]. A higher thickness
and relatively lower density resulted in better sound absorption.
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Shiney et al. investigated the acoustic properties of composite coir mats. Coir mats
with different weaving patterns like Boucle weaving, Panama weaving, and Herringbone
weaving were used along with the epoxy matrix. Acoustic properties were measured
through an impedance tube in the frequency range of 250–2000 Hz by following the ISO-
10534-2 standard. It was concluded that for all structures, an increase in thickness of the
sample results in an increase of sound absorption coefficient of the composite [61].

2.3.6. Effect of Gluing and Multiple Layering of Composites

Su et al. studied the effect of gluing multiple layers in a composite on the sound ab-
sorption behavior [62]. The sound propagation in multilayered composite is schematically
shown in Figure 26.
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The effect of the damping factor of the gluing material on sound absorption coefficient
of the multilayer composite is shown in Figure 27.
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The effect of damping factor of the gluing material on the sound transmission loss of
the multilayer composite is shown in Figure 28.
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2.3.7. Effect of Perforation

Yuvaraj et al. developed perforated acoustic panels from jute fiber based composites
as shown in Figure 29 [63]. Substantial improvement in sound absorption performance
was observed in the case of perforated panels as compared to non-perforated material of
the same composition [64–68].
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Figure 30 shows the influence of % depth penetration on the sound absorption coeffi-
cient of the jute fiber based composites with a thickness of 1 cm.
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Figure 31. Effect of depth of perforation on sound transmission loss [63].

2.3.8. Effect of Adding Plasticizer and Flame Retardants

Researchers investigated the SAC of ramie-fiber-based polylactic acid composites.
They used plain weave ramie fabric and short fibers for the manufacturing of composites
with thickness 1 cm. The results shown in Figure 32 reveal that by adding a plasticizer
and/or flame-retardant finish, the sound absorption is improved [69].
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2.3.9. Effect of Frequency

Elammaran Jayamani et al. further investigated the sound absorption of a betel-nut-
fiber-based polymer matrix composite. Unsaturated polyester (thermoset) and polypropy-
lene (thermoplastic) were used as a matrix. It was found that by increasing frequency,
the sound absorption coefficient of the betel-nut-fiber-based unsaturated polyester com-
posite also increases. The sound absorption coefficient of sisal-fiber-based polylactic acid
biocomposites was also reported. It was found that by increasing frequency, the sound
absorption coefficient increases proportionally [69]. Yang et al. conducted a study on the
acoustic properties of jute-, ramie-, and flax-fiber-based composites [25]. Samples were
fabricated with 65% fiber volume fraction and overall thickness of 40 mm. An impedance
tube was used to measure the sound absorption coefficient with a frequency range of
63–10,000 Hz. Researchers indicated that frequency has a significant effect on the sound
absorption coefficient. An increase in sound absorption has been observed by increasing
frequency. Initially from 0–1000 Hz, rapid growth in sound absorption was recorded after
the increase rate was reduced [70–75]. Several other researchers have reported on the influ-
ence of frequency on the acoustic properties of composite materials based on fibers [76–80].
The influence of frequency on the sound absorption coefficient of fiber-based lime-wool
mortar is shown in Figure 33.
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2.3.10. Effect of Back Cavity Depth

Sound absorption mainly occurs in a specific frequency range, which shifts to the lower
region by increasing the depth of back cavity. Jiang et al. reported that absorption values
are maximal in the range 450–900 Hz, and there is a dependence between the thickness
and the reduced frequency. There is a decrease in sound absorption as the cavity depth
decreases. This type of behavior is a typical resonance effect [81]. The sound absorption
coefficient for different depths of the back cavity is shown in Figure 34.
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2.3.11. Effect of Temperature

Srivastava et al. investigated the effect of change in temperature on sound absorption.
They found that the temperature change significantly affects the sound absorption coeffi-
cient [26]. Harris investigated the effect of temperature and humidity on sound absorption
in the air. He used a frequency range of 2000–12,500 Hz and six temperatures ranging from
0.5 ◦C to 25.1 ◦C at normal atmospheric pressure. The effect of temperature on the noise
attenuation coefficient with varying frequencies was measured. At 50% relative humidity,
the results revealed that at low frequency, the temperature does not show any significant
effect on the noise attenuation coefficient. However, at high frequency, the highest attenua-
tion coefficient was recorded at the lowest temperature. Sound absorption continuously
decreases with an increase in temperature [42].

