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Abstract: Magnetically responsive, mechanically stable and highly flexible iron (III) oxide-polyvinylidene
fluoride (Fe3O4-PVDF) piezoelectric composite fiber mats were fabricated via one step electrospinning
method for magnetic sensing at cryogenic temperature. The properties of Fe3O4-PVDF composite
fiber mats were characterized using scanning electron microscopy (SEM), differential scanning
calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, d33 and
magnetization test. The fiber diameter decreased as the concentration of Fe3O4 increased. The DSC
results suggested a decrease in the crystallinity of the composite fiber mats after adding Fe3O4, and
the XRD curves identified that the decrease in crystallinity took place in the β crystalline phases of the
fibers. FT-IR results further confirmed the reduction of β phases of the composite fiber mats which
dropped the piezoelectric response of the fiber mats by 38% for 5% Fe3O4-PVDF than PVDF fiber but
still 400% higher than PVDF pellets. The magnetization test advocated a superparamagnetic state of
the fiber at room temperature but a ferromagnetic behavior at a lower temperature. The coercivity
values of the mats suggested a homogeneous dispersion of the Fe3O4 nanoparticles into the PVDF
matrix. Young’s modulus (E) of the fibers remained the same before and after the magnetization
test, indicating the mechanical stability of the fiber in the range of 5 K to 300 K. Its mechanical
stability, superparamagnetic behavior at room temperature and ferromagnetic at low temperature
could open up its application in spintronic devices at cryogenic temperature and cryogenic power
electronic devices.

Keywords: magnetic sensor; piezoelectric; cryogenic; PVDF; Fe3O4; hysteresis

1. Introduction

Magnetically responsive flexible fabrics are a growing need for shielding electromag-
netic interference especially in microelectronic applications to reduce growing electromag-
netic pollution, sheaths for portable electronics and stealth weapon systems in military
applications [1,2]. These flexible fabrics are also useful for different biomedical applica-
tions like magnetic cell separation membranes [3], magnetic resonance imaging contrast
agents [4], etc. Their application could also be extended to spintronics and power electronic
devices at extremely low temperatures [5,6]. Iron (III) oxide (Fe3O4) nanoparticles are a
valuable additive because of their electronic, magnetic, optical, and mechanical proper-
ties [7]. Composite nanofibers/thin films consisting of magnetic nanoparticles have been
under intensive investigation in the last few years [7]. There remains a need to create
flexible processable magnetically responsive and mechanically rugged films.

PVDF is a widely used piezoelectric semi-crystalline polymer with five different crys-
talline phases (α, β, δ, γ and ε) [8,9]. Its piezoelectric properties are directly related to its
crystal phases [10]. Nonpolar α and polar β phase are the most common crystalline struc-
tures of PVDF where the β phase is responsible for the piezoelectric properties. Thereby,
increasing β phase with eliminating α phase content in PVDF was a major area of focus
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for the last decade. Cold-drawing (stretching) [11], high-pressure quenching [12], and
poling (applying a high electric field) of PVDF [13] were such processes to increase β
phase. Electrospinning is another optional simple one-step method for fabricating PVDF
nanofibers under a high electric field which converts the α phase into the β phase [14,15].
The high voltage that is involved in this process, boosts up the β phase of the fibers [16].
Moreover, electrospun fibers mats are highly flexible and mechanically strong compare to
the solvent cast films [17].

