
����������
�������

Citation: Kapllani, L.; Amanatides,

C.; Dion, G.; Breen, D.E. Loop Order

Analysis of Weft-Knitted Textiles.

Textiles 2022, 2, 275–295. https://

doi.org/10.3390/textiles2020015

Academic Editors: Philippe Boisse

and Laurent Dufossé

Received: 13 April 2022

Accepted: 11 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Loop Order Analysis of Weft-Knitted Textiles
Levi Kapllani 1,2 , Chelsea Amanatides 2 , Genevieve Dion 2,3 and David E. Breen 1,2,*

1 Computer Science Department, Drexel University, Philadelphia, PA 19104, USA; lk489@drexel.edu
2 Center for Functional Fabrics, Drexel University, Philadelphia, PA 19104, USA; cek56@drexel.edu (C.A.);

gd63@drexel.edu (G.D.)
3 Design Department, Drexel University, Philadelphia, PA 19104, USA
* Correspondence: david@cs.drexel.edu

Abstract: In this paper, we describe algorithms that perform loop order analysis of weft-knitted
textiles, which build upon the foundational TopoKnit topological data structure and associated
query functions. During knitting, loops of yarn may be overlayed on top of each other and then
stitched together with another piece of yarn. Loop order analysis aims to determine the front-to-back
ordering of these overlapping loops, given a stitch pattern that defines the knitted fabric. Loop
order information is crucial for the simulation of electrical current, water, force, and heat flow within
functional fabrics. The new algorithms are based on the assumption that stitch instructions are
executed row-by-row and for each row the instructions can be executed in any temporal order. To
make our algorithms knitting-machine-independent, loop order analysis utilizes precedence rules
that capture the order that stitch commands are executed when a row of yarn loops are being knitted
by a two-bed flat weft knitting machine. Basing the algorithms on precedence rules allows them
to be modified to adapt to the analysis of fabrics manufactured on a variety of knitting machines
that may execute stitch commands in different temporal orders. Additionally, we have developed
visualization methods for displaying the loop order information within the context of a TopoKnit
yarn topology graph.

Keywords: knitted textiles; topological modeling; contact neighborhood; loop order analysis; precedence
rule; visualization

1. Introduction

Throughout history, knitting as a manufacturing technique has been mostly used
for clothing. However, knitted textiles offer great promise in other applications due to
their mechanical and physical properties. While knitted textiles have become increasingly
important to many industries (e.g., medical, military, etc.) in the last decades, the lack of
computer modeling and simulation tools have limited the ability of knitted textiles to be
widely deployed. There is a need to robustly design and model knitted textiles in a manner
similar to those used for vehicles, buildings, and bridges. The TopoKnit system [1,2]
provides significant progress toward this goal by implementing a foundational topological
representation of knitted fabrics that supports modeling, simulation, and analysis.

The work presented here builds upon the yarn-based topological structures available
in TopoKnit by expanding its query and analysis capabilities, thus capturing additional
topological relationships present in knitted fabrics manufactured on a two-bed flat weft
knitting machine. Specifically, we present algorithms that implement loop order analysis
of weft-knitted textiles. This analysis aims to determine the front-to-back ordering of
overlapping yarn loops, given a stitch pattern that defines a knitted fabric.

Expanding our understanding of the topology of weft-knitted textiles, not only ad-
vances the correctness and robustness of their associated geometric models, but also con-
tributes to the development and application of knitted structures. Loop order information
is crucial for the simulation of electrical current, water, force, and heat flow, as well as

Textiles 2022, 2, 275–295. https://doi.org/10.3390/textiles2020015 https://www.mdpi.com/journal/textiles

https://doi.org/10.3390/textiles2020015
https://doi.org/10.3390/textiles2020015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/textiles
https://www.mdpi.com
https://orcid.org/0000-0003-3827-5117
https://orcid.org/0000-0002-7175-9722
https://orcid.org/0000-0002-4873-288X
https://orcid.org/0000-0002-1376-5008
https://doi.org/10.3390/textiles2020015
https://www.mdpi.com/journal/textiles
https://www.mdpi.com/article/10.3390/textiles2020015?type=check_update&version=1


Textiles 2022, 2 276

for determining fabric properties such as density and porosity [3–6]. Additionally, a loop
order analysis capability contributes to the development of inverse design, the process of
determining the stitch instructions that would produce a fabric with desired properties.

Since knitted textiles are composed of consecutive connected rows of intertwined
yarn loops, we assume and observe that knitting machines execute stitch instructions
row-by-row. However, the order in which these stitch instructions are executed within a
row can be arbitrary, i.e., there is no inherent order in which stitch instructions must be
carried out. Thus, the algorithms described in this paper are based on the assumption that
stitch instructions in each row of a stitch pattern can be executed in any temporal order,
depending on the type of the knitting machine performing the instructions. To keep our
algorithms machine-independent, the loop order analysis utilizes precedence rules that
capture the order that stitch commands are executed when a row of yarn loops are being
knitted by a two-bed flat weft knitting machine. The loop order algorithm first determines
which loops are brought to a specific location. Then, by analyzing the stitch instructions
used to manipulate the loops and by applying the proper precedence rule, the front-to-
back ordering is determined. Additionally, we have developed visualization methods
for displaying the order information within the context of a TopoKnit yarn topology
graph. The precedence rules presented in this paper were derived by analyzing knitting
simulations in the Shima Seiki SDS-One APEX3 KnitPaint system (Wakayama, Japan). Since
the precedence rules are a variable in the algorithms, they can take different values when
modeling/analyzing the fabrics produced by different two-bed flat weft knitting machines.
This keeps our approach knitting-machine-independent.

The remainder of the paper is structured as the following. In Section 2, we present
related work and its relationship to the presented work. In Section 3, we provide a de-
scription of the weft-knitting process and the stitch commands utilized during machine
knitting. In Section 4, we give a summary of the TopoKnit system. In Section 5, we detail
our algorithms for performing yarn order analysis. In Section 6, we describe the algorithms
developed to visualize yarn order information with the context of TopoKnit’s topology
graph. In Section 7, we detail the tests that were performed to validate our yarn order
analysis and include some of the test results. Finally, in Section 8, we summarize our
research and present directions for future work.

2. Related Work

Meissner and Eberhardt developed KnitSim, a pioneering system in modeling and
visualizing knitted fabrics [7,8]. This system takes Stoll knitting machine commands as
input and outputs an explicit topological representation of the knitted textiles generated
from the input commands. A 2D geometric layout of the knitted fabric is generated through
a relaxation process making assumptions about the length of yarns between crossings.
While this work was promising for its time, it does have some limitations. The approach
required a full simulation of the knitting process and imposes constraints that limit the
complexity of the modeled knitted structures. The lack of available technical detail hinders
the evaluation of the generality and robustness of their approach.

Another similar approach that approximates the 2D layout of knitted textiles is pre-
sented by Counts [9]. The developed algorithms employ simulation of the knitting process
to generate a graph-based topological representation of the resulting fabric and are able to
extract knitting machine instructions from the graph representation. Similar to the Meissner
et al. work, Counts’ work requires a full knitting simulation to generate the graph. The
choice to use loops as the fundamental primitive, as well as the small set of supported
machine instructions, limits the yarn topology that can be represented.

There has been abundant work on the 3D geometric modeling of yarns in knitted
textiles. In efforts to create more realistic models, Kyosev et al. [10] propose a model
that considers yarn cross section properties by including the compression of the yarns in
the loop. Sherburn, Lin, et al. [11,12] developed a multiscale modeling approach aiming
to predict the mechanical properties of knitted textiles. To further explore the unique



Textiles 2022, 2 277

mechanical properties of knitted textiles, Wadekar et al. [13] developed a yarn-level model
for weft-knitted fabrics that can be used in finite element analysis simulations. In recent
work, Knittel et al. [14] and Wadekar et al. [15,16] explore helicoid scaffolds as a framework
for modeling and analyzing the structure and properties of knitted fabrics.

