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Abstract: Deciphering how the dielectric properties of textile materials are orchestrated by their
internal components has far-reaching implications. For the development of textile-based electronics,
which have gained ever-increasing attention for their uniquely combined features of electronics
and traditional fabrics, both performance and form factor are critically dependent on the dielectric
properties. The knowledge of the dielectric properties of textile materials is thus crucial in successful
design and operation of textile-based electronics. While the dielectric properties of textile materials
could be estimated to some extent from the compositional profiles, recent studies have identified
various additional factors that have also substantial influence. From the viewpoint of materials
characterization, such dependence of the dielectric properties of textile materials have given rise to a
new possibility—information on various internal components could be, upon successful correlation,
extracted by measuring the dielectric properties. In view of these considerable implications, this
invited review paper summarizes various fundamental theories and principles related to the dielectric
properties of textile materials. In order to provide an imperative basis for uncovering various
factors that intricately influence the dielectric properties of textile materials, the foundations of the
dielectrics and polarization mechanisms are first recapitulated, followed by an overview on the
concept of homogenization and the dielectric mixture theory. The principal advantages, challenges
and opportunities in the analytical approximations of the dielectric properties of textile materials are
then discussed based on the findings from the recent literature, and finally a variety of characterization
methods suitable for measuring the dielectric properties of textile materials are described. It is among
the objectives of this paper to build a practical signpost for scientists and engineers in this rapidly
evolving, cross-disciplinary field.

Keywords: textile materials; complex relative permittivity; effective medium approximation; dielec-
tric mixture theory; electromagnetics; dielectric characterization

1. Introduction

The dielectric properties, which are measures of the internal responses of electrically
insulating materials under alternating electric fields, offer a broad range of knowledge. On
the atomic and molecular levels, the dielectric properties are well-correlated to the chemical
composition including the moisture content and presence of impurities [1–3]. From the
structural and geometrical points of view, the dielectric properties contain information on
the shape, size, arrangement, and orientation of various internal components [4–8]. It is due
to these reasons that the dielectric properties of fibers and yarns have been considered as one
of the fundamental parameters for processing and quality control in the textile industry. For
example, fibers and yarns produced by spinning machinery have often uneven thickness
and/or foreign matters that cause breakage during the further processing (e.g., weaving,
knitting, sewing and embroidering) or affects the aesthetic appearance and/or durability
of end products, but such defects can be timely detected through continuous monitoring of
the dielectric properties [9–14].

In recent years, the dielectric properties of textile materials have been featured for
the development of textile-based electronics such as antennas and transmission lines for
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wireless communication [15–23], rectennas for energy harvesting [24–26], and capacitive
sensors for pressure, strain and moisture sensing [27–30] and health monitoring [31], as
well as for the development of microwave-absorbing fabrics for various electromagnetic in-
terference (EMI) shielding applications [32,33]. Offering both electronic functionalities and
traditional fabric-like comfort, the textile-based approach has a great potential to overcome
the technical challenges associated with the conventional, non-flexible electronics [34–37].
One crucial parameter in the design process of textile-based electronics is the dielectric
permittivity. It has been documented that the performance and form factor of many elec-
tronic devices are critically dependent on the dielectric properties of electrically insulating
materials. For instance, Ng et al. reported that fabrics with higher dielectric constants such
as cotton and linen could enhance the overall performance of textile capacitive biosensors,
while those with lower dielectric constants such as Nylon and polyester may lower the
signal-to-noise ratio [31]. For textile patch antennas, it has been reported that fabrics with
higher dielectric constants could reduce the antenna size, but higher gains and broader
bandwidths are attainable with those with lower dielectric constants [5,7,15,38]. For these
reasons, the dielectric properties of textile materials have gained tremendous interest with
the recent advancements in the textile-based electronics.

Although the dielectric properties of textile materials are determined to some extent
by the constituent polymers and moisture and impurity profiles, crystallinities and chain
orientations [1], recent studies [4–7,39,40] have identified additional parameters that have
also substantial effects, such as the yarn structure, fabric construction, fiber (solid) volume
fraction and fiber (yarn) orientation. Consequently, the dielectric properties of textile
materials summarized from literature (Table A1) should be used as a reference only, and
myriad aspects must be carefully taken into account to successfully design textile materials
that possess the dielectric properties required for specific applications.

From another viewpoint, the dependence of the dielectric properties of textile materials
on the various factors have given rise to a new possibility in materials characterization. For
instance, since the dielectric properties contain information on the compositional, structural
and geometrical aspects, these properties of textile materials could be estimated, upon
successful correlation, through the measurement of the dielectric properties [5–7,40–42].

In this context, this paper reviews the key factors that affect the dielectric properties
of textile materials from the recent literature. Fundamental theories pertaining to the
dielectrics and polarization mechanisms are first described to provide profound insights
into underlying science, followed by an overview on the concept of homogenization and
the dielectric mixture theory. Advantages and challenges of the analytical approximations
of the dielectric properties are then discussed, and finally, the methods for measuring the
dielectric properties of textile materials are reviewed. It is among the objectives of this
paper to build a useful signpost for scientists and engineers on this highly cross-disciplinary
field of research.

2. General Theory of Dielectrics
2.1. Dielectrics and Polarization Mechanisms

Dielectrics can be defined as electrical insulators that are polarizable by an external
electric field. Unlike conductors, dielectrics do not support flow of electrons through
its body but respond internally to an applied electric field with a phenomenon called
polarization. This internal response leads to the storage and loss of the electrical energy,
enabling a wide range of applications in the electronics industry.

Dielectrics are generally classified into non-polar and polar dielectrics. Non-polar
dielectrics are dielectrics that do not possess a permanent dipole moment; they become
polarized in an electric field by relative displacement of electrons with respect to the nu-
clei [43,44]. This phenomenon is called electronic polarization (Figure 1), and the resonant
process is typically observed at optical frequencies. Polar dielectrics are substances made
up of molecules that possess inherent dipole moment. Accordingly, this class of dielectrics
undergoes not only the electronic polarization, but also an atomic (or ionic) polarization,
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which is a change in the relative positions of atoms (or ions) in the manner depicted in
Figure 1 [43,44]. Additionally, polar dielectrics may exhibit an orientation (or dipolar)
polarization, where spatial reorientation of the permanent dipoles is induced by the electric
field (Figure 1) [43,44].
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Figure 1. Polarization mechanisms. Reprinted with permission from Ref. [44] (p. 36). Copyright 2007
John Wiley & Sons.

In addition to the electronic, atomic and dipolar polarizations, there is another class
of polarization termed interfacial (or space charge) polarization (Figure 1), which can be
found in dielectrics having structural interfaces [43,44]. In the interfacial polarization,
free charges accumulate at interfaces between two materials or between two regions of
different electrical conductivities, and this separation of charges results in a local dipole
moment [45]. Although the interfacial polarization could potentially exist in any materials
having physical interfaces, this type of polarization usually appears only in the lower
frequency regime because of the limited mobility of charges [45,46].

2.2. Permittivity

When an electric field is applied, a dielectric material responds by polarization; inside
the dielectric medium, another electric field is generated in the opposite direction to the
applied electric field as illustrated in Figure 2. As such, the electric field inside the dielectric
material is reduced by this opposing electric field.



Textiles 2022, 2 53Textiles 2022, 2, FOR PEER REVIEW 4 
 

 

 
Figure 2. Relationship between the applied (external) and internal electric fields. 

The strength of the internal electric field can be addressed by using the relative per-
mittivity ( r )—a parameter by which the internal electric field is related to the applied 
electric field. The relationship is given by: 

i a
r

1E E



 

 (1)

Accordingly, the strength of the opposing electric field can be written as: 

 r
p i a a

r

1
E E E E





  
   

 (2)

It can be seen from the energy conservation point of view that the strength of this 
opposing electric field is the energy stored by the dielectric material. Upon removal from 
the external electric field, the polarized medium will undergo a depolarization process, 
where the relative positions of atoms and molecules return to the original, low energy 
state by releasing the stored energy. 