Different filler materials have been introduced into the PVDF matrix for different func-
tional properties such as Fe3O4, MnFe2O4 and MgFe2O4 for magnetic properties; graphene
oxide, CNT for conductive properties, BaTiO3, PbTiO3, KNbO3 for piezoelectric prop-
erties [18]. Researchers prepared Fe3O4-PVDF nanocomposites films by solvent casting
method. Porous systems have been produced using the phase inversion approach [19–22].
According to their reports, the magnetic property of Fe3O4-PVDF nanocomposites in-
creased with an increase in Fe3O4 loading. However, their limitations were attributed to
the poor dispersion of Fe3O4 nanoparticles and poor processability. The ruggedness of
composites has also been limited at low temperature applications such as spintronics and
power electronic devices at cryogenic conditions (<123 K) [5,6]. Thermal stresses paired
with low temperature brittleness have been associated with this weakness. Iron oxide
has proved valuable as an additive to polymers to increase low temperature retention
of strength in aerospace applications [23]. For example, a modified diglycidyl ether of
bisphenol-A (DGEBA) epoxy resin reinforced with carbon fiber showed excellent mechani-
cal performance at cryogenic temperature after Fe3O4/GO nanofillers were added to it [24].
The filler material (Fe3O4/GO) helped the epoxy to retain its mechanical performance at
cryogenic temperature.

The objective of this paper is to explore the viability of iron oxide-PVDF as electrospun
textiles retaining mechanical and magnetic performance in cryogenic conditions. The
effect of the addition of iron oxide on the polymer is explored through the investigation
of the crystallinity and piezoelectricity of the composite fiber mats after the addition of
Fe3O4 nanoparticles into the PVDF matrix. Magnetic response and mechanical properties
were evaluated at room temperature and cryogenic temperature (5 K) to see the effect of
cryogenic temperature on the performance of the fiber mats.

2. Materials and Methods

PVDF was obtained from Arkema (Kynar® 721, pellet form) with the following proper-
ties: density: 1.78 g/cm3, melt flow index (MFI): 10 g/10 min, tensile strength: 54 MPa, melt-
ing temperature: 168 ◦C. Fe3O4 was obtained from SkySpring Nanomaterials Inc. (Houston,
TX, USA) with an average particle size of 20–30 nm. Acetone and N,N-dimethylformamide
(DMF) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.1. Preparation of Fe3O4-PVDF Fiber Mats

Firstly, 18 wt% (w/w) PVDF was dissolved in DMF/acetone (2:1) solution by stirring
at 50 ◦C for 2 h using a magnetic stirrer in a 250 mL beaker at 200 rpm. After all the pellets
dissolved, Fe3O4 nanoparticles (1 wt%, 3 wt% and 5 wt% (w/w) with respect to polymer)
were added into the solution. Then, ultrasonication was performed with Sonic Vibracell
II (25% pulse amplitude) for 5 min to disperse the Fe3O4 nanoparticles in the polymer
solution. Next, 5 mL of this electrospinning solution was taken in a syringe and used for
electrospinning. The electrospinning parameters were: voltage 15 kV, flow rate 0.05 mL/h,
distance 15 cm, and the needle diameter of 0.038 in. At 400 rpm, a spinning roller with
nonstick aluminum foil was capturing the fiber. The average thickness of the fabricated
fiber mats was 0.1 mm.

2.2. Nanofiber Mats Characterization

Surface morphology of fiber mats was observed via FEI Nova Nano SEM 230 (Thermo
Fisher Scientific, Hillsboro, OR, USA). All the samples were sputter coated to reduce the
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charge development on their surface. Using a Perkin Elmer DSC6 differential scanning
calorimeter, the thermal properties of PVDF and Fe3O4-PVDF mats were investigated. The
scanning temperature range was 30 ◦C to 210 ◦C at a rate of 10 ◦C per minute. Crystal
structures were studied using a Rigaku Ultima III X-ray Diffractometer (Rigaku Americas
Corporation, The Woodlands, TX, USA). A Scientific Nicolet 6700 Fourier Transform
Infrared (FT-IR) Spectroscopy (Thermo Scientific, Waltham, MA, USA) with an attenuated
total reflectance (ATR) detector was used to characterize the functional groups in PVDF
and Fe3O4-PVDF mats. A d33 meter (APC International, Mackeyville, PA, USA) was used
to measure the d33 value of the fiber. The fiber mats were rolled to make them thick enough
for d33 testing. The d33 testing was done on 5 different spots of the fiber mats and average
values were taken. Magnetic properties of the fiber mats were explored by a DynaCool-14
(Quantum Design, San Diego, CA, USA) Physical Properties Measurement System (PPMS)
machine. Like in d33 testing, fiber mats were rolled and fitted into the coffee straws to do
the magnetization testing. The weights of the samples used in the magnetization test were
(0.1 ± 0.01) g.