Kaldor et al.’s cutting-edge work [17,18] simulated entire knitted swatches and gar-
ments by modeling the geometry and physics of individual yarns in these items. Inspired
by this work, Yuksel et al. [19] and Wu et al. [20] introduce a modeling technique that builds
yarn-level geometric models of knitted clothing from polygonal models that represent the
surface of the knitted cloth. Part of this work was adapted by Leaf et al. [21] to create an
interactive design tool for simulating yarn-level patterns for knit and woven textiles.

Cirio et al. [22] define a topological representation of knitted textiles created by a set
of limited stitch commands, some of which are not manufacturable on knitting machines.
They introduce a compact and simplified representation of yarn geometry and mechanics,
capturing essential yarn deformation in their virtual knitted textiles. Their simulation
was integrated into a hybrid yarn-triangle model by Casafranca et al. [23]. In related
work, Kapllani et al. [1] developed a topological model, TopoKnit, a process-oriented
representation that defines a foundational data structure for representing the topology of
weft-knitted textiles at the yarn scale. This representation allows for additional topological
and manufacturability and stability analysis [2].

McCann et al. [24], Narayanan et al. [25,26] and Lin et al. [27] created algorithms
for determining knitting machine commands given polygonal models. These algorithms
facilitate interactive design and manufacturing of 3D knitted objects. Popescu et al. [28]
described an approach for automatically generating a knitting pattern given a 3D model,
without being constrained to developable surfaces. Motivated by Narayanan et al. [25],
Kaspar et al. [29] introduced an interactive system which allows users of different skill
levels to create and customize machine-knitted textiles. Nader et al. [30] introduced KnitKit,
a flexible and customizable system aiming to simplify the knitting of 3D objects by isolating
the high-level design from the low-level machine-specific knitting instruction generation.

Our work extends a previously developed topological model (Kapllani et al. [1,2]) to
provide additional topological information about a knitted fabric based on the manipula-
tions of its yarn loops. Specifically, in this paper, we present analysis algorithms that define
and visualize the order of overlapping loops in a knitted fabric. While Cirio et al. [22],
Meissner and Eberhardt [7], and Counts [9] presented work that represents yarn topology
in knits, none of them performed any kind of loop ordering determination. Our work
produces unique modeling information (loop order) that does not require a full simulation
of the knitting process.

3. Fabrication of Weft-Knitted Textiles

A fundamental unit of knitted textiles is the yarn loop. A loop is created when a yarn
is drawn through a previously existing loop, as seen in Figure 1. When this process is
repeated across a row, and then subsequently again in other rows, the fabric is formed. The
actions that create a loop or modify an existing loop are specified by stitch instructions.
The two simplest/most common stitch instructions are the Knit and the Purl stitches. As
viewed from the front side of the knitting machine, when a yarn is drawn through the
loop(s) held on a needle from back to front to form a new loop, a Knit stitch is created,
as shown in Figure 2b. When the direction that the yarn is drawn is front to back, a Purl
stitch is created, as shown in Figure 3b. A Purl stitch is simply the back side of a Knit
stitch. Additionally, a number of other stitch instructions can be executed, which may be
combined to produce a vast variety of knitted textiles. These stitches include:

3.1. Front and Back Transfer Stitches

A Transfer stitch is produced when a Knit or Purl stitch is created and then its head
loop is transferred, via a sequence of needle bed transfers and rackings, to another needle
location. Whether the stitch created is a Knit or Purl determines the type of Transfer stitch.



Textiles 2022, 2 278

A Front Transfer stitch transfers the head of a Knit stitch and a Back Transfer stitch transfers
the head of a Purl stitch (see Figures 4b and 5b respectively).

The Transfer stitches presented in Figures 4b and 5b transfer the loop one needle
to the left; however, depending on the type of Transfer stitch, there can be up to three
loop movements to the left or right. When a new yarn comes to the needle holding the
transferred loop, both overlapping loops will be knit together. The transferred loops are
highlighted in magenta in Figures 4b and 5b.

Figure 1. A single stitch, with its “legs” holding the “head” (upper loop) of the stitch below.

(a) (b) (c)

Figure 2. A Knit stitch is created by pulling a loop of yarn through a loop held from the previous
row from back to front. (a) Row of loops. (b) Knit stitches produced from another row of stitches.
(c) Topological representation. A single stitch is represented by the potential CNs (white disks) of its
upper loop and the actualized CNs (gray disks) where its legs intertwine with the previous loop.

(a) (b) (c)

Figure 3. A Purl stitch is created by pulling a loop of yarn through a loop held from the previous
row from front to back. (a) Row of loops. (b) Purl stitches produced from another row of stitches.
(c) Topological representation. Note that an ACN produced by a Purl stitch is colored green, as
compared to the gray disks of Knit-stitch-produced ACNs.



Textiles 2022, 2 279

(a) (b) (c)

Figure 4. A Front Transfer stitch is created when the loop of a Knit stitch is transferred up to three
needle positions away to the left or right. (a) Row of loops. (b) Two Knit stitches and a Front Transfer
stitch produced from another row of stitches. (c) Topological representation.

(a) (b) (c)

Figure 5. A Back Transfer stitch is created when the loop of a Purl stitch is transferred up to three
needle positions away to the left or right. (a) Row of loops. (b) Two Knit stitches and a Back Transfer
stitch produced from another row of stitches. (c) Topological representation.

3.2. Front and Back Tuck Stitches

A Tuck stitch is created when a yarn is tucked onto the needle and pulled up, instead
of being pulled through the held loop. The tucked loop is held on the needle together with
the loop from the previous row, as shown in Figures 6b and 7b. Executing a Back or Front
Tuck stitch will determine if the tucked loop is positioned in front of or in back of the held
loop, respectively. The needle holds both loops, which will be knitted together when a
stitch instruction is executed above it on the next row. The tucked loops are highlighted in
magenta in Figures 6b and 7b.

(a) (b) (c)

Figure 6. A Front Tuck stitch is created by tucking a yarn onto a loop held by a needle on the front
bed from the previous row, instead of creating a new stitch. (a) Row of loops. (b) Two Knit stitches
and a Front Tuck stitch produced from another row of stitches. (c) Topological representation.



Textiles 2022, 2 280

(a) (b) (c)

Figure 7. A Back Tuck stitch is created by tucking a yarn onto a loop held by a needle on the back
bed from the previous row, instead of creating a new stitch. (a) Row of loops. (b) Two Knit stitches
and a Back Tuck stitch produced from another row of stitches. (c) Topological representation.

3.3. Front and Back Miss Stitches

Similarly to the Tuck stitch, during the execution of a Miss stitch, the needle holds the
loop from the previous row, but the new yarn is not hooked by the needle. Instead, the
yarn passes by, creating a horizontal segment of yarn across the front or the back of the held
loop. Executing a Back or Front Miss stitch will determine whether the yarn passes in front
of or in back of the held loop, respectively. The resulting horizontal yarns are highlighted
in magenta in Figures 8b and 9b.

(a) (b) (c)

Figure 8. A Front Miss stitch is created when a needle on the front bed holds a loop from a previous
row as the yarn passes by, without knitting a new stitch, creating the magenta horizontal yarn.
(a) Row of loops. (b) Two Knit stitches and a Front Miss stitch produced from another row of stitches.
(c) Topological representation.