During these storing and releasing processes, there are losses associated with the 
physical movements of atoms and molecules. As such, the relative permittivity of the 
physical dielectric materials is more formally written in the complex form ( *

r ) as [45]: 

* ' ''
r r rj     (3)

where '
r  and ''

r  are the real and imaginary parts of the relative permittivity, respec-
tively. The real part of the relative permittivity is also referred to as the dielectric constant 
and is a measure of the ability of a material to store the electric energy by polarization. 
The imaginary part of the relative permittivity is also known as the relative dielectric loss 
factor and quantifies the losses associated with the polarization. The tangent of the angle 
between the storage and loss components ( tan  ) is termed loss tangent and is expressed 
as [47]: 

''
r
'
r

tan 



  (4)

The loss tangent is a convenient index to assess the performance of dielectric materials-
low-loss dielectrics with a large storage capacity exhibit a small loss tangent ( tan 1  ) 
while a large loss tangent ( tan 1  ) is due for lossy dielectrics that have a limited energy-
storing capability [47]. 

2.3. Dispersion 
The physical mechanisms responsible for causing polarizations depend on the time 

variation of the electric field. In other words, the permittivity needs to be treated as a 
function of frequency of an alternating electric field. This frequency dependence of the 
permittivity is called dispersion and a representative curve is illustrated in Figure 3. 

Figure 2. Relationship between the applied (external) and internal electric fields.

The strength of the internal electric field can be addressed by using the relative
permittivity (εr)—a parameter by which the internal electric field is related to the applied
electric field. The relationship is given by:

→
E i =

1
εr

→
Ea (1)

Accordingly, the strength of the opposing electric field can be written as:

→
Ep =

→
E i −

→
Ea =

(1− εr)

εr

→
Ea (2)

It can be seen from the energy conservation point of view that the strength of this
opposing electric field is the energy stored by the dielectric material. Upon removal from
the external electric field, the polarized medium will undergo a depolarization process,
where the relative positions of atoms and molecules return to the original, low energy state
by releasing the stored energy.

During these storing and releasing processes, there are losses associated with the
physical movements of atoms and molecules. As such, the relative permittivity of the
physical dielectric materials is more formally written in the complex form (ε∗r ) as [45]:

ε∗r = ε′r − jε′′r (3)

where ε′r and ε
′′
r are the real and imaginary parts of the relative permittivity, respectively.

The real part of the relative permittivity is also referred to as the dielectric constant and
is a measure of the ability of a material to store the electric energy by polarization. The
imaginary part of the relative permittivity is also known as the relative dielectric loss factor
and quantifies the losses associated with the polarization. The tangent of the angle between
the storage and loss components (tan δ) is termed loss tangent and is expressed as [47]:

tan δ =
ε
′′
r

ε′r
(4)

The loss tangent is a convenient index to assess the performance of dielectric materials-low-
loss dielectrics with a large storage capacity exhibit a small loss tangent (tan δ� 1) while a
large loss tangent (tan δ� 1) is due for lossy dielectrics that have a limited energy-storing
capability [47].
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2.3. Dispersion

The physical mechanisms responsible for causing polarizations depend on the time
variation of the electric field. In other words, the permittivity needs to be treated as a
function of frequency of an alternating electric field. This frequency dependence of the
permittivity is called dispersion and a representative curve is illustrated in Figure 3.
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Figure 3. Frequency dependence of the complex relative permittivity: interfacial and dipolar polar-
izations exhibiting relaxation processes whereas ionic and electronic polarizations exhibiting resonant
processes. Redrawn from [45] (p. 608).

As the dispersion curve of ε′r shows, the relaxation process of the interfacial polariza-
tion is typically in the low frequency regime (10−2–102 Hz), whereas that of the dipolar
polarization could be in the radio (105–107 Hz) frequency domain. These relaxations occur
because of the limited mobility of space charges and permanent dipoles—as the frequency
increases, these physical components will be too sluggish to respond [45]. For electronic and
atomic polarizations, resonant processes are observed in the infrared and visible-ultraviolet
regimes. The loss (ε′′r ) peaks are associated with these relaxation and resonant processes.

With an aim to elucidate the dispersion characteristics, various models have been
developed. For electronic and atomic polarizations, the Lorentz model [48] has been used
extensively in literature. In this model, each atom is regarded to consist of a positive station-
ary charge surrounded by a mobile electron cloud, where the electron cloud experiences
damping and tensional forces by an alternating electric field in an analogy to a mechanical
spring [47]. The equation of motion is given by [47]:

qE0ejωt = m
d2l
dt2 + a

dl
dt

+ sl (5)

where q is the dipole charge; m is the mass of the electron cloud; l is the displaced distance;
t is the time; a is the friction (damping) coefficient; and s is the tension (spring) coefficient.
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From this equation, the real and imaginary parts of the relative permittivity can be derived
as a function of frequency, and the results are given by [47]:

ε′r = 1 +
nq2

ε0m
(
ω2

0 −ω2)(
ω2

0 −ω2
)
+
(
ω a

m
)2 (6)

ε
′′
r =

nq2

ε0m
ω a

m(
ω2

0 −ω2
)
+
(
ω a

m
)2 (7)

where n is the number of dipoles per unit volume and ω0 is the resonant angular frequency
of the dielectric material.

Although the Lorentz model is widely used for its simplicity and explicitness, one
critical limitation is that the model does not take the absorption into account [49]. Accord-
ingly, the single Lorentzian oscillator is not suitable for examining absorbing materials
such as amorphous solids and semiconductors, and more than one oscillator needs to be
incorporated to analyze such dielectrics [49].

For dipolar polarizations, the Debye model [50] is often used to obtain the frequency
dependence of the complex permittivity. In this model, molecules are assumed to be
spherical in shape, and the real and imaginary parts of the relative permittivity are given,
respectively, by [50]:

ε′r = ε′r,∞ +
ε′r,s − ε′r,∞

1 + (ωτ)2 (8)

ε
′′
r =

ωτ
(
ε′r,s − ε′r,∞

)
1 + (ωτ)2 (9)

where ε′r,s and ε′r,∞ are the dielectric constants at a static frequency (i.e., the frequency just
before the dipolar relaxation occurs) and at a much higher frequency (but not high enough
to involve any resonant processes of electronic and atomic polarizations), respectively; and
τ is the relaxation time. ε′r exhibits a peak when ω = 1/τ, and this peak is called the Debye
loss peak. Many gaseous and some liquid materials with dipolar molecules are reported to
follow the Debye relaxation model [45]. For most solids, however, this peak could become
much broader because the loss cannot be expressed in terms of just a single well-defined
relaxation time τ; the relaxation in the solid is usually represented by a distribution of
relaxation times [45]. In addition, Equations (8) and (9) assume that the dipoles do not
influence each other either through their electric fields or through their interactions with
the lattice; however, in solid dielectrics, dipoles can also couple, convoluting the relaxation
process and limiting the accuracy of the Debye relaxation model [45].

Interfacial polarizations, on the other hand, are the results of the charges accumulated
at the boundaries of different conductivities; accordingly, the shapes and geometries of the
boundaries have substantial impact on the polarizability as well as the dispersion profile. In
view of this, several dispersion theories were developed for different types of boundaries.
One consequential premise is the Maxwell–Wagner theory, where spherical regions are
considered to be sparsely dispersed in the medium of different conductivity [51]. According
to this theory, the frequency-dependent complex relative permittivity is given by [51]:

ε∗r = ε′r,h +
ε′r,l − ε′r,h

1 + jωτ
+

g
jω

κl (10)

ε′r,h = ε′r,e

2ε′r,e + ε′r,i − 2ϕs

(
ε′r,e − ε′r,i

)
2ε′r,e + ε′r,i + ϕs

(
ε′r,e − ε′r,i

) (11)

ε′r,l = ε′r,e
κ1

κe
+

9ϕsκe

(
ε′r,iκe − ε′r,eκi

)
[2κe + κi + ϕs(κe − κi)]

2 (12)
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τ =
2ε′r,e + ε′r,i + ϕs

(
ε′r,e − ε′r,i

)
2κe + κi + ϕs(κe − κi)

· 1
g

(13)

κl = κe
2κe + κi − 2ϕs(κe − κi)

2κe + κi + ϕs(κe − κi)
(14)

where ε′r,i and ε′r,e are the real part of the relative permittivity of the inclusions and the
environment, respectively; κi and κe are the electrical conductivities of the inclusions and
the environment, respectively; ϕs is the volume fraction of the inclusion; ω is the angular
frequency; and g is the numerical factor (112.94 × 1011).