Knudsen also investigated the effect of temperature and humidity on sound absorption
in nitrogen, oxygen, and air. He used two reverberation chamber methods for measuring
sound absorption. Results revealed that by increasing temperature, sound absorption
decreases [46].

2.3.12. Effect of Porosity and Tortuosity

Researchers investigated the effect of porosity on the acoustic behavior of the material.
If the porosity of the material is higher, then the sound waves come frequently in contact
with the surface of the materials, which causes dissipation of acoustic energy. In addition
to that, the size and number of pores are also very important for the sound absorption
behavior of any material. When sound waves interact with the porous surface of the
materials, the sound waves are damped [82]. By increasing volume porosity, SAC increases,
as shown in Figure 35.
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 Figure 35. Effect of porosity on SAC [82].

Tortuosity is best described as the influence of internal structure on the acoustic prop-
erties of the materials. It is the elongation of the way through pores. Sakagami et al. investi-
gated the acoustic properties of membrane-type sound absorbers. Results show that less
tortuous materials can absorb more sound as compared to more tortuous materials. Highly
tortuous materials are more likely prone to large fluctuations in the sound absorption
coefficient. Researchers also stated that tortuosity does not have a significant effect on noise
transmission coefficient [83]. Dupont et al. described that by increasing porosity, sound
absorption will also be increased [49].

2.3.13. Effect of Flow Resistivity

Flow resistivity is the ability to resist airflow from entering the core of any material.
It can also be defined as a measure of how much air can enter into a porous material. It is
one of the key factors that affect acoustic properties. The acoustic properties of materials are
affected by the flow resistance per unit thickness of the absorber material. In non-woven
materials, the interlocking of the fibers gives enough friction to resist the motion of sound
waves. When sound waves pass through the rough and tortuous path, they cause friction,
which results in a decrease in wave amplitude, and sound wave energy is converted
into heat [84]. According to Crocker, if the flow resistivity value of a material is higher,
then airflow resistance will be higher as well. Sometimes materials with too-high airflow
resistance result in more sound reflection than absorption [51]. The acoustic properties
of materials mainly depend on intrinsic properties. The transmission loss of the sound
when it passes through a porous material mainly depends on the sound wave frequency,
thickness, and flow resistivity of the material. By increasing flow resistivity, transmission
loss will also be increased. Airflow resistivity has an inverse relation to air permeability.
Moreover, as the airflow resistivity of the material increases, then it is difficult for sound
waves to enter the material. Hence, sound absorption shows a significant decrease [85,86].

2.3.14. Effect of Density

Density is known to be one of the most important parameters that affect the acoustic
properties of materials. It was found that by increasing the density of the fibrous material,
the sound absorption coefficient also increases, especially at higher and medium frequen-
cies. Koizumi et al. investigated the effect of density on the acoustic properties of materials.
They concluded that density has a direct relation to SAC at high and medium frequen-
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cies [32]. Ballagh et al. studied the effect of bulk density of wool fiber on sound absorption
of the material. It was found that materials having relatively lower densities have higher
sound absorption at low frequencies as compared to higher density materials, which absorb
high and middle-frequency sound waves. It is further described that wool fibers perform
very well at higher density with a frequency equal to or more than 500 Hz, because at
higher frequencies, surface friction increases, which causes the dissipation of more sound
energy. By increasing the density of materials, fiber per unit area will also be increased,
which increases the sound absorption coefficient, as shown in Figures 8 and 9 [53].

2.3.15. Effect of Compression

According to Castagnede et al. and Wang et al., the compression of fibrous or porous
material causes an increase in the sound absorption coefficient, as shown in Figure 36. It is
because by compression, the constituting fibers come closer to each other, thus increasing
density and decreasing the thickness. Further, an increase in compression causes an increase
in tortuosity as well as flow resistivity, which decreases the shape factor [87,88].
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Figure 36. Effect of compression rate on SAC [87].