(a) (b) (c)

Figure 9. A Back Miss stitch is created when a needle on the back bed holds a loop from a previous
row as the yarn passes by, without knitting a new stitch, creating the magenta horizontal yarn.
(a) Row of loops. (b) Two Knit stitches and a Back Miss stitch produced from another row of stitches.
(c) Topological representation.

3.4. Empty Stitch

An Empty stitch specifies that no machine operation will be executed for a specific
needle. In our work, we assume that Empty stitches cannot be completely surrounded



Textiles 2022, 2 281

by non-Empty stitches, i.e., Empty stitches only occur outside the borders of the fabric.
Therefore, no yarn passes by nor is looped on the needle at that stitch location.

These nine stitches (Knit, Purl, Front and Back Transfer, Front and Back Tuck, Front
and Back Miss, and Empty) are the fundamental stitches needed to create most knitted
textiles and can be combined to generate complicated knitted patterns. TopoKnit supports
all of these stitches, thus allowing for a broad representation of intricate knitted fabrics.

4. TopoKnit

TopoKnit is a topological model of knitted textiles defined within a process-oriented
space that represents aspects of the fabric itself, as well as the processes that manipulate the
fabric during knitting (Kapllani et al. [1]). The primary primitives of this modeling space are
yarn intertwinings and the yarns that connect them. The complexity of a yarn intertwining
is encapsulated in a primitive called the Contact Neighborhood (CN). There are three
types of CNs: the potential CN (PCN), the actualized CN (ACN), and the unanchored CN
(UACN). When a loop is formed, two PCNs are created. When the yarn comes back to the
location of these PCNs and is pulled through the existing loop to form a new loop (creating
two intertwinings), the PCNs are actualized to ACNs. An ACN is defined by a contact
point and four directed incident edges. See the gray (ACNs) and white (PCNs) disks in
Figure 2c, which are defined by a Knit stitch. Depending on the loop manipulations during
the knitting process, PCNs can be actualized at their creation location or at another location
in the fabric grid. An example of the latter would be the PCNs created by Transfer stitches,
as seen in Figures 4 and 5. The third CN type, a UACN, is created when the yarn is grabbed
by the needle, but the loop’s legs are not intertwined with (i.e., anchored by) another loop
from directly below. The squares in Figure 10c represent UACNs. These CNs are connected
horizontally with their neighbors along the magenta edge flowing from left to right and
therefore are unanchored.

TopoKnit defines a data structure which stores information about these CNs, as
well as their mappings, i.e., movements within the fabric grid. For each CN (i, j), four
parameters are stored in the data structure. They are: stitch type (ST), actualization value
(AV), movement vector (MV), and yarn path index (YPI). The first parameter is the only
location-based parameter and it specifies the type of stitch executed at location (i, j) when
a CN (created at or transferred to (i, j)) is actualized at the location. The actualization value
and movement vector make up the mapping information for each CN. The actualization
value shows if a CN has been created at a location (i, j) and if so defines its state. The
four actualization parameter values are: PCN, ACN, UACN and E. ’E’ implies that no CN
was instantiated at the associated location, i.e., the CN is Empty. The movement vector
[∆i,∆j] specifies if the CN is being moved vertically or horizontally and by how many units.
The YPI parameter stores information about the CN’s location in the yarn path list as a
set of indices into the list. The yarn path list consists of a set of locations the yarn passes
through in the fabric grid. Having this information stored in the data structure allows for
constant-time information access during the analysis stage.

Given a stitch pattern composed of the stitch instructions supported by TopoKnit,
populating the data structure is the first step toward the analysis stage. See Figure 10d.
The analysis stage consists of algorithms developed to evaluate the data structure and
support topological query functions. TopoKnit’s main evaluation routine produces the
path of the yarn through the fabric and stores it as a sequential list of grid locations in the
fabric. The yarn path may be used to visualize the topology graph of the resulting knitted
fabric, as seen in Figure 10c, which is produced from the stitch pattern in (a). Examples of
supported topological queries include determining the final location of a CN in the fabric
grid, identifying which CNs will ultimately be situated at a particular fabric grid location,
returning a list of neighboring CNs, as well as providing a list of topological structures we
call open loops. Our current work adds loop order determination to this list. In addition
to yarn-level topological analysis, TopoKnit supports manufacturability and structural
stability analysis (Kapllani et al. [2]).



Textiles 2022, 2 282

(a)

(b) (c)

(d)

Figure 10. Stitch pattern with a combination of Knit, Front Transfer, Back Transfer, Front Miss, Front
Tuck, and Back Tuck stitches. (a) Stitch instructions. (b) Simulation of stitch pattern. (c) Topology
graph. (d) Corresponding data structure after evaluation.

5. Loop Order Analysis

A new topological query has been added to the TopoKnit system, specifically the
front-to-back order of yarn loops. Due to the manipulations of the yarn during the knitting
process, multiple overlapping loops may end up at the same location in the fabric. The
final spatial order of these loops (front-to-back) is determined by the temporal order that
the loops were manipulated and placed during knitting. The loop order query makes use
of this fact, along with the information stored in the TopoKnit data structure to define the
spatial order of loops at a location (i, j) in the fabric grid. It is important to note that since
we are trying to define the order of loops, our analysis only involves stitch instructions that
create new loops, such as Knit (K), Purl (P), Front (FX) and Back (BX) Transfer, and Front
(FT) and Back (BT) Tuck Stitch and excludes the Miss (M) stitch.

Both hand and machine knitting are row-by-row processes. Therefore, the loop
order analysis algorithms assume that the stitch commands are processed row-by-row.
The execution order for stitches within a row depends on the type of knitting machine
performing them. To represent and isolate this machine dependency in our algorithms,
precedence rules are introduced as input to the loop order algorithm. The precedence
rules consist of a sequence of stitch instructions starting with the stitch instruction that is
executed first in a row of instructions and ends with the stitch instruction that is executed
last. The precedence rules can be easily changed when analyzing the fabric manufactured
by a specific knitting machine.



Textiles 2022, 2 283

The first step of the loop order query determines which loops are brought to the
queried location in the fabric grid. The loops that end up at the location in the fabric may
have originated from multiple lower rows in the fabric. When analyzing these loops, they
are processed row-by-row, with lowest originating row being processed first. A precedence
rule is then applied to determine the order of stitch command execution, and therefore the
ordering of the associated yarn loops, for that row. The stacked loops from one row are
then recursively concatenated with loops that are ordered from successive rows.

5.1. Precedence Rules

For each type of knitting machine, precedence rules specify the temporal order that
stitch instructions in a single row of a stitch pattern are executed by the machine. The
examples presented in this paper use precedence rules that were inferred by analyzing
simulations of different stitch patterns in the Shima Seiki SDS-One APEX3 KnitPaint system.
Over one hundred patterns were simulated and examined to determine the order that
Shima Seiki knitting machines execute Knit, Purl, Front and Back Transfer, and Front and
Back Tuck stitches in a row of stitches. The order that these stitches are executed depend on
what types of stitches exist in a row. Knit, Purl, and Transfer (K-P-X) stitches are executed as
a block. If the row contains a Back Tuck (BT), the K-P-X block is executed first, then followed
by the execution of the BT stitch. This is seen at location (4,3) and (5,3) in Figures 11 and 12.
If the row contains a Front Tuck (FT), the FT stitch is executed first and the K-P-X block of
stitches is then executed.

(a)

(b) (c)

Figure 11. Stitch pattern with a combination of Knit, Front and Back Transfer, and Back Tuck stitches:
(a) Stitch instructions. (b) Simulated knitted pattern. (c) Topology graph displaying CN (loop) order.