3. Results
3.1. Scanning Electron Microscopy (SEM)

Scanning electron microscopy images of the fibers as a function of iron oxide concen-
tration were analyzed using ImageJ software to calculate the diameter of electrospun fibers.
The fiber diameter reduced gradually as the concentration of the Fe3O4 increased as shown
in Figures 1 and 2. The average fiber diameter reduced up to 26% for 5% Fe3O4-PVDF fiber.
Similar results were obtained from electrospun PLA and PMMA fibers loaded with Fe3O4
nanomaterials [25]. At room temperature, Fe3O4 is a conductor material and adding the
Fe3O4 particles into the PVDF solution increased the dielectric constant of the solution.
A higher dielectric constant means higher polarity in the solution as well as a higher
ability to stabilize the charges in the Taylor cone which leads to a decrease in nanofiber
diameters [26]. O and Fe signals in the EDX chart of the fiber mats, shown in Figure 3,
confirmed the presence of Fe3O4 in PVDF fiber. Au and Pd picks came from the sputter
coated thin conductive film over the samples.

3.2. Differential Scanning Calorimetry (DSC)

The thermal behavior and crystallinity of the fiber mats were studied using the DSC.
The results are presented in Figure 4a, where PVDF and all composite electrospun fiber
mats showed a similar melting temperature (Tm) at ~160 ◦C, indicating no disruption in
the PVDF thermal transitions. Furthermore, the melting enthalpy of the nanofiber mats
was extracted from DSC curves and used to calculate the degree of crystallinity of the fiber
mats based on Equation (1):

Xc =
∆H
∆H0 × 100 (1)

where Xc is the degree of crystallinity of the fiber mats; ∆H0 is the melting enthalpy of
100% crystalline PVDF (105 J/g), and ∆H is the melting enthalpy of Fe3O4-PVDF meshes.
∆H was corrected by multiplying it with the mass fraction of PVDF in the composite mats.
The results, presented in Table 1, indicated a reduction in crystallinity and enthalpy as
the magnetite content increases. For 5% Fe3O4-PVDF, the crystallinity of the fiber mats
decreased by up to 55%. Previous experiments on Fe3O4-PVDF films yielded similar
findings [14,27]. This may be linked to the partial inhibition effect of Fe3O4 addition on
polymer crystal formation, similar to inorganic fillers like Al2O3, TiO2, c-LiAlO2, and
Sm2O3 decreased the crystalline phase of PEO-based polymer electrolyte systems [28–32].
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nanofiber mats. 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

2

4

6

8

10

12

 

 

C
ou

nt

Dia (µm)

 PVDF Fiber

C
ou

nt

Mean dia = 0.105 µm
Std dev = 0.069 µm

(a)

 

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
0

1

2

3

4

5

6

7

8

 

 

C
ou

nt

Dia (µm)

 1% Fe3O4-PVDF
Mean dia = 0.102 µm
Std dev = 0.044 µm

(b)

 

Figure 1. SEM image of (a) PVDF (b) 1% Fe3O4-PVDF (c) 3% Fe3O4-PVDF and (d) 5% Fe3O4-PVDF
nanofiber mats.
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Table 1. Enthalpy and percentage crystallinity values obtained from DSC curves.

