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Abstract: The basic theorem of isokinetic relationships is formulated as “if there exists a linear
correlation “structure∼properties” at two temperatures, the point of their intersection will be a
common point for the same correlation at other temperatures, until the Arrhenius law is violated”.
The theorem is valid in various regions of thermally activated processes, in which only one parameter
changes. A detailed examination of the consequences of this theorem showed that it is easy to
formulate a number of empirical regularities known as the “kinetic compensation effect”, the well-
known formula of the Meyer–Neldel rule, or the so-called concept of “multi-excitation entropy”. In a
series of similar processes, we examined the effect of different variable parameters of the process on
the free energy of activation, and we discuss possible applications.
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1. Introduction

Exponential models of the temperature dependence of the properties of certain pro-
cesses appeared in the scientific literature as early as the end of the 19th century. Such a
functional dependence was proposed by Reynolds (1884) to describe the change in viscosity
as a function of temperature. Almost at the same time, Arrhenius assumed (1889) similar
equations for the temperature dependence of reaction rates. Now, exponential functions
are the most important and widespread functions in physics, chemistry and biology.

Similarly, in physics, exponential functions describe the decay of radioactive nuclei [1],
the emission of light by atoms [2], and electrical conductivity in various semiconductors [3–5]
and even in superconductors [6]. In biology, exponential functions describe the growth of
bacterial, viral or animal populations [7,8].

However, attempts to find any non-exponential dependence of the rates of chemical
reactions on temperature continue to this day. For example, to improve the description of
the temperature dependence of the rate constants for functions that differ from Arrhenius’
theory, work based on empirical two-parameter functions with two ”non-Arrhenian”
temperatures was performed [9–14]. However, these models and aspects are not the focus
of this review.

Empirical models of processes usually work for a limited range of temperatures, and
are expressed in a universal form or the universal Arrhenius equation [15]:

ϕ(T) = A0 · e
(− EA

kBT ) (1)

where ϕ(T) is, as a rule, the rate of a thermally activated process; kB is the Boltzmann
constant; EA is the sensitivity of the process to the temperature or the activation energy
(in the case of reaction rates). The physical meaning of all the above-named exponential
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dependencies becomes more obvious from the point of view of statistical physics. The
model presented (Equation (1)) has a striking similarity to the Gibbs canonical distribution
formula. In this sense, the function ϕ(T) and, precisely, the exponential factor represent
the probability of the existence of a state of a thermodynamic system, with the energy
EA, in thermal equilibrium with a heat bath (the environment) at a fixed temperature T.
Furthermore, if this state is a transition state, the above exponential dependency then reflects
the probability that a system can transition along a reaction coordinate, or in other words,
it reflects the probability of a process proceeding at different temperatures. This is only
true if, and only if, the system reaches a point of no return at this state, which is an explicit
assumption (no-recrossing assumption) in classical chemical thermodynamics such as the
Eyring–Polanyi theory.

The most intensive use of the universal Arrhenius Equation (1) began in the field of
physical organic chemistry, namely, in chemical kinetics, making it the basic equation of
chemical kinetics. Since the middle of the twentieth century, a quantitative approach to the
interpretation of reaction mechanisms began to develop [16–18]. Here, we are talking about
the correlation analysis of the relationship between the rate constants of some series of
reactions and certain parameters of the reaction medium or the physicochemical properties
of the reactants involved [19,20]. The use of regression analysis with the help of the so-called
QSAR models (models of quantitative structurally active relationships) made it possible
to perform a unified quantitative characterization of a series of similar reactions [21],
or the influence of solvents according to Edwards [22], Grunwald-Winstein [23,24] and
many others. Many linear correlation dependencies appear that connect the properties (in
particular, the reactivity) of a single series of chemical compounds with parameters that
uniquely correspond to the structural features of this series. The prototype of the majority
of correlations is the Brönsted equation, which establishes a quantitative relationship
between the strengths of acids and bases and their catalytic activity [25]. There appeared
correlation dependencies of Hammett [17] and Taft [26–28], based on the same principle—
the relationship between the structure and reactivity. Subsequently, many variations of the
above-mentioned correlation equations appeared, such as the Swain–Lupton equation [29]
and Yukawa–Tsuno equation [30]. Similar correlations are widely used to describe the
influence of certain parameters, generalized (e.g., the nature of the substrate or properties
of the medium) in a series of thermally activated processes when this parameter is changed.
In this case, the variable (T) in Equation (1) is a function of two parameters, the temperature
and the variable parameter (Equation (2)):

ϕ(T) ≡ ϕ(T, σ) (2)

The correlation analysis of the temperature dependencies of different processes using
the two-parameter Equations (1) and (2) made it possible to reveal another regularity for
which statistical physics cannot answer the question of the reasons for its existence.