Nor et al. studied the effect of compression on the acoustic properties of coconut coir
fibers. Experiments of coir fiber with different compression levels were conducted by an
impedance tube with 28 mm diameter, and standard ISO-10534-2 were used to validate the
analytical model. Samples were tested at different compression levels leading to different
thicknesses, e.g., 50, 35, and 20 mm. It is obvious that compression significantly affects the
physical parameters like flow resistivity, porosity, and tortuosity of the samples. Results
revealed that compression reduces the porosity of the sample, and it shifts the absorption
towards a higher frequency. Moreover, a higher compression rate causes an increase in
sound absorption [89].

Keshavarz et al. described that the compression of materials may cause an increase
or decrease in the sound absorption coefficient, which mainly depends on the method of
compression. The results indicated that increases in compression lead to decreases in the
sound absorption coefficient in the low and medium frequency region for samples with
thickness of 2 cm. For high frequencies, compression improves the absorption coefficient,
as shown in Figure 37 [90].
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2.3.16. Effect of Location of Sound Absorbers

Everest investigated the effect of placement of the active absorbent material on sound
absorption. The sound absorber was placed at different positions such as ends, sides,
and the vertical, traverse, and longitudinal modes on the ceiling. The results revealed that
placement of sound absorbers along the edges and near corners of a rectangular room
shows effective absorption of the sound [91,92].

Lu et al. studied the effect of placement on the acoustic properties of the materials.
They concluded that if an air gap is added behind the sample, it will change the absorption
behavior. Hence, the sound absorption of the materials is significantly increased by the
addition of an air gap between the sample and back surface [93].

S. Fatima et al. conducted studies on the effect of rigid backing and airgap back-
ing of treated and untreated jute fiber composites. Commercial grade jute fibers named
TD5 were used in their study. An impedance tube was used with a frequency range of
0–4000 Hz. Air gaps of 25.4 and 50.8 mm were used between sample and rigid backing
during testing. Results revealed that a 50.8 mm air gap results in the highest sound ab-
sorption coefficient, while rigid backing without an air gap leads to the lowest sound
absorption coefficient. Hence, by increasing the air gap between the sample and rigid
backing, the sound absorption coefficient can also be increased [55].

A detailed account of several fiber-based composite sound-absorbing materials as
reported by various researchers is given in Table 2.
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Table 2. Summary of acoustical properties of fiber-based composites.

No. Reinforcement Matrix Sample
Parameters

Fabrication
Method Results/SAC Ref#

1 Banana Fiber Epoxy
Fiber loading 20 %
wt.%, Thickness

20 mm

Hot Compression
(1000 psi 24 ◦C) 0.11 (6000 Hz) [48]

2 Ramie Fiber Poly L Lactic
Acid (PLLA)

Thickness 3 mm,
Fiber Loading

30% wt.%

Hot Pressing
(Pressure 20 MPa,

Temperature
170 ◦C, Time 4 min

0.12 (1600 Hz) [49]

3

Oil Seed Waste

Formaldehyde
Resin

- -

0.8 (3200 Hz)

[50]
Fiber Glass waste 0.9 (3200 Hz)

Wood Waste 0.9 (3200 Hz)

Steel Slag 0.65 (3200 Hz)

4 Rice Straw Urea
Formaldehyde

Thickness 10 mm,
fiber loading of

0–30 wt.%,

Hot compression
(500 psi 140 ◦C)

0.05–0.5
(8000 Hz) [51]

5

Ramie Fiber

Epoxy Thickness 3 mm
Hot Press

Compression
Machine

0.6 (2000 Hz)

[52]Flax 0.65 (2000 Hz)

Jute 0.65 (2000 Hz)

6
Sugarcane Bagasse

Polyester Resin Fiber Loading 30% -

0.63 (4000 Hz)

[53]Banana Fiber 0.68 (4000 Hz)

7 Hybrid Composite 0.73 (4000 Hz)

8 Hemp Recycled latex
Thickness 300 mm

-
0.50 (2000 Hz)

[54]
Thickness 40 mm 0.50 (3000 Hz)