Sample Tm (◦C) ∆H (J/g) Corrected ∆H Xc (%)

PVDF Fiber 160.12 26.40 26.40 25.14
1% Fe3O4-PVDF Fiber 160.46 22.91 22.68 21.81
3% Fe3O4-PVDF Fiber 160.35 15.07 14.62 14.35
5% Fe3O4-PVDF Fiber 160.18 14.52 13.79 13.82

3.3. X-ray Diffraction (XRD)

The X-ray diffraction (XRD) patterns of PVDF and Fe3O4-PVDF nanocomposite fiber
mats exhibited strong diffraction peak for all samples at 2θ = 20.5◦ corresponding to
β(110) and β(200) planes, as shown Figure 4b. Weaker diffraction peaks at 36◦ assigned
to β(201) planes were also present [33]. These results indicated that electrospun nanofiber
membranes contain mainly β-phase crystal structure of PVDF. Due to the high electric
voltage (15 kV) used during the electrospinning method, the random electric dipoles
in the PVDF solution aligned, resulting in the forming of the β phase crystal structure.
Thereby, the piezoelectric property increased. Also, with increasing loading of the Fe3O4
in the polymer matrix, the intensity of the peak at 20.5◦ decreased (7155, 5634, 4684 and
3401 a.u. for PVDF, 1%, 3% and 5% Fe3O4-PVDF respectively). So, the addition of the
Fe3O4 into PVDF did not promote the crystallization of the PVDF in the β phase. This
has been ascribed to inhibition of crystallization by the inorganic particles during the
solidification process, which decreases the volume fraction of the crystalline phase in the
fiber as discussed in the DSC section [34].

3.4. Fourier-Transform Infrared Spectroscopy (FTIR)

To confirm the XRD results, the authors compared the FTIR spectra of electrospun
PVDF nanofiber and Fe3O4-PVDF nanofiber mats (Figure 5a). The PVDF pellet exhibited
strong peaks at 615 cm−1 (CF2 bending and skeletal bending), 762 cm−1 (CF2 bending),
795 cm−1 (CF2 rocking), and 976 cm−1 (CH out-of-plane deformation) which were all
recognized as α phase and relatively weak peaks at 840 cm−1 (CH2 rocking), 877 cm−1

(CF2 rocking), 1273 cm−1 (CF out-of-plane deformation) and 1402 cm−1 (CH2 scissoring)
were considered as β phase [35–37]. Following electrospinning, the α peaks became weaker,
while the β crystalline peaks grew stronger. Additionally, the percentage change in β phase
can be determined using the following equation (Equation (2)) [35]:

F(β) =
Xβ

Xα + Xβ
× 100 =

Aβ

1.26Aα + Aβ
× 100 (2)
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where, F(β) represents the β phase percentage of PVDF, Aα and Aβ are their absorption
bands at 763 and 840 cm−1.
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F(β) of the PVDF fiber increased significantly by 68% than PVDF pellets due to the
electrospinning method as shown in Table 2. With the addition of Fe3O4, the β phase
decreased slightly compared to the β phase of pure PVDF fiber due to the partial inhibition
effect as described in the DSC result discussion section and it kept decreasing as the
loading of Fe3O4 increasing. The 5% Fe3O4-PVDF had the lowest F(β) compare to all other
electrospun fiber mats but still that value is higher than PVDF pellet by 35%. So, the 5%
Fe3O4-PVDF should have higher piezoelectric properties than the PVDF pellets which is
discussed in d33 section.

Table 2. Percentage of beta phase F(β) and piezoelectric coefficient (d33).