This is the so-called “compensation effect”. This concept covers such regularities as, for
example, the establishment of a relationship between the numerical values of the exponent
and the pre-exponent, among which are the Barclay–Butler rule [31], the theta rule [32], the
Smith–Topley effect [33], the Constable–Cremer relation [34,35], and many others.

Particularly widespread was the establishment by Meyer and Neldel of the fact that
the logarithm of the pre-exponential coefficient (or “factor”) vs. EA exhibits very good
correlation in certain series [36]. The mentioned relation is known as the Meyer–Neldel rule
(MNR), which opened up new possibilities for a further step in development, especially in
theoretical physical chemistry [37,38]. A general form, Equation (3), expresses the MNR
as follows:

ϕ(T, σ) = A00e[−EA(
1

kBT−
1

EMN
)] (3)
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Here, A00 is a constant pre-exponential factor, and EMN is the so-called Meyer–Neldel
energy. In turn, Equation (4) expresses the Meyer–Neldel energy (EMN).

EMN = kBTiso (4)

where Tiso is an isokinetic temperature determined by the Meyer–Neldel energy and
represents a temperature at which all the processes of a certain series are insensitive
to variation of the parameter σ [39]. All the above-mentioned correlations reflect the
fundamental principle of physical organic chemistry—the linearity of the dependencies
of free energies, LFER (a linear free-energy relationship) [40,41], or according IUPAC-
Gibbs energy relation [42]. Mathematically, the LFER principle generalizes the correlation
dependencies considered above as the relationship between enthalpy (∆H 6=) and entropy
(∆S 6=) in the form of Equation (5):

∆H 6= − β∆S 6= = constant (5)

In accordance with the recommendations of IUPAC (IUPAC Recommendations 1994),
it was called an “isokinetic relationship”, or “compensation effect”, and parameter (β)
was called the “isokinetic temperature”, i.e., β = Tiso (see Equation (5)). In heterogeneous
catalysis, this correlation is often referred to as “the kinetic compensation effect” [43].

The idea of the “kinetic compensation effect” was developed back in 1938 [44,45]
and has been elaborated in a number of articles; especially noteworthy is the review by
Koga [46]. Moreover, kinetic compensation effects were obtained analytically by Roura
and Farjas [47], and particularly interesting is the work by Holba [48] and very recent
work [49,50].

Quite often, relation Equation (5) is replaced (not arising analytically) by another
Equation (6), which represents, in essence, the same:

ln A0 ∝ EA (6)

where A0 is the pre-exponential factor of the Arrhenius equation and EA is the Arrhenius
energy.

The idea of a compensation of “entropy∼enthalpy” proved to be very fruitful for
numerous situations related to chemistry, biology or, precisely, biochemical reactions, and
materials science [51–53]. Biochemists perceived the presence of isokinetic correlations with
particular enthusiasm, since the linear approximation ∆H 6= vs. ∆S 6= for complex biological
systems offers a simple and successful interpretation of the mechanisms of interaction of
reagents [54–57].