Textiles 2022, 2 284

(a) (b)

Figure 12. Yarn order zoom-in at location (4, 3) in the yarn topology graph of Figure 11: (a) Simulated
knitted pattern. (b) Corresponding zoom-in topology graph.

Therefore, there are two precedence rules for the K-P-X block of stitches, depending
if the block contains Front Transfer (FX*) or Back Transfer (BX*) stitches. Knit stitches are
always executed first and Purl stitches are executed last in the block. What determines
the precedence of the block is the presence of Front Transfer stitches, with or without
the inclusion of Back Transfer stitches. The first rule accounts for the existence of Front
Transfer stitches in the row being processed, whereas the second accounts for all Transfer
stitches in the row being Back Transfer stitches. Within these rules, the direction of the
transfer, the number of needle positions shifted (shift units) and the stitch type (FX or BX)
determine the execution order of the stitches. In the first rule, the smaller the shift unit,
the higher the precedence of the Transfer stitch instruction, i.e., the sooner the stitch is
executed (See locations (4, 2) and (5, 2) in Figures 13 and 14). For stitches with equal shift
units, the left movement direction precedes the right one (See locations (6, 5) and (7, 5)
in Figures 11 and 15), and for stitches with equal shift units and direction, Front Transfer
stitches precede Back Transfer stitches. Given this information, the first precedence rule,
from highest to lowest precedence, for K-P-X blocks is

(K, FXL, BXL, FXR, BXR, FXL2, BXL2, FXR2, BXR2, FXL3, BXL3, FXR3, BXR3, P).

Similar to the first rule, the second precedence rule uses shift units and movement
direction to define the execution order of blocks containing only Knit, Purl, and Back
Transfer stitches. However, contrary to the first rule, the higher the shift unit is, the higher
the execution precedence of the stitch instruction is in the second rule. For stitches with
equal shift units, the left movement direction precedes the right one. Given this information,
the second rule for K-P-X blocks with only Back Transfers is

(K, BXL3, BXR3, BXL2, BXR2, BXL, BXR, P).

These precedence rules are codified in Algorithm 1.



Textiles 2022, 2 285

(a)

(b) (c)

Figure 13. Stitch pattern with a combination of Knit and Front and Back Transfer stitches: (a) Stitch
instructions. (b) Simulated knitted pattern. (c) Topology graph displaying CN (loop) order.

(a) (b)

Figure 14. Yarn order zoom-in at location (4, 2) in the yarn topology graph of Figure 13: (a) Simulated
knitted pattern. (b) Corresponding zoom-in topology graph.

Algorithm 1 DETERMINE_RULE(rowj, pattern)
Returns the precedence rule for row j in pattern

1: rule = {}
2: currentRow = pattern[*,rowj]
3: if FX* in currentRow then
4: rule = (K,FXL1,BXL1,FXR1,BXR1,FXL2,BXL2,FXR2,BXR2,FXL3,BXL3,FXR3,BXR3,P)
5: else if BX* in currentRow then
6: rule = (K,BXL3,BXR3,BXL2,BXR2,BXL1,BXR1,P)
7: else
8: rule = (K,P)
9: if FT in currentRow then

10: rule = FT + rule . Front Tuck has highest precedence
11: else if BT in currentRow then
12: rule = rule + BT . Back Tuck has the lowest precedence

return rule



Textiles 2022, 2 286

(a) (b)

Figure 15. Yarn order zoom-in at location (6, 5) in the yarn topology graph of Figure 11: (a) Simulated
knitted pattern. (b) Corresponding zoom-in topology graph.

5.2. Contact Neighborhood Order

As noted in Section 3, a loop in TopoKnit is defined by a list of edges that adhere
to certain constraints. An edge defines a yarn connection between two CNs. Thus, the
order of loops at a location (i, j) mirrors the order of head CNs of the loops present at that
location. Therefore, our algorithm (Algorithm 2) for determining loop order finds the order
of CNs at a given location in the fabric grid. The algorithm begins by finding all of the CNs
that end up at the location (if any) (Line 2, Algorithm 2). This is accomplished with the
CNS_AT algorithm, which is a slight modification of the ACNS_AT algorithm (Algorithm 5
in [1]). Specifically, the CNS_AT algorithm returns all CNs at a location by omitting the
condition that the CN’s actualization value be “ACN”.

Algorithm 2 YARN_ORDER(i, j, pattern, DS)
Return the list of CNs at location (i, j) ordered by their spacial position (front-to-back).

1: orderedCNs = []
2: CNList = CNS_AT(i, j, DS) . CNs at location (i, j)
3: if CNList == [] then . No CNs at this location
4: PRINT(“There are no CNs at this location")
5: return orderedCNs
6: CNStitchPairs = CN_STITCH_PAIRS(CNList, pattern) . Define the stitches that create each CN at location (i,j)
7: sortedCNStitchPairs = SORT_BY_J(CNStitchPairs) . Sort pairs by the row the CNs were defined at
8: return YARN_ORDER_RECURSIVE(sortedCNStitchPairs, pattern, orderedCNs)

Each CN is created when a loop is formed by the execution of a stitch instruction.
Since the order of CNs depends on the stitches that create them, each CN is paired with
the corresponding stitch that formed it. For instance, CNs (4, 3) and (5, 3) in Figure 11c
were formed by the Back Tuck (BT) stitch in the pattern shown in Figure 11a. The pairings
between the CNs and the stitch are specified with the helper function CN_STITCH_PAIRS
(See Algorithm 3). When a stitch instruction at coordinate m, n) in the stitch pattern is
executed, four CN cells are populated in the TopoKnit data structure. Two correspond
to two leg CNs ((2m, n), (2m + 1, n)) and two correspond to two head CNs ((2m, n + 1),
(2m + 1, n + 1)). See Figure 16. Since only head CNs can be moved in the fabric grid by a
stitch, they are considered when determining corresponding stitch instructions. Therefore
a head CN located at (i, j) in the CN grid can be associated with a stitch command located
at (i/2, j − 1), if i is even, and at ((i − 1)/2, j − 1), if i is odd. Note that CNStitchPairs is
a dictionary where the CN (i,j) IDs are the keys and the corresponding stitch codes are
the values.



Textiles 2022, 2 287

Algorithm 3 CN_STITCH_PAIRS(CNList, pattern)
Return a dictionary of CN-Stitch pairs given a list of CNs

1: CNStitchPairs = {}
2: for (CNi,CNj) in CNList do
3: n = CNj - 1 . Determine n coordinate of the corresponding stitch in the pattern matrix
4: if CNi % 2 == 0 then . Determine m coordinate of the corresponding stitch in the pattern matrix
5: m = CNi / 2
6: else
7: m = (CNi - 1) / 2
8: correspondingStitch = pattern[m][n] . Access corresponding stitch at (m,n) in pattern matrix
9: CNStitchPairs[(CNi,CNj)] = correspondingStitch . Assign CN-stitch pair for the current CN

return CNStitchPairs

Figure 16. Single open loop consisting of four contact neighborhoods. Leg edges highlighted in blue
and head edges are highlighted in teal.

CNs whose final location is (i, j) may be created by stitch instructions within a small
neighborhood of the location, possibly from a different row. Since knitting is a sequential
process, stitch instructions in lower rows are processed before the ones in higher rows.
Therefore, the entries in CNStitchPairs are sorted by their row number, with the algorithm
SORT_BY_J (not included here). Stitch pairs from lower rows come before stitches from
higher rows and are stored in sortedCNStitchPairs.