For mixtures with ellipsoidal inclusions, the Maxwell–Wagner–Sillars model is often
employed. This model is an extension of the Maxwell–Wagner model by Sillars [52] and
incorporates an additional parameter that accounts for the eccentricity of the ellipsoids.
Further details on the Maxwell–Wagner–Sillars model are available in [52].

While some of the most representative dispersion relationships have been discussed
in this subsection, there are several notations. Firstly, for many dielectric materials, there
could be more than just a single type of atoms and/or molecules. Secondly, microstructural
configurations (e.g., crystalline and amorphous regions in polymers) make the atoms and
molecules behave differently under the electric field [53,54]. As such, many dielectrics do
not exhibit a simple, well-defined resonance or a relaxation process [45]. Analysis on the
dispersion characteristic is usually of high complexity and requires technical proficiency
because of these factors [41,46,55].

2.4. Anisotropy

The simple relationship between the applied electric field (
→
Ea) and the internal electric

field (
→
E i) given in Equation (1) is only valid when the polarization of a dielectric medium

does not vary by the direction of the applied electric field. In both natural and artificial ma-
terials, however, there could exist microstructures that break the directional symmetry [8].
Such substances are called anisotropic materials; in an anisotropic medium, the internal
electric field is oriented at an angle different from the applied electric field. On this account,
Equation (1) becomes a second-rank tensor division for anisotropic materials as given by:

→
E i =

1
εr

→
Ea (15)

where εr is a second-rank, relative permittivity tensor. In the Cartesian coordinate, εr is
expressed as a nine-entry matrix [47]:

εr =

 εr,xx εr,xy εr,xz
εr,yx εr,yy εr,yz
εr,zx εr,zy εr,zz

 (16)

where each entry (εr,xx, εr,xy, ··· εr,zz) represents an independent material parameter and
may be a complex number. By using Equations (15) and (16), this can be rewritten as: Ea,x

Ea,y
Ea,z

 =

 εr,xx εr,xy εr,xz
εr,yx εr,yy εr,yz
εr,zx εr,zy εr,zz

 Ei,x
Ei,y
Ei,z

 (17)

where Ea,x, Ea,y and Ea,z are x̂, ŷ and ẑ components of the applied electric field, respectively;
and Ei,x, Ei,y and Ei,z are x̂, ŷ and ẑ components of the internal electric field, respec-
tively. Equation (17) is the most generic form to express the permittivity of an anisotropic
dielectric material.
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In many practical cases, however, each entry is not necessarily unique. For example,
a rectangular lattice that forms a basic structure in crystals may be expressed only in the
three principal directions because of its biaxiality [8]. For uniaxial media, the permittivity
component along the axis of crystal is different from the transversal permittivity, and thus
it could have only one unique diagonal term in the permittivity matrix [8]. In addition to
these symmetrical scenarios, for certain applications such as planar capacitors, transmission
lines and antennas, the electric field is often limited to one principal direction [38,56,57]. If
this is the case, then the permittivity may be considered only in such direction.

2.5. Inhomogenity and Homogenization

Inhomogeneity is another leading parameter in the science of dielectrics. When the
permittivity is consistent regardless of the position within a material, the material is called
homogeneous. On the other hand, if the permittivity varies as a function of position,
this type of materials is called electrically non-homogeneous (heterogeneous) [8]. Often
fiber-forming polymers are non-homogenous on the microstructural level since they could
have both amorphous and crystalline regions that are characterized by different electrical
polarizability [43]. In addition, mixtures of two or more components could be also non-
homogeneous. For instance, a fabric may be considered as a non-homogeneous mixture
of fiber and air [58]. Furthermore, materials having defects (e.g., voids) or impurities may
also exhibit inhomogeneous behaviors on microscopic scale. Therefore, in many physical
dielectrics, some degree of inhomogeneity potentially exists, and the permittivity may be
more formally addressed as a function of position.

On one side, however, even such materials could be considered homogenous from
the macroscopic point of view [8]. For example, when an observer is close enough to a
woven fabric, the individual warp and weft yarns and their interlacing structure would
be visible; however, when the fabric is placed far enough from the observer’s eyes, the
detail structure of the fabric would no longer be recognizable, leaving an impression of
just a uniform, homogenized sheet. Although the distance between the observer and
the object was the parameter to describe the homogenization in this example, it is the
wavelength (λ) of electromagnetic waves that critically distinguishes homogenized and
non-homogenized substances in dielectric analysis [8]. In practice, the medium may be
regarded homogenized when structural inhomogeneity is much smaller than ~0.1λ; the
positional terms can then be dropped and a single, macroscopic permittivity value could be
used [59–61]. This approach of describing microscopically heterogeneous dielectrics with a
macroscopic, homogenized permittivity is called effective medium approximation [62,63]
(Figure 4) and is the fundamental process in the dielectric mixture theory [64].
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both amorphous and crystalline regions that are characterized by different electrical po-
larizability [43]. In addition, mixtures of two or more components could be also non-ho-
mogeneous. For instance, a fabric may be considered as a non-homogeneous mixture of 
fiber and air [58]. Furthermore, materials having defects (e.g., voids) or impurities may 
also exhibit inhomogeneous behaviors on microscopic scale. Therefore, in many physical 
dielectrics, some degree of inhomogeneity potentially exists, and the permittivity may be 
more formally addressed as a function of position. 

On one side, however, even such materials could be considered homogenous from 
the macroscopic point of view [8]. For example, when an observer is close enough to a 
woven fabric, the individual warp and weft yarns and their interlacing structure would 
be visible; however, when the fabric is placed far enough from the observer’s eyes, the 
detail structure of the fabric would no longer be recognizable, leaving an impression of 
just a uniform, homogenized sheet. Although the distance between the observer and the 
object was the parameter to describe the homogenization in this example, it is the wave-
length (λ) of electromagnetic waves that critically distinguishes homogenized and non-
homogenized substances in dielectric analysis [8]. In practice, the medium may be re-
garded homogenized when structural inhomogeneity is much smaller than ~0.1λ; the po-
sitional terms can then be dropped and a single, macroscopic permittivity value could be 
used [59–61]. This approach of describing microscopically heterogeneous dielectrics with 
a macroscopic, homogenized permittivity is called effective medium approximation 
[62,63] (Figure 4) and is the fundamental process in the dielectric mixture theory [64]. 
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2.6. Dielectric Mixture Theory

The dielectric mixture theory is a statement of a relationship between the homogenized
(macroscopic) dielectric properties of a heterogeneous medium and the local (microscopic)
dielectric properties of its constituent materials (i.e., inclusions and environments) [64].
This relationship is expressed as a function of volume fractions of the components as
an averaging factor. Since the geometry plays a pivotal role in the resulting dielectric
properties of a heterogeneous medium, each dielectric mixture theory was developed for a
specific geometry [8].

One of the most fundamental mixing theories is the Maxwell Garnett theory [65,66],
which explicates the macroscopic complex relative permittivity (ε∗r,m) of a heterogeneous
system of isotropic, spherical inclusions of complex relative permittivity ε∗r,i randomly
positioned in the environment of complex permittivity ε∗r,e (Figure 5a). According to the
theory, the macroscopic, complex relative permittivity is given by [65,66]:

ε∗r,m = ε∗r,e+3ϕsε∗r,e
ε∗r,i − ε∗r,e

ε∗r,i + 2ε∗r,e − ϕs

(
ε∗r,i − ε∗r,e

) (18)

where ϕs is the volume fraction of the spherical inclusions.
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where s  is the volume fraction of the spherical inclusions. 
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where l  is the volume fraction of the ellipsoidal inclusions; and xN  is the depolariza-
tion factor in the direction of x-axis. Similarly, y- and z-components are given, respec-
tively, by: 
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where yN  and zN  are depolarization factors in the corresponding axes and satisfy [8]: 
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Figure 5. Examples of randomly positioned inclusions of various shapes in the environment
(ε∗r,e): (a) isotropic spheres, (b) aligned isotropic ellipsoids, (c) randomly oriented isotropic ellip-
soids, (d) aligned anisotropic spheres, (e) aligned anisotropic ellipsoids and (f) randomly oriented
anisotropic ellipsoids. Adapted from [41] (p. 40). Copyright 2019 YUSUKE MUKAI.