At the same time, the authors of many articles emphasize that it is necessary to dis-
tinguish correlations that are purely mathematical in nature and those that have a physical
meaning [58,59]. However, a statistical analysis of numerous correlations has shown that
experimental errors cannot be the basis of this phenomenon, and therefore, it can serve as a
good tool for determining the nature of the processes that occur [60–63]. For interpreting the
kinetic data of chemical reactions, it was suggested that the isokinetic relationship is a result of
a certain energy resonance between the reacting molecules and their environments [41]. The
isokinetic temperature can be interpreted as an active vibrational frequency of the surround-
ings of the reaction site. The corresponding frequency was found in the vibrational spectra
of the solvent in the case of liquid-phase reactions [64–66]. In the case of heterogeneous
reactions, the resonance interaction can occur between the quantum of the catalyst vibration
and the quantum of the reactant vibration [67,68]. On all these occasions, the activation energy
is expressed as a sum of the vibrational quanta of a vibrational mode that will bring the
molecule to reaction [67]. It has been suggested that the observation of isokinetic relationships
is evidence in favor of an identical reaction mechanism for a series of related reactions [69].
In the case of other temperature-dependent physical processes, the physical origin of the
Meyer–Neldel rule is still not well explained. However, everyone agrees that there is an
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explanation, namely, the exponential distribution of activation barriers [15,70–73]. In this way,
in spite of the fact that both the MNR and concept of the isokinetic relationship are widely
used, the microscopic origin of the MNR and, therefore, the physical meaning of the EMN
are still a topic of discussion in the literature [74–76]. Many authors look forward to further
developments in this interesting and important area [77]. One of the steps in this direction is
the proof of the existence of a basic theorem of the isokinetic relationship (vide infra).

2. Discussion

As can be concluded from the above review, many series of similar physical processes,
including a series of chemical reactions of one and the same type, are described not only
by exponential functions of the type of Equation (1). They also correspond to the concept
of the “compensation effect” or, in particular, “isokinetic relations” in accordance with
Equation (3). Here, it should be noted that the validity of this concept refers, apparently, to
all physically temperature-dependent processes, or at least to all the elementary stages of
any complex reaction mechanism. Generally, chemists talk about the isokinetic relation
in terms of the importance of the isokinetic (or isoequilibrium) temperature, condensed
matter physicists and material scientists use the Meyer–Neldel rule, and biochemists
use the compensation effect or rule. For the convenience of understanding the further
material, let us return to the more familiar form for chemists’ designation of the process
characteristic—the reaction rate constant:

ϕ(T, σ) ≡ k(T, σ) (7)

However, we will consider a more generalized case in which the functional depen-
dence of this constant, k(T,σ), on temperature is expressed by Equation (1), and the pre-
exponential factor A0 is insensitive to temperature. This consideration covers all cases
falling under the description of the Meyer–Neldel rule but is somewhat divergent from
the Eyring–Polanyi transition state theory [78]. The dependence of the exponential factor
A0 on the temperatures can be neglected for several reasons. The general form of the
Eyring–Polanyi equation resembles the Arrhenius equation:

k = χ
kBT

h
e(−

∆G 6=
RT ) (8)

where ∆G 6= is the Gibbs energy of activation, χ is the transmission coefficient, kB is Boltz-
mann’s constant, and h is Planck’s constant. It should be noted that the transmittance
(χ), the value of which is arbitrary, often evens out the influence of another cofactor—the
temperature. Both cofactors are included in the pre-exponential coefficient of Equation (8)
as one effective coefficient, which does not depend much on temperature. The main reason
is that the Eyring–Polanyi theory is very difficult to apply to other (except for chemical
kinetics) thermally activated processes.

The two-parameter Equation (3) in logarithmic form can be represented graphically
either by the temperature dependence of the slope of an “σ-parameter line” or by the σ-
parameter dependence of the slope of an “Arrhenius line”. In the first case, we are talking
about typical LFER correlations (“structure–properties”), such as Hammett diagrams, the
influence of solvents and so on. In the second case, we refer to typical Arrhenius diagrams
for a series of similar reactions with a variable parameter (σ). The relationship between
these two representations is shown in Figure 1 using the form of an open-book double-
diagram [79] (Figure 2 in [66]). Since both diagrams are based on the same data, the rate
constant of the process for a certain parameter i and certain temperature Ti, they can
be considered as projections of a three-dimensional space figure in the corresponding
two-dimensional planes.
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Figure 1. Temperature dependence of a well-behaved linear free-energy relationship (LFER). Left-hand side: Arrhenius
plot. Introduction of the isokinetic parameter σ(iso) would make the specific rate, k(iso), insensitive to temperature (upper
broken line). Right-hand side: σ-correlation plot. At the isokinetic temperature, Tiso, the specific rate, k(Tiso), is insensitive
to parameter variation. Figure is adapted from R. Schmid et al. [79].