Once the CN-Stitch pairs have been created and sorted by their row j (Lines 6
and 7), Algorithm 2 determines the CN order at location (i, j) by calling the function
YARN_ORDER_RECURSIVE (Algorithm 4), which recursively processes CN-Stitch pairs at
location (i, j) row-by-row, starting with the lowest row. For each row of stitch instructions,
which is stored in currentRow, DETERMINE_RULE returns the appropriate precedence
rule for the current row (Line 4, Algorithm 4), as described in Section 5.1. The function
ORDER_ROW_CNS (Algorithm 5) is called to order the CNs in currentRow using the
precedence rule in rule (Line 13 and 15, Algorithm 4). ORDER_ROW_CNS sorts the CNs
based on the index of its corresponding stitch in the precedence rule.



Textiles 2022, 2 288

Algorithm 4 YARN_ORDER_RECURSIVE(sortedCNStitchPairs, pattern, orderedCNs)
Recursive function used to define the order of CNs at location (i, j)

1: if len(sortedCNStitchPairs) != 0 then . Process until no CNs are left
2: currentRow = {} . Stores the CN-Stitch pairs for the current row
3: smallestJ = sortedCNStitchPairs[0].CNj . Row being processed
4: rule = DETERMINE_RULE(smallestJ) . Precedence rule for the row being processed
5: for CN(i,j),stitch in sortedCNStitchPairs do
6: if j == smallestJ then . CN defined in the row being processed
7: currentRow[CN(i,j)] = stitch
8: else
9: break

10: for CN(i,j) in currentRow.keys() do . Delete CN-Stitch pairs about to be processed
11: delete sortedCNStitchPairs[CN(i,j)]
12: if rule[-1] == BT then . Row contains a BT
13: orderedCNs = ORDER_ROW_CNS(currentRow, rule) + orderedCNs
14: else . Row does not contain a BT
15: orderedCNs = orderedCNs + ORDER_ROW_CNS (currentRow, rule)
16: return YARN_ORDER_RECURSIVE(sortedCNStitchPairs,pattern, orderedCNs) . Process the CNs in next row
17: return orderedCNs

Algorithm 5 ORDER_ROW_CNS(currentRow, rule)
Return ordered CNs in currentRow given a precedence rule

1: stitchIndexCNPairs = []
2: orderedCNs = []
3: for CN(i,j),stitch in currentRow.items() do . Create pairs of stitch index and CNs for current row
4: stitchIndexCNPairs.append((rule.index(stitch),CN(i,j)))
5: sortedStitchIndexCNPairs = sorted(stitchIndexCNPairs)] . Order by the index of stitches in the precedence rule
6: for index, CN(i,j) in sortedStitchIndexCNPairs do . Extract ordered CNs
7: orderedCNs.append(CN(i,j))
8: return orderedCNs

Tuck stitches (Front (FT) and Back (BT)) not only have a precedence relative to the
other stitches in their row, but they also affect the precedence of the stitch block that has
been ordered in the previous row. As seen in Lines 9 and 10 in Algorithm 1, Front Tuck
(FT) has the highest precedence of all the supported stitches, while Back Tuck (BT) has the
lowest, seen in Lines 11 and 12. Conversely, when concatenating a new line of stitches
(those returned by ORDER_ROW_CNS) containing a Back Tuck (BT) with a previous line
(orderedCNs), as seen in Lines 12 and 13 of Algorithm 4, the block containing the BT has
higher precedence than the stitch block from a lower row. The ordered currentRow is
placed before the stitch block from the previous row (orderedCNs). If no BT is present in
the current row, the previous stitch block (orderedCNs) is placed in front of the current row
(Line 15, Algorithm 4).

6. Yarn Order Visualization

The algorithms presented in Section 5 describe how the ordering of stacked CNs, and,
therefore, yarn loops, is determined for a knitted fabric. This ordering information, provided
by the execution of the YARN_ORDER function, has been incorporated into TopoKnit’s
yarn topology graph visualization algorithm (Algorithm 7 (DRAW_TOPOLOGY_GRAPH)
in Kapllani et al. [1]) in the form of textual data. Examples of these visualizations are
provided in the yarn topology graphs in Figures 11c, 13c and 17c. In each (i, j) location
in the graphs where at least one CN is present, labels corresponding to the CN order are



Textiles 2022, 2 289

added. In locations where there are more than one CN, the displayed bottom-to-top order
of the CNs corresponds to the order of yarns from front to back.

(a)

(b) (c)

Figure 17. Stitch pattern with a combination of Knit, Purl, Front and Back Transfer, Front Miss, and
Front and Back Tuck stitches: (a) Stitch instructions. (b) Simulated knitted pattern. (c) Topology
graph displaying CN (loop) order.

Zoom-in Visualizations

Using textual data to convey loop ordering may not be ideal for all scenarios or users.
Therefore, Algorithm 6 was developed to display a zoom-in view of the stacked loops that
go through location (i, j), using color instead of textual data to present ordering information.
The zoom-in graphs presented in this paper use three colors, where the red loop represents
the front loop, the green loop represents the middle loop, and the blue loop represents
the back loop. We chose three colors based on the assumption that three is the maximum
number of loops a needle can hold without breaking, as described in [2]. Algorithm 6 can
be easily modified for a different assumption, i.e., the needle can hold more than three
loops, by adding colors to the yarnColors variable accordingly. An example of a zoom-in
graph is given in Figure 15b. This figure displays loop ordering at locations (6, 5) and (7, 5)
for the yarn topology graph presented in Figure 11c.

To create a zoom-in graph, the list of ordered CNs at location (i, j) is generated and a
yarn color is assigned to each depending on its order position. The zoom-in graph draws
the corresponding loop for each CN in their specified order. To ensure that intersections
between pairs of yarns are correctly ordered visually, the list of CNs is reversed. Thus, the
loops are drawn in a back-to-front order. See Lines 1–7 in Algorithm 6.



Textiles 2022, 2 290

Algorithm 6 YARN_ORDER_ZOOM_IN(i, j, pattern, DS)
Generate a zoom-in topology graph showing the order of loops at location (i, j).

1: yarnColors = [red, green, blue] . Front-to-back yarn colors
2: orderedCNs = YARN_ORDER(i, j, pattern, DS)
3: if len(orderedCNs) == 0 then return
4: colorOrderedCNs = []
5: for index, CN in enumerate(orderedCNs) do . Assign a color to each CN depending on its order
6: colorOrderedCNs.append([CN, yarnColors[index]])
7: colorOrderedCNs.reverse() . Reverse to draw loops from back to front
8: yarnPathList = FOLLOW_THE_YARN(DS)
9: loops, edgeLoopPair, indexLoopPair = DEFINE_OPEN_LOOPS(yarnPathList)