For many dielectrics, the spherical requirement for the inclusions needs to be relaxed—
however, numerical effort is required for other shapes, and ellipsoids are among a few
of the exceptions for which general analytical solutions can be obtained by extending the
Maxwell Garnett theory [8]. For locally isotropic ellipsoids of permittivity ε∗r,i randomly
positioned in the environment ε∗r,e (Figure 5b), its homogenized permittivity becomes a
tensor if the ellipsoids are aligned. The x-component (ε∗r,m,x) of this permittivity tensor is
given by [8]:

ε∗r,m,x = ε∗r,e + ϕlε
∗
r,e

ε∗r,i − ε∗r,e

ε∗r,i + (1− ϕl)Nx

(
ε∗r,i − ε∗r,e

) (19)

where ϕl is the volume fraction of the ellipsoidal inclusions; and Nx is the depolarization
factor in the direction of x-axis. Similarly, y- and z-components are given, respectively, by:

ε∗r,m,y = ε∗r,e + ϕlε
∗
r,e

ε∗r,i − ε∗r,e

ε∗r,i + (1− ϕl)Ny

(
ε∗r,i − ε∗r,e

) (20)
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ε∗r,m,z = ε∗r,e + ϕlε
∗
r,e

ε∗r,i − ε∗r,e

ε∗r,i + (1− ϕl)Nz

(
ε∗r,i − ε∗r,e

) (21)

where Ny and Nz are depolarization factors in the corresponding axes and satisfy [8]:

Nx + Ny + Nz = 1 (22)

Many natural and engineered materials possess this type of anisotropic structure,
where the constituent materials themselves are isotropic in microscopic scale but the
geometrical arrangement creates anisotropy [8].

For randomly oriented isotropic ellipsoids (Figure 5c), the macroscopic permittivity
becomes a scalar as the directional terms are canceled. The expression is thus given by [8]:

ε∗r,m = ε∗r,e + ε∗r,e

ϕl
3 ∑

i=x,y,z

ε∗r,i−ε∗r,e

ε∗r,e+Ni(ε∗r,i−ε∗r,e)

1− ϕl
3 ∑

i=x,y,z

Ni(ε∗r,i−ε∗r,e)
ε∗r,e+Ni(ε∗r,i−ε∗r,e)

(23)

So far, only isotropic inclusions are discussed. However, inclusions such as cotton
fibers have anisotropic local permittivities due to the oriented polymer chains [67,68]. If this
is the case, then the permittivity of inclusions needs to be treated as a second-rank tensor as
discussed in this section. For inclusions of randomly positioned anisotropic spheres aligned
in the environment (Figure 5d), the macroscopic permittivity tensor (ε∗r,m) is given by [8]:

ε
∗
r,m = ε∗r,e I + 3ε∗r,e ϕs

ε
∗
r,i − ε∗r,e I[

ε
∗
r,i + 2ε∗r,e − ϕs

(
ε
∗
r,i − ε∗r,e I

)] (24)

where I is the unit dyadic. Similarly, for inclusions of randomly positioned, but aligned
anisotropic ellipsoids (Figure 5e), the macroscopic permittivity tensor is given by [8]:

ε
∗
r,m = ε∗r,e I + ϕlε

∗
r,e

ε
∗
r,i − ε∗r,e I

ε∗r,e I + (1− ϕl)L ·
(

ε
∗
r,i − ε∗r,e I

) (25)

where L is the depolarization dyadic. Although not elaborated in detail in this paper,
the macroscopic permittivity of inclusions of randomly positioned and randomly aligned
anisotropic ellipsoids (Figure 5f) becomes a scalar, on a similar rationale to that of randomly
positioned and randomly oriented isotropic ellipsoidal inclusions.

While the Maxwell Garnett theory and its extensions have been employed as powerful
analytical tools for various dielectric mixtures, there are several limitations. For instance,
the Maxwell Garnett theory assumes the inclusions to be small so that the interaction
between the inclusions become negligible [69]. As such, the application of the Maxwell
Garnett theory is practically limited to dilute systems [69].

The Bruggeman theory, on the other hand, is symmetric with respect to all medium
components and can be applied to composites with arbitrary volume fractions without
causing obvious geometrical contradictions [70]. For spherical inclusions of volume fraction
f s, the macroscopic permittivity (ε∗r,m) is related to its constituent permittivities by [8]:
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(1− ϕs)
ε∗r,e − ε∗r,m

ε∗r,e + 2ε∗r,m
+ ϕs

ε∗r,i − ε∗r,m

ε∗r,i + 2ε∗r,m
= 0 (26)

where ε∗r,i and ε∗r,e are the complex relative permittivities of the inclusions and environment,
respectively. For randomly oriented ellipsoidal inclusions, the macroscopic permittivity
(ε∗r,m) is given by [8]:

ε∗r,m = ε∗r,e +
ϕl
3
(
ε∗r,i − ε∗r,e

)
∑

i=x,y,z

ε∗r,m

ε∗r,m + Ni

(
ε∗r,i − ε∗r,m

) (27)

Another crucial theory in dielectric homogenization is the coherent potential theory.
In this theory, the Green’s function enumerates the field of a given polarization density of
the effective medium, leading to the relationship between the macroscopic and constituent
permittivities. For the spherical inclusions, the coherent potential formula is given by [8]:

ε∗r,m = ε∗r,e + ϕs
(
ε∗r,i − ε∗r,e

) 3ε∗r,m

3ε∗r,m + (1− ϕs)
(

ε∗r,i − ε∗r,e

) (28)

For randomly oriented ellipsoids of volume fraction fe, the coherent potential formula is
given by [8]:

ε∗r,m = ε∗r,e +
ϕe

3
(
ε∗r,i − ε∗r,e

)
∑

i=x,y,z

(1 + Ni)ε
∗
r,m − Niε

∗
r,e

ε∗r,m + Ni

(
ε∗r,i − ε∗r,e

) (29)

For dilute mixtures, all of the Maxwell Garnett, Bruggeman and coherent potential theories
predict the same result. For spherical inclusions, those expressions are reduced to [8]:

ε∗r,m ' ε∗r,e + 3ϕsε∗r,e
ε∗r,i − ε∗r,e

ε∗r,i + 2ε∗r,e
(30)

In this subsection, the effects of the geometrical shapes, volume fractions and per-
mittivities of various internal components on the homogenized dielectric properties were
discussed based on the fundamental theories of dielectric mixtures. There is, however, an
additional factor that could also hold an important role in the mixture analysis—interfacial
polarization. Since mixtures involve at least two electrically non-identical components,
the interfacial polarization could take place at the internal boundaries [6,41], but such a
phenomenon is not considered in these theories. Yet, owing to its simplicity, explicitness
and versatility the dielectric mixture theory has found a variety of uses, such as in analysis
of chemical composition, structure and internal geometry and in designing composites
with dielectric properties desirable for intended applications [41,42].

3. Dielectric Properties of Fabrics—The Air-Fiber System

In one view, textile materials are mixtures of fibers (or yarns) and air. Thus, by putting
into the framework of the dielectric mixture theory, the dielectric properties of textile
materials can be expressed as functions of the volume fraction and dielectric properties of
the constituent fibers (or yarns). One of the early insights into this approach was presented
by Bal and Kothari [39], who aimed to elucidate the dielectric properties of high-density
polyethylene woven fabrics. In their work, measured dielectric constants of the woven
fabrics were compared with those calculated by the dielectric mixing formulas. Although
some of the mixing rules (e.g., the Maxwell Garnett formula) assume specific geometries
and hence were not supposed to perfectly apply to woven fabrics, it was reported that any
of the tested formulas predicted somewhat similar and acceptable results, most likely due
to the fact that the volume fractions of the fabric samples were on the significantly lower
side [39]. Later studies have demonstrated that the permittivity of textile materials could
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be dependent, not only on the volume fraction of fibers, but also on the fabric construction
(e.g., woven versus knit) and fiber (yarn) orientation in a strict sense [5–7,40,41].