It is obvious that the point of intersection of the lines on both plots reflects the same
value and corresponds to the isokinetic case. The Arrhenius diagram (left-hand side plot)
shows the intersection point, kσ(iso), when the values of the rate constants k(T, σ) at Tiso
are the same and are insensitive to parameter variation, σI (for example x, y, and z). The
LFER-correlation plot (right-hand side) shows the intersection point when the values of the
rate constants, k(T, σ), at Tiso are insensitive to temperature. In other words, for the process
with the σiso parameter, the Arrhenius activation energy is equal to zero. The slopes of the
lines in the LFER diagrams are interpreted as a measure of the sensitivity of the process
to variable parameters, σI , although their values characterize the closeness of the actual
temperature of the process to the isokinetic temperature Tiso.

Usually, the experimental realization of the process at (or near) the isokinetic tempera-
ture (Tiso) is not particularly difficult; then, the process with the isokinetic parameter (σiso)
is most often impossible. In this case, we should use the theorem that says: “if there exists
a linear correlation for “structure–properties” at two temperatures, the point of their in-
tersection will be a common point for the same correlation at other temperatures, until
the Arrhenius law is violated”. To prove the theorem, we consider the right-hand side
plot in Figure 1 separately, which is a typical case of an LFER σ-correlation plot in the
Arrhenius equation approximation presented in Figure 2.

This shows a plot of two conditional experimental dependencies, f(T1) and f(T2), of
one series of experiments, obtained for the temperatures T1 and T2, respectively. The
abscissa reflects the characteristic values of the variable parameter σ1 in the process. The
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lines intersect at point [0], which corresponds to the parameter σiso and the logarithm of the
rate constants k(Ti, σiso) at any temperature Ti. According to the theorem, the experimental
points obtained at other temperatures must be on straight lines (for example, straight lines
f (T1), f (T2) or f (Tiso) that also pass through point [0]).

Figure 2. The LFER-correlation plots of f (T1) to f (T4) and f (Tiso) of one series of conditional exper-
iments with variable parameters σi in the temperature range T1 to T4, including Tiso, respectively.
Groups of points A1, A2, and A3, A4 correspond to processes with parameters σ1 and σ2 at tempera-
tures of T3 and Tiso.

To prove the theorem, we draw a horizontal line through the point [0] and consider
two triangles, ∆(A1, A2, 0) and ∆(A3, A4, 0). The tangent of the acute angle α at the vertex
(0) in this triangle is expressed by Equation (9):

tg(α(T1)) =
A2 − A1

σiso − σ1
=

A4 − A3

σiso − σ2
(9)

If we now replace the letter designations with the corresponding parameters of the
Arrhenius equation, we obtain Equation (10):

tg(α(T1)) =

Eσ1
R ( 1

T1
− 1

Tiso
)

σiso − σ1
=

Eσ2
R ( 1

T1
− 1

Tiso
)

σiso − σ2
(10)

where Eσ1 and Eσ2 are the Arrhenius activation energies for the reactions at parameters σ1
and σ2, respectively.

It is not difficult to verify that we obtain such equations when considering LFER
σ-correlation plots for other temperatures (lines f (T2), f (T3), f (T4) and so on). On the one
hand, for any temperature, Ti, we get the tangent of the angle of a straight line between two
points located on verticals reconstructed from points σ1 and σ2 on the abscissa, respectively,
which passes through point [0]. The horizontal line taken from the point [0] turns out to
be f (Tiso), which corresponds to the process at Tiso and whose logarithm of rate constants
k(Tiso, σi) does not depend on the parameter σi.

On the other hand, the point [0] corresponds to the logarithm of the rate constant
k(Tiso, σiso) for σiso and Tiso, and to the logarithms of the rate constants k(Ti, σiso) for σiso
and any temperature Ti.

The above discussion shows that all linear correlations of the same type of processes
obtained at different temperatures will intersect at one point until the Arrhenius law is
violated. The establishment of this fact can be regarded as a proof of the above theorem as
a “basic theorem of isokinetic relationships”.
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3. Some Consequences of the Theorem
3.1. Interpretation of Known Empirical Regularity

The main conclusion of the theorem can be considered the obtaining of equalities
reflected by Equation (11). We see that there is an equality:

ln(k(Tiso, σi)) = ln(k(Ti, σiso)) = ln(k(Tiso, σiso)) (11)