10: while There are CNs in colorOrderedCNs to process do
11: (CNi, CNj), currentColor = colorOrderedCNs.pop(0) . CN being processed
12: currIndex = DS[CNi][CNj].YPI[0] . CN’s index in the yarn path when visited as a head CN
13: if currIndex == “null” then . CN is not visited on the yarn path
14: headEdge = FIND_HEAD_EDGE(i,j,DS) . Get edge that goes through this location
15: colorOrderedCNs.insert(0, [headEdge[0], currentColor]) . Add edge’s first head CN
16: else . CN is visited as head
17: I, J = yarnPathList[currIndex].FL
18: prevIndex = currIndex - 1 . Yarn path index for previous CN
19: nextIndex = currIndex + 1 . Yarn path index for next CN
20: prevI, prevJ = yarnPathList[prevIndex].FL . Final location for previous CN
21: nextI, nextJ = yarnPathList[nextIndex].FL . Final location for next CN
22: CNiOddity = CNi % 2 != 0
23: currentStitchRow = yarnPathList[currIndex].CR
24: rowOddity = currentStitchRow % 2 != 0
25: if CNiOddity != rowOddity then . Previous CN is the first head of the loop
26: headCNs = [[yarnPathList[prevIndex].CNL[0], yarnPathList[prevIndex].FL],[(CNi,CNj), (I,J)]]
27: . List of the two head CNs, initial location and final location for each head
28: loopIndex = edgeLoopPair[((I,J),(nextI,nextJ))] . Find loop index using leg edge
29: else . Next CN is the second head of the loop
30: headCNs = [[(CNi,CNj), (I,J),[yarnPathList[nextIndex].CNL[0], yarnPathList[nextIndex].FL]
31: . List of the two head CNs, initial location and final location for each head
32: loopIndex = edgeLoopPair[((prevI,prevJ),(I,J))] . Find loop index using leg edge
33: loop = indexLoopPair[loopIndex[0]] . Get list of CNs and loop locations given loop index
34: for index, (CNi, CNj), (CNi_FL,CNj_FL) in enumerate(loop) do . Draw each loop edge/connection
35: if index < len(loop) - 1 then
36: DRAW_CONN(CNi_FL,CNj_FL,loop[index+1][0],loop[index+1][1],currentColor)
37: stitchType = DS[CNi][CNj][0] . Get stitch type for CN from data structure
38: if stitchType == "K" then . Knit stitch
39: CNColor = gray
40: else . Purl stitch
41: CNColor = green
42: DRAW_CN(CNi_FL,CNj_FL,CNColor)
43: sortedHeadCNs = sorted(headCNs) . Order head CNs by their i coordinate
44: head1I, head2I = sortedHeadCNs[0][0][0], sortedHeadCNs[1][0][0] . Get heads i coordinates
45: for btwI in range(head1I+1, head2I) do . Draw UACNs on the head edge/connection
46: if DS[btwI][head1J].AV == "UACN" then
47: DRAW_SQUARE_STROKE(btwI, head1J, gray)

To identify and draw the loops, Algorithm 6 makes use of algorithms from the previous
Kapllani et al. work, specifically Algorithm 1 (FOLLOW_THE_YARN) [1] and a modified
version of Algorithm 12 (DEFINE_OPEN_LOOPS) [2]. The FOLLOW_THE_YARN algo-
rithm returns a yarn path, which is an ordered list of locations that the yarn passes through



Textiles 2022, 2 291

as it flows through the fabric grid. Each node of the yarn path has three elements: the list
of CNs (CNL) that are engaged in the yarn intertwining at the associated final location (i, j)
(FL), and the current stitch row (CR). The modified DEFINE_OPEN_LOOPS algorithm
returns a set of open loops that are extracted from the yarn path (Lines 8 and 9). An
open loop is a portion of the yarn path that begins and ends on the same fabric row. See
Figure 11 in Kapllani et al. [2] for an example. The algorithm returns three variables: loops,
edgeLoopPair, and indexLoopPair. The variable loops is a list of lists where each inner list
contains the CNs and their final locations that make up a loop. Each open loop consists of
four or more CNs, two of which are head CNs. The CNs define one head edge (a connection
between two head CNs) and two or more leg edges (a connection between two leg CNs or
a leg CN and a head CN). See Figure 16. The edgeLoopPair, and indexLoopPair variables
are both dictionaries storing edge-loop index and loop index-loop pairs, respectively.

The algorithm goes through the CNs that end up at location (i, j) (Line 10) and
draws the corresponding loop with the CNs that make up each loop. It is possible for
YARN_ORDER_ZOOM_IN to be called at a location with no ACNs (yarn intertwinings)
but with just an unanchored CN (UACN). Here, the index into the yarn path (YPI), which
only stores actualized CNs (ACNs), is “null” (Line 13). In this case, the head edge through
location (i, j) is retrieved from the data structure, with the function FIND_HEAD_EDGE
(Line 14) and one of its head CNs is placed in the list colorOrderedCNs (Line 15), which
guarantees that the loop through the UACN is drawn. An example of this situation is the
green loop in Figure 18, with the UACNs displayed with gray squares, which is a zoom-in
of CNs (5, 3) and (6, 3) in Figure 17.

(a)

(b)

Cancers 2022, 14, 2277 7 of 13

Cancers 2022, 14, x 7 of 13

Figure 3. Survival outcomes between standard versus high risk patients. 

Furthermore, the rate of response both pre- and post-transplant showed statistically 
significant improvement across the years (p < 0.01). The post-transplant response (VGPR 
or better) also increased from 28.9% in group 1 to 76.3% in group 5 (Table 1). Multivariable 
analysis showed that transplant year, pre-transplant remission status, International Stag-
ing System (ISS), and high- versus standard-risk cytogenetics have significant contribu-
tions to the risk of relapse or death (Tables 2 and 3). Patients who received transplant 
between 2009–2013 and between 2014–2016 had a significantly lower risk for relapse or 
death, HR 0.49 (95% CI 0.38–0.62), and 0.53 (95% CI 0.40–0.69). 

Table 2. Cox Proportional Hazard Model on Risk of Relapse or Death. 

Characteristics HR 95% CI p-Value 
Univariable model 
Transplant year 
Transplant year ≤ 2008 Reference 
Transplant year 2009—2013 0.48 0.40 0.57 <0.001 
Transplant year 2014—2016 0.52 0.42 0.63 <0.001 
Age at ASCT 1.00 0.99 1.01 0.814 

Age ≤ 65 Reference 
Age > 65 0.90 0.74 1.09 0.296 

Gender 
Male Reference

Female 0.98 0.85 1.14 0.824
Race

Black Reference
White 1.01 0.82 1.25 0.923
Others 0.63 0.26 1.54 0.308

Melphalan dose (mg/m2) 
140 Reference 

Figure 3. Survival outcomes between standard versus high risk patients.

Furthermore, the rate of response both pre- and post-transplant showed statistically
significant improvement across the years (p < 0.01). The post-transplant response (VGPR or
better) also increased from 28.9% in group 1 to 76.3% in group 5 (Table 1). Multivariable
analysis showed that transplant year, pre-transplant remission status, International Staging
System (ISS), and high- versus standard-risk cytogenetics have significant contributions
to the risk of relapse or death (Tables 2 and 3). Patients who received transplant between
2009–2013 and between 2014–2016 had a significantly lower risk for relapse or death, HR
0.49 (95% CI 0.38–0.62), and 0.53 (95% CI 0.40–0.69).

Figure 18. Yarn order zoom-in at location (5, 3) in the yarn topology graph of Figure 17: (a) Simulated
knitted pattern. (b) Corresponding zoom-in topology graph.

The CNs that make up a loop are extracted in Lines 17 through 32. Note that the CNs
that end up at location (i, j) are head CNs, and using the index of the current CN in the
yarn path (YPI), we can retrieve the previous and next CNs in the path, one of which is a
head CN and the other a leg CN. Knowing the parity of the i component of the CN and its
current row, we can determine which is the head CN and which is the leg CN. See Lines for
22–32. Since head CNs can move/shift vertically and horizontally, different loops can have
overlapping head edges. The connection between the processed CN and its adjacent leg
CN is used as the identifying edge to determine the loop. Thus to uniquely identify a loop,



Textiles 2022, 2 292

a leg edge is used to determine the index in the edgeLoopPair dictionary. See Lines 28 and
32. The loop index can then be used to extract the list of CNs that make up the loop in the
indexLoopPair dictionary (Line 33).

Once the CNs of the current loop have been identified, Algorithm 6 draws the loop’s
edges. Specifically, lines 35–36 are responsible for drawing the connections between CNs of
the loop (loop edges) and lines 37–47 are responsible for drawing the CN icons of the loop.
In Lines 37 through 41, the color of the ACN icon is determined, with Knit stitches colored
gray and Purl stitches colored green. The commands in Lines 43 through 47 iterate through
the locations along the head edge and draw a gray square at locations containing a UACN.