A model that represents a plain-woven fabric was proposed by Bal and Kothari [58]
and is given in Figure 6. Based on the fundamental fabric geometry developed by Peirce [71],
the repeating unit of the interlaced structure was considered to be the region encompassed
by the rectangle in the schematic illustration. From this model, the capacitance (C) of a
plain-woven fabric was formulated as [58]:

C =
ε0

h
× (A× η1 × η2)×



+d2∫
−d2

+d1∫
−d1

dxdy{
1−
(

1− 1
ε′r,i

)
× 2×u1(0,y)

d1
×
√(

d1
2

)2
−x2+

2×u2(0,y)
d2

×
√(

d2
2

)2
−y2

} . . .

+
+

d1
2∫

− d1
2

(P2−
d2
2 )∫

d2
2

dxdy1−
(

1− 1
ε′r,i

)
×

2×sec θ1×

√(
d1
2

)2
−x2

h


. . .

+
(P1−

d1
2 )∫

d1
2

+
d2
2∫

− d2
2

dxdy1−
(

1− 1
ε′r,i

)
×

2×sec θ2×

√(
d2
2

)2
−y2

h


. . .

+(P1 − d1)× (P2 − d2)



(31)

where η1 and η2 are the thread counts of warp and weft yarns, respectively; P1 and P2 are
the spacings of the warp and weft yarns, respectively; u1 and u2 are the lengths of warp
and weft yarns along the z-axis, respectively; d1 and d2 are the diameters of warp and weft
yarns, respectively; θ1 and θ2 are the weaving angles of warp and weft yarns, respectively;
h is the fabric thickness; A is the area of fabric; ε′r,i is the dielectric constant of the fiber;
and ε0 is the absolute permittivity of free space. Because the capacitance is related to the
dielectric constant by [57]:

ε′r,i =
L

ε0 A
C (32)

the homogenized dielectric constant of a plain-woven fabric can be obtained by solving
Equations (31) and (32). Based on comparisons to experimental data, the authors reported
that this model predicted the dielectric constants of high-density polyethylene woven
fabrics with reasonable accuracy [58].
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where 1  and 2  are the thread counts of warp and weft yarns, respectively; 1P  and 2P  
are the spacings of the warp and weft yarns, respectively; 1u  and 2u  are the lengths of 
warp and weft yarns along the z-axis, respectively; 1d  and 2d  are the diameters of warp 
and weft yarns, respectively; 1  and 2  are the weaving angles of warp and weft yarns, 
respectively; h  is the fabric thickness; A  is the area of fabric; '

r,i   is the dielectric con-
stant of the fiber; and 0  is the absolute permittivity of free space. Because the capacitance 
is related to the dielectric constant by [57]: 

'
r,i

0

L C
A




  (32)

the homogenized dielectric constant of a plain-woven fabric can be obtained by solving 
Equations (31) and (32). Based on comparisons to experimental data, the authors reported 
that this model predicted the dielectric constants of high-density polyethylene woven fab-
rics with reasonable accuracy [58]. 

 
Figure 6. A cross section of a two-phase, plain-woven fabric consisting of fibers (yarns) and air. 
Reprinted with permission from Ref. [58] (p. 754). Copyright 1974 ELSEVIER BV. 

Although not discussed in [57], this mathematical procedure of estimating the ho-
mogenized dielectric properties from fabric geometries and the permittivity of fibers (or 
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Although not discussed in [57], this mathematical procedure of estimating the ho-
mogenized dielectric properties from fabric geometries and the permittivity of fibers (or
yarns) may also be applied for staple or multifilament yarns if the macroscopic dielectric
properties of such yarns are known. Moreover, it may be extended to cover broader types of
fabric geometries such as various patterns of woven and knit fabrics by further elaborating
the formulation.

4. Dielectric Properties of Fabrics—The Air-Fiber-Moisture System

The two-phase (air-fiber) models reviewed in Section 3 are applicable only for textile
materials that are unaffected by moisture. Many natural (e.g., cotton, silk and wool) and
artificial (e.g., polyamides) fibers, however, are hygroscopic and hence their dielectric
properties can be radically altered by moisture [4,6,7,16,41,72,73]. The moisture absorbed
by hygroscopic fibers is known to exist in two primary forms—free water and bound
water [74,75]. Free water is water that has the thermodynamic state identical to the liquid
(or bulk) water [76]. Bound water, on the other hand, takes the form chemically attached
to a functional group of polymer chains, and thus the mobility of bound water is largely
impeded [76]. Consequently, the electric polarizabilities of free and bound water are sub-
stantially different; the relaxation frequency of free water is observed in the gigahertz
range [77,78], whereas bound water exhibits relaxation at much lower, megahertz frequen-
cies because of the limited mobility [79,80]. Furthermore, absorbed water could drastically
enhance the interfacial polarization by creating various types of boundaries with air and
fiber [6,41].

Although the consideration of moisture is imperative in decent dielectric analysis of
hygroscopic textile materials, the quantification and modeling of free and bound water is
challenging. This is because the amounts, shapes and locations of free and bound water are
intricately influenced by a number of factors including but not limited to temperature, rela-
tive humidity and microstructural profiles (e.g., crystallinity and porosity) [41,67,76,81–83].
Accordingly, most mixing models and theories available in literature are concerned with
the moisture content without further distinction of its free and bound states.

In a recent work, the relationship between the dielectric properties and the geometrical
parameters were investigate for cotton fabrics at various relative humidity conditions [7].
Based on the out-of-plane dielectric characterization of woven and knitted fabric samples
made of a five-ply cotton yarn, it was observed that the dielectric constant increases with the
solid volume fraction (Figure 7a) [7]. It was also shown that the dielectric constant increases
as the relative humidity increases (Figure 7a) [7], as reported in previous works [16,73].
Surprisingly, however, when the dielectric constants of the woven and knitted fabric
samples of the same solid volume fractions were compared, the dielectric constants of
woven samples were consistently higher than those of knitted samples (Figure 7b,c) [7].
This observation was substantiated by the evidence that the yarns (and hence fibers) in
the woven samples were oriented more in the fabric thickness (out-of-plane) direction
than in the case of knitted samples (Figure 8)—according to the extended Maxwell Garnett
theory [8], the orientation of high aspect ratio materials affects the permittivity of the
mixture and the permittivity in the fabric thickness direction will be higher if the fibers
(yarns) are aligned more in this direction [7].
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Figure 7. (a) Dielectric constants of woven and knitted cotton fabrics plotted as a function of the solid
volume fraction; and comparison of the dielectric constants of woven and knitted cotton fabrics at
various relative humidifies under the same solid volume fractions: (b) 0.14 and (c) 0.15. Adapted
from [7] (pp. 8–9). Copyright 2020 YUSUKE MUKAI & MINYOUNG SUH.
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Figure 8. 3D visualization of the cotton fabric geometry for determination of the average yarn
orientation: (a) micro-computed tomography (micro-CT) image, (b) five-ply cotton yarn plotted in
the Cartesian coordinate system, and (c) yarn discretization for calculation of the local orientation.
Adapted from [7] (pp. 10–11). Copyright 2019 YUSUKE MUKAI.

A theoretical model that predicts the dielectric properties of textile materials from the
moisture content was proposed by Mukherjee in 2018 [84]. According to this model, the
real (ε′r,m) and imaginary (ε′′r,m) components of the relative permittivity are expressed as a
function of moisture by:

ε′r,m(ω, T, M) = ε′r,ie +
1

u
(

1 + ω2v2

u2

) (33)
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A1 = a(T − x− T∗)− Bψ0 +
3
2

Cψ2
0 (38)

where χ0 is the susceptibility; ψ0 is the equilibrium order parameter; P0 is the equilibrium
polarization density; ε′r,ie is the real part of the relative permittivity due to ionic and
electronic polarizations; ε

′′
r,ie is the imaginary part of the relative permittivity due to ionic

and electronic polarizations; x is the moisture content; T and T∗ are the temperature and
supercooled temperature; Γ1 and Γ2 are the kinetic coefficients; and a, B, C and γ are
the Landau coefficients. The accuracy of this model was rigorously evaluated in a later
work—the results obtained from this model were well comparable to the experimental data
reported in the literature [85].