Sample F(β) d33 (pC/N)

PVDF Pellet 48.45 ± 3.43 5 ± 3
PVDF Fiber 81.16 ± 1.81 32 ± 1.73

1% Fe3O4-PVDF 73.39 ± 1.24 28 ± 1
3% Fe3O4-PVDF 71.69 ± 2.16 26 ± 1
5% Fe3O4-PVDF 65.26 ± 3.39 20 ± 2.65

3.5. Piezoelectric Coefficient (d33) Test

The piezoelectric coefficient (d33) of a material specifies the intensity of its piezoelectric
effect. The greater the d33 value, the more effective the piezoelectric effect [38]. Figure 5b
represents the piezoelectric coefficient d33 of the PVDF fiber mats as a function of Fe3O4
mass fraction. The d33 of PVDF mats was 32 pC/N and it dropped gradually to 20 pC/N
as Fe3O4 increased to a 5% mass ratio. This result was in an agreement with FTIR data.
The piezoelectric coefficient d33 is directly related to the β phase of the fiber mats. The β
phase of the fiber decreased after adding Fe3O4 as recorded from FTIR data, which led to
the decrease in the d33 value. It was also notable that the d33 of PVDF pellet was 5 pC/N as
recorded in Table 2, whereas the lowest d33 value of electrospun fiber mat (5% Fe3O4-PVDF)
was 20 pC/N; four times higher than PVDF pellets. So, adding Fe3O4 might reduce the
piezoelectric property of the fiber mats but it has still four times higher piezoelectricity
than the PVDF pellet.
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3.6. Magnetization Test

M–H measurements were done at 300 and 5 K with the magnetic field varying from
−2 T to 2 T (1 T = 10,000 Oe; 1 Oe = 79.577 Am−1) as presented in Figure 6. At 300 K
(Figure 6a,b), the samples showed zero coercivity, indicating that the nanofiber mats were
in the superparamagnetic state. However, samples showed ferromagnetic behavior at 5 K
with a coercivity of ~370 Oe for all the samples as shown in Figure 6c,d. Superparamagnetic
materials can fluctuate randomly by thermal fluctuation at high enough temperatures just
as an atom spin in paramagnetic materials. When the temperature is low, this thermal
energy decreases and the magnetic moments are blocked [39]. The temperature below this
happens known as blocking temperature which is 290 K as shown in Figure 7. Below the
blocking temperature, there is some net alignment of the particle spins, while above it,
the spins are in random directions which caused the hysteresis loops to appear at 5 K and
increased the magnetic saturation value as shown in Figure 6d and Table 3 [40]. Previous
magnetization measurements also indicated that the Fe3O4 particles are superparamagnetic
at room temperature and ferromagnetic at low temperatures [41]. So, the composites made
of Fe3O4 particles show similar characteristics.
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Table 3. Magnetic saturation values of composite fiber mats at 300 K and 5 K.

Sample
PVDF 1% Fe3O4-PVDF 3% Fe3O4-PVDF 5% Fe3O4-PVDF

emu emu/g emu emu/g emu emu/g emu emu/g

300 K 0 0 0.15 1.28 0.28 3.29 0.44 5.11
5 K 0 0 0.17 1.45 0.33 3.88 0.51 5.93

On the other hand, coercivity measures the resistance of a ferromagnetic material to
become demagnetized. A similar coercivity for all the samples in our case indicated that the
coercivity is independent of Fe3O4 nanoparticles loading, and a homogeneous distribution
of nanoparticles in the polymer matrix [42]. PVDF fiber mats did not show any magnetic
response at all on both the temperatures but the Fe3O4 nanoparticles loaded samples did.
With the increase of Fe3O4 nanoparticles, the magnetic saturation value of the composites
also increased (1.28, 3.29, 5.11 emu/g for 1%, 3% and 5% Fe3O4-PVDF respectively) which
suggests that ferromagnetic behavior observed in the composites arose from the magnetic
Fe3O4 nanoparticles.

The magnetic moment vs. temperature (M–T) graph as shown in Figure 7, the separa-
tion of zero-field-cooled (ZFC) and field-cooled (FC) curves occur at large temperatures
(blocking temperature Tb~290 K) indicating thermal irreversibility of the samples below
room temperature. In a superparamagnetic state around 5 K, when the samples were
cooled at zero applied field, the magnetic moments were randomly oriented leading to
the total magnetization to be around zero as shown in Figure 7. When the temperature
started to increase, magnetic moments began to fluctuate, and the presence of an externally
applied field aligned them that led to the increase in the magnetization. Similarly, in the
case of the field-cooled sample, the magnetic moments were aligned at a higher applied
field resulting in higher total magnetization at 5 K starting to decrease with heating. These
observations are in agreement with previously reported studies on Fe3O4 nanoparticles
incorporation in other materials, including ceramic matrices [43].