As the Arrhenius activation energy for the process with the σiso parameter is equal
to zero, the rate constant of the process is expressed by the pre-exponential factor only
(Equation (12)):

ln(k(Tiso, σiso) ≡ ln(A0(σiso)) (12)

where A0(σiso) is the pre-exponential factor in the Arrhenius equation at parameter σiso.
Moreover, from Equation (11), we can derive a number of known empirical rules and laws.
For example, from the combination of Equations (11) and (12), we can obtain:

ln(k(Tiso, σi) = ln(A0(σiso)) (13)

This equation is easily transformed into a more familiar form of the relation (Equa-
tion (6)), often called the “kinetic compensation effect” [43]:

ln(A0(σi)) =
Eσi

RTiso
+ ln(A0(σiso)) (14)

This equation can serve as a basis for the derivation of some solid empirical rules. If we

add to two parts of Equation (14) the energy term− Eσi
RTi

, we obtain the following expression:

ln(A0(σi))−
Eσi

RTi
= ln(A0(σiso))−

Eσi

RTi
+

Eσi

RTiso
(15)

which can be easily transformed into the well-known Meyer–Neldel rule (MNR)

ln(k(Ti, σi)) = ln(A0(σiso))− Eσi (
1

RTi
− 1

RTiso
) (16)

or
k(Ti, σi) = A0(σiso)e

(−Eσi (
1

RTi
− 1

RTiso
)) (17)

Alternatively, if Equation (14) is expressed in terms of Eyring–Polanyi, we obtain
an expression often used to explain the concept of “multi-excitation entropy” [65,80,81].
Specifically, A. Yelon et al. argue that a large number of excitations may be collected in a
large number of ways and that this multiplicity gives rise to entropy:

∆S 6= = ∆SB +
∆H 6=

Tiso
(18)

The authors have called the first term in Equation (18) a barrier entropy, and the second
term, the multi-excitation entropy. Equation (14), expressed in terms of Eyring–Polanyi,
practically coincides with the equation that A. Yelon proposed as follows:

∆S 6=(σi) = ∆S(σiso) +
Eσi

Tiso
(19)

We can shed light on the physical meaning of the terms in the Yelon Equation (18). The
barrier entropy is the entropy of the process with the parameter σiso when the Arrhenius
activation energy is zero. In other words, any process passes without an energy supply from
the outside if the value of its entropy has reached the barrier entropy. Otherwise, a process
passes with energy feeding from the outside, and this energy must compensate for the lack
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of entropy to its baseline value (barrier entropy). Such feeding of energy is provided in the
form of multi-excitation entropy, which is part of the activation entropy. As Ti approaches
Tiso, for any parameter σi, or as the parameter σi approaches σiso, independently of the
temperature, the multi-excitation entropy decreases to zero. Apparently, this is precisely
the effect of the compensation “enthalpy-entropy”.

Thus, in the course of the proof of the theorem, we obtained a direct relationship with
linear correlation dependencies reflecting the LFER (a linear free-energy relationship)
principle and their energy parameters, the isokinetic relationship or compensation effect.
In addition, the consequences of the theorem enable us to understand the physical meaning
of certain empirical regularities. Equally interesting and useful in a practical sense is
considering the regions diagram shown in Figure 2. It is about the patterns of change in the
same type of processes in which the operating temperature (Ti) changes in regions before
and after Tiso, or in which the parameter σi changes in regions before and after σiso.

3.2. The Effect of the Temperature on the Impact of Variable Parameter σi

The first correlations that appeared in the scientific literature, as a rule, did not cover
the temperature range or a range of process parameters (σi), close to either the Tiso or
to σiso. With increasing interest, especially in the field of heterogeneous catalysis, the
operating temperature ranges or parameters expanded and experiments appeared near
or even on the other side of the “isokinetic” temperature, Tiso [82,83]. Upon reaching the
reaction temperature, Tiso, the effect of the varied parameter σi level due to the mutual
compensation of entropy (Tiso∆S 6=) and enthalpy (∆H 6=) in the free energy of activation
(∆G 6=) correspond to the process at f (Tiso) (Figure 2).