7. Testing and Results

The correctness of the algorithms presented in this paper was evaluated by comparing
our results to the graphical outputs from the Shima Seiki SDS-One APEX3 KnitPaint and
KnitDesign systems. The input precedence rules were extracted by observing the simulation
of 200 6 × 6 stitch patterns within the Shima software. Thus, we would expect the loop
stacking order defined by the algorithms to match the Shima simulations. Specifically, we
analyzed 100 random 6 × 6 stitch patterns, 50 of which were a combination of Knit, Purl,
and Front and Back Transfer stitches and 50 which added Front and Back Tuck stitches
to the original combination. For each group of 50, half of the patterns produced fabric
locations with a maximum of two overlapping yarn loops and half had a maximum of
three overlapping loops at a specific location (i, j). The ordering of CNs produced by our
algorithms at each location for all of the tested patterns matched the order of loops in the
Shima simulation outputs. Some of these test examples are described below.

Figures 11c, 13c and 17c show topology graphs corresponding to the stitch patterns in
Figures 11a, 13a and 17a, respectively. In Figure 11c, three CNs end up at location (6, 5),
where CN (6, 5) is in front, followed by CN (8, 5) in the middle, and CN (4, 5) is at the back.
Looking at the fabric, we would see the loop created by the Knit stitch first, followed by
the loop created by the Back Transfer Left (BXL) stitch, followed by the loop created by the
Back Transfer Right (BXR) stitch, which is what is seen in the simulation created by Shima
Seiki SDS-OneAPEX3 KnitDesign software in Figures 11b and 15a. Similarly, two CNs end
up at location (6, 4) in Figure 17c, where CN (4, 5) is in front, followed by CN (6, 4). The
simulation in Figure 17b also confirms this ordering with the loop created by the Front
Transfer Right (FTX) first, followed by the Purl stitch. Note that the labeled CNs can have
ACN or UACN actualization values. For instance, three CNs end up at location (5, 3) in
Figures 17c and 18a, one UACN (5, 3) (visualized with a gray square), and two ACNs ((5, 2)
and (9, 3)). Figure 13c also contains two regions with three overlapping loops, which can be
seen at locations (4, 2) and (4, 5), which are confirmed by the corresponding Shima output.
See Figures 14 and 19.

(a) (b)

Figure 19. Yarn order zoom-in at location (4, 5) in the yarn topology graph of Figure 13: (a) Simulated
knitted pattern. (b) Corresponding zoom-in topology graph.



Textiles 2022, 2 293

Once the correctness of the loop stacking order was verified, we tested Algorithm 6 by
randomly choosing two locations for each pattern and generating their zoom-in topology
graph. The generated zoom-in graphs were visually compared to their associated ordered
topology graph that included textual order data. In all cases, they produced consistent,
correct outputs. Examples of some of the examined visualizations are the following. A
zoom-in topology graph of location (6, 5) in Figure 11c is shown in Figure 15b. A zoom-in
graph for location (4, 3) is presented in Figure 12b. A zoom-in topology graph of location
(4, 2) in Figure 13c is shown in Figure 14b and the zoom-in at location (4, 5) is presented in
Figure 19b. Finally, a zoom-in topology graph of location (5, 3) in Figure 17c is shown in
Figure 18b. The confirming Shima output is included with all of these cases.

8. Conclusions

In this paper, we described algorithms that perform loop order analysis of weft-
knitted textiles, which build upon the foundational TopoKnit topological data structure
and associated query functions. During knitting, loops of yarn may be overlayed on top
of each other and then stitched together with another piece of yarn. Loop order analysis
aims to determine the front-to-back ordering of these overlapping loops, given a stitch
pattern that defines the knitted fabric. The new algorithms are based on the assumption
that stitch instructions are executed row-by-row and for each row the instructions can be
executed in any temporal order. To make our algorithms knitting-machine-independent,
loop order analysis utilizes precedence rules that capture the order that stitch commands
are executed when a row of yarn loops are being knitted by a two-bed flat weft knitting
machine. Basing the algorithms on precedence rules allows them to adapt to the analysis of
fabrics manufactured on a variety of knitting machines that may execute stitch commands
in different temporal orders.

Additionally, we have developed visualization methods for displaying the computed
loop order information. Specifically, the order of stacked loops may be displayed with
textual information that is added to the TopoKnit yarn topology graph. Additionally, a
zoom-in visualization algorithm has been developed that graphically displays yarn order
at a specific location in a knitted fabric. We have evaluated the robustness of our algorithms
and their implementation by conducting tests with 100 randomly generated stitch patterns
and comparing our loop ordering results with the simulation outputs from the Shima Seiki
SDS-One APEX3 KnitDesign system.

In future work, we plan to utilize these loop order capabilities as part of a system
that converts a yarn topology graph into a knot diagram. This transformation will enable
additional analysis of a knitted fabric’s topology, structure and properties. We also intend
to incorporate loop order analysis into future simulations to determine electrical properties
that are embedded into a knitted fabric structure.

Author Contributions: Conceptualization, L.K., C.A., G.D. and D.E.B.; methodology, L.K. and
D.E.B.; software, L.K.; validation, L.K., C.A., G.D. and D.E.B.; resources, C.A. and G.D.; writing—
original draft preparation, L.K. and D.E.B.; writing—review and editing, L.K., C.A., G.D., and D.E.B.;
visualization, L.K.; supervision, D.E.B. and G.D.; project administration, G.D.; funding acquisition,
G.D. and D.E.B. All authors have read and agreed to the published version of the manuscript.

Funding: This material is based on research sponsored by the US Army Manufacturing Technology
Program (US Army DEVCOM) under Agreement number W15QKN-16-3-0001. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes. Additional financial
support was provided by National Science Foundation grants CMMI-1344205 and CMMI-1537720.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Textiles 2022, 2 294

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Kapllani, L.; Amanatides, C.; Dion, G.; Shapiro, V.; Breen, D.E. TopoKnit: A Process-Oriented Representation for Modeling the

Topology of Yarns in Weft-Knitted Textiles. Graph. Model. 2021, 118, 101114. [CrossRef]
2. Kapllani, L.; Amanatides, C.; Dion, G.; Shapiro, V.; Breen, D.E. Topological, Manufacturability and Stability Analysis of Weft-

Knitted Textiles. Comput. Aided Des. 2022, under review. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
3976858 (accessed on 15 May 2022). [CrossRef]

3. Vallett, R.; Knittel, C.; Christe, D.; Castaneda, N.; Kara, C.; Mazur, K.; Liu, D.; Kontsos, A.; Kim, Y.; Dion, G. Digital fabrication of
textiles: An analysis of electrical networks in 3D knitted functional fabrics. In Proceedings of the Micro-and Nanotechnology
Sensors, Systems, and Applications IX, Anaheim, CA, USA, 18 May 2017; Volume 10194, p. 1019406.

4. Hong, C.J.; Kim, B.J. Model-Based Simulation Analysis of Wicking Behavior in Hygroscopic Cotton Fabric. J. Fash. Bus. 2016, 20,
No. 6, 66–78. [CrossRef]

5. Zheng, Z.; Zhang, N.; Zhao, X. Simulation of heat transfer through woven fabrics based on the fabric geometry model. Therm.
Sci. 2018, 22, No. 6B, 2815–2825. [CrossRef]

6. Shen, H.; Xie, K.; Shi, H.; Yan, X.; Tu, L.; Xu, Y.; Wang, J. Analysis of heat transfer characteristics in textiles and factors affecting
thermal properties by modeling. Text. Res. J. 2019, 89, No. 20–21. 4681–4690. [CrossRef]

7. Meissner, M.; Eberhardt, B. The Art of Knitted Fabrics, Realistic & Physically Based Modeling Of Knitted Fabrics. Comput. Graph.
Forum 1998, 17, No. 3, 355–362.