9

Rice straw Polypropylene
Fiber Loading

10% wt.%

Hot Pressing
Machine, Pressure

1000 psi,
Temperature
190 ◦C, Time

30 min

0.08 (2000 Hz)

[55]

Kenaf Urea-
formaldehyde 0.065 (2000 Hz)

10 Sisal Fibers Poly Lactic
Acid

Fiber Loading 30%,
Thickness 8 mm Hot Press Machine 0.085 (2000 Hz) [56]

11

Coconut/Coir

Epoxy

Fiber Loading 20%,
Thickness 10 mm

Compression
Molding

Machine, Pressure
7 MPa, Time 24 h,

Temperature 24 ◦C.

0.086 (6000 Hz)

[57]

Kenaf 0.085 (6000 Hz)

Sugarcane 0.083 (6000 Hz)

Ramie Poly-(I-Lactic
acid) 0.089 (1600 Hz)

Wheat straw Polypropylene 0.03 (1800 Hz)

Jute Zein 0.06 (5000 Hz)

12
Seven-hole hollow

polyester fibers
(SHPF)

Chlorinated
polyethylene

(CPE)

Thickness 1 mm,
Fiber Loading 20%) -

0.42 (2500 Hz)
[58]

3 mm (Fiber
Loading 20%) 0.695 (2500 Hz)
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Table 2. Cont.

No. Reinforcement Matrix Sample
Parameters

Fabrication
Method Results/SAC Ref#

13 Wheat straw Polypropylene

Thickness of 3.2
mm,

fiber loading of
40–80 wt.%

Hot compression 0.03–0.23
(3000 Hz) [59]

14

Flax

Bisphenol-A
base Epoxy

Fiber Loading 60%,

Hot-pressing
method, Pressure

2.5 MPa,
Temperature 120 ◦C

0.369 (10 kHz)

[60]

Carbon 0.293 (10 kHz)

Glass 0.324 (10 kHz)

Ramie 0.32 (10 kHz)

Jute 0.419 (10 kHz)

15
Flax

Epoxy resin Fiber loading 50%,
Thickness 4 mm

Hot press machine
under pressure of

1 MPa and
temperature of

120 ◦C for 2 h for
complete curing

0.96 (3200 Hz)
[61,62]

Balsa Wood 0.58 (3200 Hz)

16

Lufa Epoxy

Fiber Loading 25%,
Thickness 5 mm

Hot and cold
compression

hydraulic press
machine

0.095 (500–6000 Hz)

[63]

Betel Nut
Unsaturated

Polyester
(MEKP)

0.085 (500–6000 Hz)

Sisal Poly-lactic Acid 0.10 (500–6000 Hz)

Rice Straw Polypropylene 0.12 (500–6000 Hz)

Oil palm Zein 0.095 (500–6000 Hz)

17 Banana Fiber Epoxy Resins Fiber Loading 20%
Hydraulic hot/cold

press machine,
Pressure 10 MPa

0.1 (500–6000 Hz) [64]

18 Flax Epoxy Thickness of 3 mm Compression
(laminated) 0.11 (2000 Hz) [65]

3. Conclusions

In this review, the details of various factors affecting the acoustic behavior of natural-
fiber-based materials and their composites were summarized. Natural fibers have relatively
good sound absorption capability due to their porous structure. Fiber-based composites are
widely used in buildings and constructions due to their good mechanical and acoustic in-
sulation properties. Researchers found certain factors that affect the SAC of FRCs, i.e., fiber
diameter, fiber type, fiber content, frequency, alkali treatment, sample thickness, fiber
length, fiber orientation, and addition of plasticizer and/or fire-retardant finish [88–93].
Results reported by various researchers reveal that by increasing the content, frequency,
sample thickness, and fiber inclination of fibers, the SAC of their composites will also be
increased. Decreasing fiber diameter causes an increase in the SAC of composites. Alkali
treatment of fibers causes enhancement of sound absorption. Further, random orientations
of fibers in composites can absorb sound more efficiently than aligned fibers. The addition
of a plasticizer and fire retardant finish to composites causes a further increase in the SAC.
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