3.7. Dynamic Mechanical Analyzer (DMA)

To see the stability of the fiber mats, DMA was done for all the samples before and after
the magnetization test. Since the magnetization test of fiber mats was done at cryogenic
temperature (5 K), it was important to determine their mechanical stability after the test.
Dynamic strain sweep was done for all the samples as shown in Figure 8. The Young’s
modulus (E) calculated from the stress–strain curves are listed in Table 4. The retention of
modulus following cryogenic temperature exposure in composite samples over the PVDF
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which shows a slight decrease indicates that Fe3O4 helped the PVDF matrix to retain its
mechanical property after being exposed to cryogenic temperature.
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4. Conclusions 
Flexible and mechanically stable PVDF and Fe3O4-PVDF composite fiber mats were 

successfully prepared from one step electrospinning method. A decrease in the fiber di-
ameter was revealed from SEM images as the mass fraction of Fe3O4 increased. DSC data 
suggested that the crystallinity of the composite fiber mats also decreased as a function of 
Fe3O4 concentration in the PVDF matrix. XRD curves identified the reduction in β crystal-
line phases of the fiber, causing the decrease detected in DSC results. Due to the reduction 
in the β crystalline phases, the piezoelectric response of the fiber mats dropped by 38% for 
the maximum Fe3O4 loading but that is still 4 times higher than PVDF pellets. The mag-
netization test advocated a superparamagnetic state of the fiber at room temperature but 
a ferromagnetic behavior at a lower temperature. The coercivity values of the mats sug-
gested a homogeneous dispersion of the Fe3O4 nanoparticles into the PVDF matrix. More-
over, stable and reusable fibers mats were obtained from this process which was con-
firmed from DMA analysis. The overall results suggest the potential of using Fe3O4-PVDF 
fiber mats as a magnetically responsive textile in spintronics and power electronic devices 
at cryogenic conditions. 
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Table 4. Modulus of elasticity (E) before and after magnetization test.

Sample PVDF 1% Fe3O4-PVDF 3% Fe3O4-PVDF 5% Fe3O4-PVDF

E Before magnetization test (MPa) 0.11 ± 0.02 0.30 ± 0.03 0.62 ± 0.03 0.71 ± 0.01
E After magnetization test (MPa) 0.09 ± 0.01 0.29 ± 0.02 0.62± 0.04 0.71 ± 0.03

4. Conclusions

Flexible and mechanically stable PVDF and Fe3O4-PVDF composite fiber mats were
successfully prepared from one step electrospinning method. A decrease in the fiber
diameter was revealed from SEM images as the mass fraction of Fe3O4 increased. DSC data
suggested that the crystallinity of the composite fiber mats also decreased as a function
of Fe3O4 concentration in the PVDF matrix. XRD curves identified the reduction in β
crystalline phases of the fiber, causing the decrease detected in DSC results. Due to the
reduction in the β crystalline phases, the piezoelectric response of the fiber mats dropped by
38% for the maximum Fe3O4 loading but that is still 4 times higher than PVDF pellets. The
magnetization test advocated a superparamagnetic state of the fiber at room temperature
but a ferromagnetic behavior at a lower temperature. The coercivity values of the mats
suggested a homogeneous dispersion of the Fe3O4 nanoparticles into the PVDF matrix.
Moreover, stable and reusable fibers mats were obtained from this process which was
confirmed from DMA analysis. The overall results suggest the potential of using Fe3O4-
PVDF fiber mats as a magnetically responsive textile in spintronics and power electronic
devices at cryogenic conditions.
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