5. Measurement Methods

For the last couple of decades, methods for measuring the dielectric properties of
textile materials have gained increasing interest. One critical facet has been its applica-
tion in material characterization. Since the dielectric properties contain a wide range of
information, such as the compositional, structural and geometrical properties, dielectric
characterization could estimate these properties of textile materials [5–7,40–42], for instance
for quality control of fabrics in a similar way to the capacitance-based fiber and yarn testing
widely adopted in the textile industry [9–14]. Another unmissable application has been for
development of textile-based wearable electronics. The performance and the form factor of
electronic devices such as capacitors, transmission lines and antennas are well-documented
to be impacted by the dielectric properties [38,47,57], and accordingly, the knowledge on
the dielectric properties of textile materials is essential to design optimal textile-based
electronics [7,15,41].

Dielectric characterization methods can be classified into the following two groups:
resonant and non-resonant methods (Figure 9) [86,87]. In the resonant methods (Figure 9a),
dielectric properties are determined through the measurement of resonant frequency and
quality factor of resonant circuit embedded or covered with a dielectric material, whose
dielectric properties are of interest [88]. Although resonant methods generally offer a
higher level of accuracy and hence could be more suitable for low loss materials than the
non-resonant methods, resonant methods can determine the dielectric properties only at a
single or discrete set of frequencies [86,87]. Moreover, due to the physical size requirement
of resonant structures, characterization is typically limited to certain microwave frequencies.
Furthermore, since the resonant (and hence, the characterization) frequency is perturbed by
the dielectric properties of the material under test, dielectric properties are often analyzed
at a frequency that is slightly different from the target frequency [7,89].
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Non-resonant methods (Figure 9b), on the other hand, could measure the dielectric
properties in a broad range of frequency. The underlying principle in non-resonant methods
is that electrical properties of a non-resonant circuit embedded or covered with a dielectric
material are mathematically related to the dielectric properties. Although the measurement
accuracy is generally limited in comparison with that of resonant methods, non-resonant
methods offer information on the frequency-dependent dielectric properties. The following
subsections review some of the most versatile dielectric characterization methods for textile
materials from recent literature.

5.1. Resonant Methods
5.1.1. Split Post Dielectric Resonator Method

The split post dielectric resonator method employs a hollow enclosure (Figure 10)
whose resonant frequencies and quality factors are pre-determined by its shape and di-
mensions, but which can be altered by placing a dielectric material inside it. The resonant
frequencies and quality factors of the split post dielectric resonator are measured with and
without a testing material (Figure 10) by using a vector network analyzer. The real part of
the complex relative permittivity (ε′r,m) can then be calculated from the shift in the resonant
frequency by using the formula [90]:

ε′r,m = 1 +
fwo − fw

h fwoKε

(
ε′r,m, h

) (39)

where fw and fwo are the resonant frequencies with and without sample, respectively; h
is the sample thickness; and Kε is a function of ε′r,m and h, and can be computed by an
iterative method [90]. The loss tangent (tan δ) can be obtained from the measured quality
factors by using the expression [90]:

tan δ =

[
Q−1

w −Q−1
d −

(
QcK1

(
ε′r,m, h

))−1
]

hε′r,mK2
(
ε′r,m, h

) (40)

where Qw is a quality factor of the sample-filled resonator; Qd is the quality factor that
accounts for the dielectric loss of the sample-filled resonator; Qc is the quality factor
that accounts for the conductor-related losses of the empty resonator; and K1 and K2 are
functions of ε′r,m and h and can be determined by an iterative method. Therefore, the
imaginary part of the relative permittivity can be obtained by using Equations (4) and (40).
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where rf  is the resonant frequency of the ring resonator; r  is the radius of the ring; h  
is the thickness of the material under test; effw  and eff are the effective width and per-
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Figure 10. Schematic illustration of a split post dielectric resonator for dielectric characterization.
Reprinted with permission from Ref. [91] (p. 102904). Copyright 2013 AMERICAN INSTITUTE
OF PHYSICS.
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One considerable feature of the split post dielectric resonator method is that predefined,
standard fixtures are commercially available on the market, and the complex relative
permittivity of thin, planar materials, including fabrics, can be rapidly determined with
excellent accuracy [92]. However, the characterization frequencies are typically limited to
1.1 to 20 GHz because of the physical size constraints of the fixture and testing material [92].
In addition, high permittivity samples need to be sufficiently thin to avoid undesirable
resonances particularly at higher frequencies [93].

5.1.2. Ring Resonator Method

A ring resonator, as drawn in Figure 11, is a type of resonant structure whose resonant
frequencies and quality factor in given dimensions are predominantly determined by the
complex relative permittivity of the substrate [94]. Hence, in this method, the material
under test is embedded as the substrate, and its complex relative permittivity is determined
through the measurement of the resonant frequency and quality factor by using a vector
network analyzer [94]. The real part of the relative permittivity (ε′r,m) can be calculated
from the resonant frequency of the ring resonator by using the expression [95]:

ε′r,m =
2εeff +

(
1 + 12h

weff

)− 1
2 − 1(

1 + 12h
weff

)− 1
2
+ 1

(41)

where fr is the resonant frequency of the ring resonator; r is the radius of the ring; h is the
thickness of the material under test; weff and εeff are the effective width and permittivity that
account for the thickness of the strip (t), respectively. The effective width and permittivity
are given respectively by [95]:

weff = w +
1.25t

π

(
1 + ln

(
2h
t

))
(42)

εeff =

(
nc

2πr fr

)2
(43)

The loss tangent (tan δ) of the test sample can be obtained by [95]:

tan δ =
λ0αd

√
εeff(εr,m − 1)

8.686πεr(εeff − 1)
(44)

where λ0 is the wavelength of the free-space radiation from the ring at the resonant
frequency; and αd is the attenuation due to the dielectric loss. αd can be obtained by
subtracting the attenuation due to the conductor (αc) and radiation (αr) losses from the total
attenuation (αtotal) as [95]:

αd = αtotal − αc − αr (45)

where αtotal is related to the quality factor of the ring resonator at the resonant frequency
(Q0) by [95]:

αtotal =
π
√

εeff

Q0λ0
(46)

αc can be determined by using the expression [95]:
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√
πµ0 fr

σ ×
[
1 + 2

π tan−1
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hZ0

× 8.686[
weff
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−
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h
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(47)

where σ is the static conductivity of the ring; ∆ is the surface roughness; and ς is the skin
depth. Since the radiation from the ring structure is typically negligibly small, the αr term
can be dropped. Accordingly, the loss tangent of the testing material can be obtained by
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using Equations (44)–(47), and finally the imaginary part of the relative permittivity can be
obtained by using Equation (4).
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Figure 11. Schematic illustration of a ring resonator embedded with a material under test for dielectric
characterization in (a) top and (b) cross-sectional views. Redrawn from [94] (p. 15).

Although the ring resonator method could offer a good estimation of the complex
relative permittivity in the microwave frequency domain, a preparatory phase is required
to embed a testing material into the ring resonator geometry, but such process could be
laborious and for certain samples even impracticable [94]. In order to ease the challenges in
the sample preparation, multilayer methods such as the suspended ring resonator method
and the strip line ring resonator method were proposed.

In the suspended ring resonator method, the ring resonator geometry is divided,
for instance, into three sections, as follows: the lower layer, the sample, and the upper
layer [94,96] (Figure 12). The lower layer consists of a ground plane and two feed lines
mounted onto a dielectric medium of known complex permittivity, and the upper layer
consist of the same dielectric material but this time with a ring. These lower and upper
layers can be fabricated based on the conventional, printed circuit board technology. The
sample is then placed in-between, and its complex relative permittivity can be determined
through the measurements of the resonant frequency and quality factor in a similar manner
to the original, ring resonator method. The specific formulas for the suspended ring
resonator method are available in [94,96].
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and (b) cross-sectional views. Redrawn from [94] (p. 21).