8. Eberhardt, B.; Meissner, M.; Strasser, W. Knit Fabrics. In Cloth Modeling and Animation; House, D., Breen, D., Eds.; AK Peters/CRC
Press: New York, NY, USA, 2000; Chapter 5, pp. 123–144.

9. Counts, J. Knitting with Directed Graphs. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018.
10. Kyosev, Y.; Angelova, Y.; Kovar, R. 3D Modeling of Plain Weft Knitted Structures of Compressible Yarn. Res. J. Text. Appar. 2005,

9, No. 1, 88–97. [CrossRef]
11. Sherburn, M. Geometric and Mechanical Modelling of Textiles. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2007.
12. Lin, H.; Zeng, X.; Sherburn, M.; Long, A.C.; Clifford, M.J. Automated geometric modelling of textile structures. Text. Res. J. 2012,

82, No. 16, 1689–1702. [CrossRef]
13. Wadekar, P.; Perumal, V.; Dion, G.; Kontsos, A.; Breen, D. An optimized yarn-level geometric model for Finite Element Analysis

of weft-knitted fabrics. Comput. Aided Geom. Des. 2020, 80, 101883. [CrossRef]
14. Knittel, C.E.; Tanis, M.; Stoltzfus, A.L.; Castle, T.; Kamien, R.D.; Dion, G. Modelling textile structures using bicontinuous surfaces.

J. Math. Arts 2020, 14, No. 4, 331–344. [CrossRef]
15. Wadekar, P.; Goel, P.; Amanatides, C.; Dion, G.; Kamien, R.D.; Breen, D.E. Geometric modeling of knitted fabrics using helicoid

scaffolds. J. Eng. Fibers Fabr. 2020, 15, 1558925020913871. [CrossRef]
16. Wadekar, P.; Amanatides, C.; Kapllani, L.; Dion, G.; Kamien, R.; Breen, D.E. Geometric modeling of complex knitting stitches

using a bicontinuous surface and its offsets. Comput. Aided Geom. Des. 2021, 89, 102024. [CrossRef]
17. Kaldor, J.M.; James, D.L.; Marschner, S. Simulating Knitted Cloth at the Yarn Level. In Proceedings of the ACM SIGGRAPH

Conference, Los Angeles, CA, USA, 11–15 August 2008; Article No. 65, pp. 1–9.
18. Kaldor, J.M.; James, D.L.; Marschner, S. Efficient Yarn-based Cloth with Adaptive Contact Linearization. ACM Trans. Graph. 2010,

29, No. 4, Article No. 105, 1–10. [CrossRef]
19. Yuksel, C.; Kaldor, J.M.; James, D.L.; Marschner, S. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM

Trans. Graph. 2012, 31, No. 4, Article No. 37, 1–12. [CrossRef]
20. Wu, K.; Gao, X.; Ferguson, Z.; Panozzo, D.; Yuksel, C. Stitch Meshing. ACM Trans. Graph. 2018, 37, No. 4, Article No. 130, 1–14.

[CrossRef]
21. Leaf, J.; Wu, R.; Schweickart, E.; James, D.L.; Marschner, S. Interactive Design of Periodic Yarn-level Cloth Patterns. ACM Trans.

Graph. 2018, 37, No. 6, Article No. 202, 1–15. [CrossRef]
22. Cirio, G.; Lopez-Moreno, J.; Otaduy, M.A. Yarn-level Cloth Simulation with Sliding Persistent Contacts. IEEE Trans. Vis. Comput.

Graph. 2017, 23, No. 2, 1152–1162. [CrossRef] [PubMed]
23. Casafranca, J.; Cirio, G.; Rodríguez, A.; Miguel, E.; Otaduy, M.A. Mixing Yarns and Triangles in Cloth Simulation. Comput. Graph.

Forum 2020, 39, No. 2, 101–110. [CrossRef]
24. McCann, J.; Albaugh, L.; Narayanan, V.; Grow, A.; Matusik, W.; Mankoff, J.; Hodgins, J. A Compiler for 3D Machine Knitting.

ACM Trans. Graph. 2016, v, No. 4, Article No. 49, 1–11. [CrossRef]
25. Narayanan, V.; Albaugh, L.; Hodgins, J.; Coros, S.; McCann, J. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph.

2018, 37, No. 3, Article No. 35, 1–15. [CrossRef]
26. Narayanan, V.; Wu, K.; Yuksel, C.; McCann, J. Visual Knitting Machine Programming. ACM Trans. Graph. 2019, 38, No. 4, Article

No. 63, 1–13. [CrossRef]
27. Lin, J.; Narayanan, V.; McCann, J. Efficient Transfer Planning for Flat Knitting. In Proceedings of the 2nd ACM Symposium on

Computational Fabrication, Cambridge, MA, USA, 17–19 June 2018; Article No. 1, pp. 1–7.

http://doi.org/10.1016/j.gmod.2021.101114
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3976858
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3976858
http://dx.doi.org/10.2139/ssrn.3976858
http://dx.doi.org/10.12940/jfb.2016.20.6.66
http://dx.doi.org/10.2298/TSCI160507128Z
http://dx.doi.org/10.1177/0040517519842790
http://dx.doi.org/10.1108/RJTA-09-01-2005-B009
http://dx.doi.org/10.1177/0040517511418562
http://dx.doi.org/10.1016/j.cagd.2020.101883
http://dx.doi.org/10.1080/17513472.2020.1787936
http://dx.doi.org/10.1177/1558925020913871
http://dx.doi.org/10.1016/j.cagd.2021.102024
http://dx.doi.org/10.1145/1778765.1778842
http://dx.doi.org/10.1145/2185520.2185533
http://dx.doi.org/10.1145/3197517.3201360
http://dx.doi.org/10.1145/3272127.3275105
http://dx.doi.org/10.1109/TVCG.2016.2592908
http://www.ncbi.nlm.nih.gov/pubmed/27448364
http://dx.doi.org/10.1111/cgf.13915
http://dx.doi.org/10.1145/2897824.2925940
http://dx.doi.org/10.1145/3186265
http://dx.doi.org/10.1145/3306346.3322995


Textiles 2022, 2 295

28. Popescu, M.; Rippmann, M.; Van Mele, T.; Block, P. Automated generation of knit patterns for non-developable surfaces. In
Humanizing Digital Reality; Springer: Singapore, 2017; pp. 271–284.

29. Kaspar, A.; Makatura, L.; Matusik, W. Knitting Skeletons: A Computer-Aided Design Tool for Shaping and Patterning of Knitted
Garments. In Proceedings of the ACM Symposium on User Interface Software and Technology, New Orleans, LA, USA, 20–23
October 2019; pp. 53–65.

30. Nader, G.; Quek, Y.H.; Chia, P.Z.; Weeger, O.; Yeung, S.K. KnitKit: A flexible system for machine knitting of customizable textiles.
ACM Trans. Graph. 2021, 40, No. 4, Article No. 64, 1–16. [CrossRef]

http://dx.doi.org/10.1145/3450626.3459790

	Introduction
	Related Work
	Fabrication of Weft-Knitted Textiles
	Front and Back Transfer Stitches
	Front and Back Tuck Stitches
	Front and Back Miss Stitches
	Empty Stitch

	TopoKnit
	Loop Order Analysis
	Precedence Rules
	Contact Neighborhood Order

	Yarn Order Visualization
	Testing and Results
	Conclusions
	References