A further change in the reaction temperature leads to the fact that the contributions of
these constituents of the free activation energy again become different. In this way, during
the transition of operating temperatures through Tiso occurs a complete inversion of the
influence of the parameters (compare the lines of f (T3) and f (T4) in Figure 2). This results,
for example, in the order of the influence of the substituents in pyridines, which catalyze
the reaction of phenyloxirane with nitrobenzoic acid [84,85]. A similar fact was established
when studying the activity of a number of heterogeneous catalysts [86] or enzymes [87].
Many authors consider such an inversion of the influence of the variable parameter σi
as a change in the mechanism of the process, whereas in reality, this is only a “game” of
thermodynamic activation parameters [88].

Here, we can formulate the following conclusion of the theorem: the order of the
effect of the variable σi in a series of reactions of the same type reverses during the
transition of the operating temperatures through Tiso. We want to emphasize that this
conclusion arises from a mathematical analysis of the obtained dependencies, assuming
that they are preserved when passing through a point Tiso. To date, there is almost no
experimental evidence for this [84–87], and more experimental evidence is clearly needed.

3.3. The Effect of the Variable Parameter σi on the Free Energy of Activation

The revealed regularity of the changing of the order of the effect of variable σi is
preserved for a given series of experiments up to σiso. It should be noted that with this
change in the effect of σi on the process, the activation energy decreases. These results
indicate that the entropy difference between the transition and the ground states contributes
significantly to the free energy of activation. In such cases, one can establish the decisive
role of entropy in the free Gibbs activation energy ∆G 6= [89,90]. In most cases, this is
established for biochemical processes, [91,92] or for heterogeneous catalytic processes [93].

For a process with an isokinetic parameter σiso, the effect of temperature is equalized,
and the Arrhenius activation energy is zero (see Equation (13)); i.e., only the entropy control
of the reaction remains (Equation (20)):

ln(k(Ti, σiso)) ∼
∆S 6=(σiso)

R
(20)
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The free activation energy does not include the enthalpy term at all and consists only
of an entropy term; i.e., in contrast to the premises of Arrhenius, those particles that have
the required Gibbs activation energy ∆G 6= enter the chemical interaction [35,89].

3.4. The Negative Activation Energies

Another poorly understood area of the isokinetic relationship relates to experimen-
tal data relating to the study of the temperature effect on a series of reactions near the
isokinetic parameter σiso and on the other side of it (Figure 2). If the linearity of the
correlation is maintained, the course of the correlation curves must correspond to a
negative activation energy.

Reactions with negative activation enthalpy are generally considered to have a pre-
equilibrium. In this case, the negative effect of temperature affects the position of the
preliminary equilibrium with the formation of an intermediate. If the process of equilibrium
formation of the intermediate is exothermic, then as the temperature rises, the concentration
of the intermediate product decreases more than the rate of the main reaction, thus imitating
the effect of a negative activation energy [94].

This case, apparently, cannot be considered, since the process speed is not determined
by one exponential dependence, such as Equation (1), since the total activation energy is a
function of three processes [95].

However, simple reactions with a negative activation energy (so-called anti-Arrhenius
kinetics or anti-Arrhenius behavior [96]) are still possible and occur [97]. Such reactions are
a consequence in the fields of radical chemistry and atmospheric science [98–100]. Often,
they are considered barrier-free reactions [101,102]. The interpretation of the unusual
temperature dependence requires considerations that extend beyond the purely enthalpic
ones that are commonly presented in undergraduate text books; it is also necessary to take
into account entropic factors that influence the fate of the reaction intermediate(s) [94,103].

It is believed that an elementary reaction may exhibit a negative enthalpy of activation
if the reaction entropy is negative enough [104]. This situation is more common for
enzymatic reactions, i.e., enzyme catalysis [105,106]. Anti-Arrhenian behavior is connected
with the conformational structure of the protein, which promotes the contact during its
fragments’ interaction [107]. In all cases, against the background of reducing the enthalpy
of activation in the form of the Arrhenius energy and even the appearance of its negative
value, the entropy component of the free energy of activation is a dominant factor in the
implementation process.

To interpret the process, it is obviously not enough to consider it only in terms of
thermal energy. It is necessary to consider the potential component—the change in the
entropy of the process, i.e., creating the conditions that are most suitable for the necessary
change in the geometry when the system goes from one state to another. An increase
in temperature leads to a decrease in the probability of colliding molecules falling into
each other, or to difficulty in forming new connections, expressed as the cross section of the
process, which decreases with increasing temperature. This, apparently, is the basis for the
emergence of such concepts as exergonic and endergonic processes. The names describe
what happens with any form of free energy during the process, while endothermic and
exothermic relate only to heat or thermal energy.