The strip line ring resonator method [97], on the other hand, employs a pre-established
ring resonator, onto which the testing material is placed with a metal cover (Figure 13).
The complex relative permittivity of the sample is then determined through the resonant
frequency and quality factor measurements by using the formulas given in [97]. For both
types of the multilayer ring resonator methods, ring resonator fixtures can be reused many
times. Hence, these methods can be timesaving and cost-efficient alternatives to the original
ring resonator method.

5.1.3. Patch Antenna Method

The patch antenna method is another resonant technique suitable for thin, planar
samples including fabrics. The leading principle in this method is that a patch antenna,
which consists of a conductive thin patch mounted on a grounded dielectric material, has
a resonant frequency that is dependent on the dielectric constant of the substrate and
antenna dimensions [38,47]; accordingly, the dielectric constant of the dielectric material
can be estimated from the antenna dimensions and the measurement of the resonant
frequency [5,7,41,89,98].
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where h  is the thickness of the test sample; pW  is the width of the patch; and '
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Figure 13. Schematic illustration of a strip line ring resonator for dielectric characterization: (a) top
and (b) cross-sectional views. Redrawn from [97] (p. 2).

While various types of patch antennas could be designed for dielectric characteriza-
tion, those in simple geometrical shapes such as rectangles are most commonly chosen for
straightforward calculation. For a rectangular patch antenna depicted in Figure 14, the di-
electric constant (ε′r,m) of the test sample can be extracted from the analytical formula [41,89]:

ε′r,eff =

(
ε′r,m + 1

2

)
+

(
ε′r,m − 1

2

)(
1 +

12h
Wp

)− 1
2

(48)

where h is the thickness of the test sample; Wp is the width of the patch; and ε′r,e f f is the
effective dielectric constant and can be calculated using the expression [41,89]:

Lp =

 c

2 fr

√
ε′r,eff

− 0.824h

(
ε′r,eff + 0.3

ε′r,eff − 0.258

)( Wp
h + 0.264
Wp
h + 0.8

)
(49)

where Lp is the length of the patch and fr is the resonant frequency of the patch antenna.
It should be noted that while the patch antenna method could offer excellent accu-

racy in determining the real part of the relative permittivity [5,7,41,89,98], the imaginary
part may not be acquired by this method. This is because typical patch antennas have
non-negligible radiation and surface-wave losses, which are challenging to experimentally
quantify. Therefore, the patch antenna method is primarily used for dielectric materials
whose loss behavior is not of major concern [89] or in combination with another characteri-
zation method [41].
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5.2. Non-Resonant Methods
5.2.1. Parallel-Plate Method

The parallel-plate method is one of the most common characterization methods in
the low frequency regime typically below 1 GHz [86]. In this method, a sample is placed
between a pair of electrodes and capacitance and dissipation factor (D) are measured by an
LCR meter (Figure 15). The real part of the relative permittivity (ε′r,m) is then calculated
using the formula [57]:

ε′r,m =
dC
ε0 A

(50)

where A is the area of the electrode, and d is the distance between the electrodes. For test
samples whose static conductivities are negligibly small, the dissipation factor is equal to
the loss tangent. Therefore, the imaginary part of the relative permittivity (ε′′r,m) can be
calculated as [57]:

ε
′′
r,m = tan δ · ε′r,m ' Dε′r,m (51)

One critical advantage of the parallel-plate method is its simplicity in sample prepa-
ration and measurement setup [86]—samples in a wide range of thickness can be non-
destructively measured with adjustable electrodes commercially available on the market.
There is, however, one major notation in this method. It has been reported that charges
accumulated at the sample-electrode interface during measurement could cause a large po-
larization (called electrode polarization) that mask the true response of the test sample [46].
This unwanted parasitic effect could be especially pronounced at lower frequencies for
materials with high moisture contents including cotton fabrics [6,40,41], and can result in
an extremely large, apparent complex permittivity [46]. Although several workarounds
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have been proposed to alleviate the effect of the electrode polarization [100–103], complete
removal or compensation is almost unattainable.
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where W  is the width of the trace; h  is the thickness of the sample; and '
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Figure 15. (a) Schematic illustration of a sample-filled parallel-plate capacitor connected to an LCR
meter. Redrawn from [99] (p. 109); and (b) commercially available setup. Adapted from [41] (p. 76).
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5.2.2. Planar Transmission Line Method

The planar transmission line method is a high-frequency technique that measures
the complex permittivity of a thin test sample embedded in or placed in the vicinity of
a planar transmission line. This method is based on the transmission line theory—the
reflection and transmission characteristics of a planar transmission line is dependent on the
dielectric properties of the embedded or the covered material [41,88,104]. Accordingly, the
complex permittivity of the test material can be determined through the measurement of
the reflection and transmission coefficients or the scattering parameters [41,88,104].

Planar transmission lines can be produced in various geometries; however, those
in simple forms such as microstrip lines (Figure 16) are usually preferable for ease of
fabrication and calculation. For the microstrip line geometry, the real part of the relative
permittivity (ε′r,m) is given by [41,56,105]:

ε′r,m '
2ε′r,eff − 1 + 1√

1+ 12h
W

1 + 1√
1+ 12h

W

(52)

where W is the width of the trace; h is the thickness of the sample; and ε′r,eff is the effective
dielectric constant given by [41,47]:

ε′r,eff =

(
cβ

2π f

)
(53)

where β is the phase constant. The phase constant can be calculated from the scattering
parameters, which are measurable by a vector network analyzer with an appropriate
calibration technique—the full details of the processes are described in [41].

The loss tangent can be calculated by the formula [41,105]:

tan δ ' cα

π f
√

ε′r,eff

(54)
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where α is the attenuation constant and can be calculated from the measured scattering
parameters as described in [41]. The imaginary part of the relative permittivity can then be
obtained from Equations (4) and (54).
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Although there are several drawbacks, such as the necessity of calibration to remove
the effect of feeding systems (e.g., connectors) and limited accuracy in characterization, one
of the main features of the planar transmission line method is its simplicity in fabrication—
for instance, planar transmission lines can be easily fabricated for a test sample by mounting
thin conductive sheets such as a copper foil tape [41]. In addition, the frequency dependence
of the complex permittivity can be acquired by this method since planar transmission lines
support broadband microwave frequencies [106].

5.2.3. Free-Space Method

Another non-resonant method suitable for textile materials is the free space method,
where a test specimen is placed between a pair of horn antennas connected to a vector
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network analyzer (Figure 17). Under this configuration, the complex relative permittivity
(ε∗r,m) of the testing material is expressed as [107]:

ε∗r,m =
λ2

0
µ∗r

[
1

λ2
c
−
{

1
2πh

ln(T)
}2
]

(55)

where λc and λ0 are the cutoff and free-space wavelengths, respectively; h is the sample
thickness; µ∗r is the complex relative permeability of the sample; and T is the transmission
coefficient. Since T can be obtained from scattering parameter measurements with an
appropriate calibration technique [107], the complex relative permittivity can be determined
from Equation (55).
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The major advantage of the free-space method is that the dielectric properties of
sheet samples including textile materials can be non-destructively evaluated in the broad
microwave frequencies simply by placing them between the horn antennas [107]. On the
other hand, a calibration process is necessary to eliminate the effect of the feeding systems
(e.g., connectors and antennas) in a similar rationale to the planar transmission method. In
addition, a large sample surface is required to minimize the diffraction effects at the edges
of the sample [109].

6. Conclusions

This paper reviewed various indispensable theories and principles related to the dielec-
tric properties of textile materials. In order to provide a profound basis for unraveling the
various intricate factors that affect the dielectric properties of textile materials, foundations
on the dielectrics and polarization mechanisms were first recapitulated, followed by an
overview on the concept of homogenization and some of the most prominent mixing rules.
The key advantages, challenges and opportunities in the analytical approximations of the
dielectric properties of textile materials were then discussed based on the findings and
implications from the recent literature, and finally the variety of characterization methods
were described for determination of the dielectric properties of textile materials.

Funding: This research received no external funding.

Conflicts of Interest: The author declares that there is no conflict of interest.
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Appendix A

Table A1. Dielectric properties of some pure fabrics reported in literature.