Summing up, it can be stated that the negative value of the activation entropy is
inherent in processes when the temperature increases all the degrees of freedom while
it does not allow accepting the necessary configuration for a barrier-free transition to a
new state. To complete the process, the system must transmit some energy to the external
environment, i.e., a typical exergonic process.

4. Outlook and Possible Applications

Although the presence of an isokinetic ratio or enthalpy∼entropy compensation along
with the observation of the Meyer–Neldel rule has been observed for a long time in various
regions of thermally activated processes, there is still no single model for this phenomenon.
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In each case, various plausible models have been proposed. The explanation of phenomena
in terms of statistical thermodynamics did not lead to success [77,108].

The approach based on the exponential density distribution of states that induces a
shift at the Fermi level is very general, but it cannot be a universal explanation for the
MNR [109]. Among the explanations, the more acceptable idea is the notion of a certain
energy resonance between the reacting molecules and their environment [41]. The idea
brilliantly interprets the essence of the compensation effect in chemical reactions, but it
is not suitable for explaining the temperature dependence of other processes, such as
conductivity, glass crystallization, etc.

In the latter cases, many authors believe that the Meyer–Neldel compensation in these
systems is a joint consequence of (1) the existence of localized states and (2) the energy
dependence of the electron–phonon coupling [110] and is associated with a breach of any
form in amorphous materials (glasses) because of their short-range structural orders [74,111].

In our opinion, the similarity of all the mentioned temperature-dependent processes
and a universal explanation for the MNR must be based on the decisive role of the entropic
factors of the process. All the cases of temperature-dependent processes and the observance
of the MNR rule in them are ultimately connected with the geometric reorganization of the
reacting system and the cost of this rearrangement of the corresponding energy from the
outside. Summarizing what was said above, we established that in all cases, it is a question
of mutual compensation for the change in entropy by an external source of energy.

For clarity and simplicity, let us consider chemical processes. Above, we obtained a
generalized model of similar processes with a single parameter change. It has the form
of Equation (17). The transformation of this model from the point of view of the Eyring–
Polanyi theory can be represented in the form of the following equation:

− ∆G 6=(Ti, σi)

RTi
= −∆G 6=(Ti, σiso)

RTi
− (

∆H 6=(σi)

RTi
− ∆H 6=(σi)

RTiso
) (21)

where ∆G 6=(Ti, σi) is the Gibbs free activation energy for a reaction at the temperature
Ti and parameter σi; ∆G 6=(Ti, σiso) is the Gibbs free activation energy for the reaction at
parameter σiso; ∆H 6=(σi) is the activation enthalpy for the reaction at parameter σi.

The last term on the right-hand side of Equation (21) is part of the total activation
entropy of the process in terms of a Gibbs free activation energy ∆G 6=(Ti, σi), which depends
on the parameter σi. We denote it as

∆∆S 6=(σi) =
∆H 6=(σi)

Tiso
(22)

Combining Equations (21) and (22) provides a very important result, which is that the
Gibbs free activation energy of the process consists of two parts.

∆G 6=(Ti, σi) = ∆G 6=(Ti, σiso) + ∆∆G 6=(Ti, σi) (23)

The first part in Equation (23) is defined as the free Gibbs activation energy of a barrier-
free process at parameter σiso, which remains constant for the entire series of processes
with different parameters σi, and consists of only one activation entropy term as follows:

∆G 6=(Ti, σiso) = −Ti∆S 6=(Ti, σiso) (24)

On the contrary, the second part is the variable unit of the Gibbs free activation energy
of the process at the temperature Ti and parameter σi:

∆∆G 6=(Ti, σi) = ∆H 6=(σi)− Ti∆∆S 6=(Ti, σi) (25)

Here, both components (enthalpy and entropy) depend on the parameter σi, the effect
of which reduces to a change in the pumping of energy from the outside.
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On the other hand, it is easy to understand that the total activation entropy also
consists of two parts, the first of which corresponds to the activation entropy ∆S 6=(Ti, σiso)
and remains constant for the whole series of processes with parameters σi:

∆S 6=(σi) = ∆S 6=(σiso) + ∆∆S 6=(σi) (26)

The compensation of entropy∼enthalpy (22) implies that the variable part of the
entropy, i.e., ∆∆S 6=(σi), must be greater than zero. This corresponds to an increase in the
degrees of freedom of the reaction system (an increase in the “disorder” of the system)
during the formation of the activated complex. Apparently, this excess part of the activation
entropy does not allow the reacting system to reach the reaction conditions. To increase
the degree of order in the system, it is necessary to expend energy by introducing it from
outside as an enthalpy of activation, and as much as necessary to compensate for the
increased entropy.