Fabric Specification Measurement Conditions Dielectric Properties

Ref.
Composition Construction

Solid
Volume
Fraction

Frequency (Hz) Temperature
(◦C)

Relative
Humidity

(%)

Moisture
Content
(wt%)

Real
Part

Imaginary
Part

Loss
Tangent

Cotton Plain weave 0.134 * 1 × 106 21

40

–

5.59 0.352 ‡ 0.063

[73]60 6.12 0.514 ‡ 0.084

80 7.08 0.722 ‡ 0.102

Cotton Twill weave 0.293 * 2.45 × 109 – – – 1.71 0.034 ‡ 0.020 [16]

Cotton

Plain weave 0.10

~2.45 × 109 21 ± 0.2 80 ± 2.5 8.42

1.28 – –

[7]

Plain weave 0.11 1.24 – –

Plain weave 0.11 1.29 – –

Plain weave 0.14 1.42 – –

Plain weave 0.15 1.46 – –

Cotton

Plain weave 0.10

~2.45 × 109 21 ± 2 65 ± 5 7.57

1.27 – –

[7]

Plain weave 0.11 1.24 – –

Plain weave 0.11 1.29 – –

Plain weave 0.14 1.40 – –

Plain weave 0.15 1.43 – –

Cotton

Plain weave 0.10

~2.45 × 109 21 ± 0.2 50 ± 2.5 6.43

1.27 – –

[7]Plain weave 0.11 1.27 – –

Plain weave 0.11 1.26 – –

Plain weave 0.14 1.36 – –

Plain weave 0.15 1.38 – –

Cotton

Plain weave 0.10

~2.45 × 109 21 ± 0.2 35 ± 2.5 5.27

1.26 – –

[7]

Plain weave 0.11 1.21 – –

Plain weave 0.11 1.24 – –

Plain weave 0.14 1.32 – –

Plain weave 0.15 1.35 – –

Cotton

Plain weave 0.10

~2.45 × 109 21 ± 0.2 20 ± 2.5 3.77

1.23 – –

[7]

Plain weave 0.11 1.18 – –

Plain weave 0.11 1.21 – –

Plain weave 0.14 1.29 – –

Plain weave 0.15 1.31 – –

Cotton

Plain knit
(single jersey) 0.10

~2.45 × 1011 21 ± 0.2 80 ± 2.5 8.42

1.38 – –

[7]

Plain knit
(single jersey) 0.11 1.37 – –

Plain knit
(single jersey) 0.11 1.42 – –

Plain knit
(single jersey) 0.14 1.55 – –

Plain knit
(single jersey) 0.15 1.62 – –

Cotton

Plain knit
(single jersey) 0.10

~2.45 × 109 21 ± 2 65 ± 5 7.57

1.37 – –

[7]

Plain knit
(single jersey) 0.11 1.35 – –

Plain knit
(single jersey) 0.11 1.39 – –

Plain knit
(single jersey) 0.14 1.47 – –

Plain knit
(single jersey) 0.15 1.59 – –
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Table A1. Cont.

Fabric Specification Measurement Conditions Dielectric Properties

Ref.
Composition Construction

Solid
Volume
Fraction

Frequency (Hz) Temperature
(◦C)

Relative
Humidity

(%)

Moisture
Content
(wt%)

Real
Part

Imaginary
Part

Loss
Tangent

Cotton

Plain knit
(single jersey) 0.10

~2.45 × 109 21 ± 0.2 50 ± 2.5 6.43

1.32 – –

[7]

Plain knit
(single jersey) 0.11 1.30 – –

Plain knit
(single jersey) 0.11 1.34 – –

Plain knit
(single jersey) 0.14 1.43 – –

Plain knit
(single jersey) 0.15 1.50 – –

Cotton

Plain knit
(single jersey) 0.10

~2.45 × 109 21 ± 0.2 35 ± 2.5 5.27

1.30 – –

[7]

Plain knit
(single jersey) 0.11 1.28 – –

Plain knit
(single jersey) 0.11 1.32 – –

Plain knit
(single jersey) 0.14 1.41 – –

Plain knit
(single jersey) 0.15 1.47 – –

Cotton

Plain knit
(single jersey) 0.10

~2.45 × 109 21 ± 0.2 20 ± 2.5 3.77

1.25 – –

[7]

Plain knit
(single jersey) 0.11 1.23 – –

Plain knit
(single jersey) 0.11 1.27 – –

Plain knit
(single jersey) 0.14 1.35 – –

Plain knit
(single jersey) 0.15 1.40 – –

Flax Plain weave 0.235 * 1 × 106 21

40

–

4.22 0.156 ‡ 0.037

[73]60 4.43 0.177 ‡ 0.040

80 6.20 0.360 ‡ 0.058

Jute Plain weave 0.223 * 1 × 106 21

40

–

2.99 0.093 ‡ 0.031

[73]60 3.90 0.137 ‡ 0.035

80 4.95 0.233 ‡ 0.047

Hemp Plain weave 0.249 * 1 × 106 21

40

–

4.08 0.114 ‡ 0.028

[73]60 4.50 0.162 ‡ 0.036

80 4.77 0.248 ‡ 0.052

Wool Plain weave 0.303 * 1 × 106 21

40

–

4.11 0.115 ‡ 0.028

[73]60 4.65 0.214 ‡ 0.046

80 5.70 0.296 ‡ 0.052

Polyester 2 × 2 rib knit – 1.13 × 103 20 ± 1 65 ± 2 – 4.06 1.67 0.46 [110]

Polyester Plain weave 0.387 * 1 × 106 21

40

–

3.20 0.058 ‡ 0.018

[73]60 3.39 0.088 ‡ 0.026

80 3.66 0.117 ‡ 0.032

Polyester 3D spacer knit 0.0706 * 2.25× 109 – – – 1.10 0.006 ‡ 0.005

[83]

Polyester 3D spacer knit 0.0821 * 2.25× 109 – – – 1.10 0.007 ‡ 0.006

Polyester 3D spacer knit 0.0745 * 2.25× 109 – – – 1.12 0.019 ‡ 0.017

Polyester 3D spacer knit 0.0982 * 2.25× 109 – – – 1.13 0.020 ‡ 0.018

Polyester 3D spacer knit 0.0627 * 2.25× 109 – – – 1.11 0.004 ‡ 0.004
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Table A1. Cont.

Fabric Specification Measurement Conditions Dielectric Properties

Ref.
Composition Construction

Solid
Volume
Fraction

Frequency (Hz) Temperature
(◦C)

Relative
Humidity

(%)

Moisture
Content
(wt%)

Real
Part

Imaginary
Part

Loss
Tangent

Polyester Plain weave 0.43 † 2.26 × 109 – – – 1.55 0.013 ‡ 0.009 [111]

Polyester Felt –
2.45 × 109

– – – 1.2 0.028 ‡ 0.023
[24]

Polyester Woven – – – – 1.5 0.042 ‡ 0.028

Polyester – – 2.45 × 109 – – – 1.44 – – [89]

Polyester Fleece 0.103 * 2.45 × 109 – – 0.40 § 1.15 0.000 ‡ 0.000 [16]

High density
polyethylene

Plain weave 0.1326 1 × 103 – – – 1.12 – –

[39]Plain weave 0.1633 1 × 103 – – – 1.14 – –

Plain weave 0.1190 1 × 103 – – – 1.10 – –

Plain weave 0.2560 1 × 103 – – – 1.23 – –

* Calculated by the formula: ϕ = G/hρ, where ϕ is the solid volume fraction; G is the fabric weight; h is the fabric
thickness; and ρ is the fiber density [6]. The commonly accepted values of 1.52 g/cm3 [112], 1.45 g/cm3 [113,114],
1.5 g/cm3 [115], 1.45 g/cm3 [116], 1.31 g/cm3 [117] and 1.39 g/cm3 [118,119] were used for the densities of cotton,
flax, jute, hemp, wool and polyester fibers, respectively. † Calculated by the formula: ϕ = 1 − p/100, where p is
the porosity (%) [120]. ‡ Calculated by Equation (4). § Calculated by M = 100R/(100 + R), where M and R are the
moisture content (%) and the moisture regain (%), respectively [121].
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