The effectiveness of the parameter σi is reduced to a change in a variable part of
entropy, that is, a change in the degrees of freedom of the system. When the process
is performed with an isokinetic parameter (σi → σiso), the system acquires the required
structure of the degrees of freedom and does not require additional energy (in the form of
enthalpy), and Equation (25) becomes zero.

In other words, the normal vibrations of the reacting system coincide with the vi-
brations of the activated complex. In Figure 3, this is indicated for the example of a
transition-state structure of the reaction between the radical PINO• and cumene.

Figure 3. Resonance structure of the activated complex of a reaction of the radical PINO• and cumene.

As a result of this resonance, the amplitude of these oscillations increases sharply,
and, since chemical bonds are weakened, conditions are created for the appearance of
“imaginary” oscillations of the activated complex. This corresponds to conditions for the
passage of the reaction system through the activation barrier without the activation energy.

The total free activation energy (Equation (17)) becomes equivalent to ∆G 6=(σiso),
which allows the process with zero activation energy to proceed. If the process is performed
with the parameter σi 6= σiso, the system needs energy from outside. When the reaction
temperature approaches the isokinetic temperature, the need for this disappears, and with
Ti → Tiso, the effects of entropy and enthalpy are compensated for, and the free energy of
activity becomes ∆G 6=(σiso). At the isokinetic temperature, the complete compensation of
the entropy and enthalpy takes place; that is, the second term in Equation (23) reduces to
zero.

We have only considered the regularities that accompany a series of one-parametric
chemical processes. However, the foregoing reasoning will remain the same when con-
sidering a series of other physicochemical or physical-temperature-dependent and one-
parameter processes (Ψ(Ti, σi)) if we consider that they are also determined by the change
in the Gibbs free activation energy defined as follows:

Ψ(Ti, σi) = α · e
−∆G 6=(Ti ,σi)

kBT (27)

Ψ(Ti, σi) is the pattern of a thermally activated process, kB is the Boltzmann constant,
and α is a coefficient of proportionality.
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∆G 6=(Ti, σi) is the Gibbs free activation energy for a process at the temperature Ti and
parameter σI , in accordance with Equation (23).

For any such series of experiments, the effect of the parameter is reduced to the effect
on the Gibbs free activation energy, changing the necessary pumping of energy from the
outside. In this case, a situation (at least theoretical) is possible where the system ceases to
need additional energy. In this case, the free activation energy consists only of the entropy
term (Equation (24)). In all other cases, the energy is pumped through the variable part of
the free energy ∆∆G 6=(Ti, σiso), represented by Equation (25), for the process to proceed.
When the isokinetic temperature is reached, with Ti → Tiso, the effects of entropy and
enthalpy are compensated for, and the free energy of the activity becomes ∆G 6=(σiso).

5. Conclusions

In this review, we discussed the universal applicability of Arrhenius’ law, as the key
equation of the theory of the temperature dependence of the flow of various chemical and
physical processes. We understand that the linearization of thermodynamic parameters can
be carried out in a very restricted range, deviations being well studied and quantitatively
accounted for once the temperature range confining the system is known [112]. Still,
the regularities of the relationships of thermodynamic functions, even in narrow ranges,
provide insight into various phenomena. These include the “tunnel effect”, where near the
“isokinetic” parameter of the process, the course loses its dependence on temperature or
there is change in the influence of process parameters in an opposite manner when passing
a certain temperature (Tiso).

We believe that the idea of a correlation analysis of temperature-dependent processes
will provide insight into various processes including electrochemical reactions, molecular
interactions and specific interactions such as ligand/receptor binding. How the variable
parameter changes will allow finding regions with the maximum or minimum effect of
temperature on the process under study.
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