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Abstract: To evaluate the health effects of wildfire smoke, it is crucial to identify reliable models,
at fine spatiotemporal resolution, of exposure to wildfire-generated PM2.5. To this end, satellite-
drived aerosol optical depth (AOD) measurements are widely used in exposure models, providing
long and short-term PM2.5 predictions. Multiple regression models, specifically land use regres-
sion (LUR), incorporating AOD images have shown good potential for estimating long-term PM2.5

exposure, but less so for short-term predictions. In this study, we developed artificial neural net-
works (ANNs) and, in particular, multilayer perceptron (MLP) by integrating ground-based PM2.5

measurements with AOD images and meteorological and spatial variables. Moreover, we used
spatial- and temporal-ANNs to investigate and compare the ANNs’ ability to predict different
PM2.5 concentration levels caused by abrupt spatial and temporal changes in fire smoke. The study
herein analyzes and compares the viability of previously established neural network approaches
in predicting short-term PM2.5 exposure during the 2014–2017 wildfire seasons in the province of
Alberta, Canada. The performance of ANNs is also compared to classical models, including simple
correlation (PM2.5 vs. AOD) and multiple linear regression (MLR) including meteorological and
land-use predictors (MET_AOD_LUR). Our study shows that ANN achieved a 15% to 113% R2

increase compared to competing models.
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1. Introduction

Severe air pollution due to wildfire smoke poses the risk of detrimental impacts
on human health and the environment. Since 2010, possibly in connection with climate
change, wildfires and biomass burning has increased, becoming more problematic for
population health and the environment [1]. Toxic smoke from wildfires threaten not
only the population living within the fire region but also those living in distant areas,
because smoke can travel thousands of kilometres. Vulnerable populations, including
individuals with respiratory illnesses, cardiovascular disease, and asthma, as well as
elderly people, pregnant women, and children, may experience more severe short-term
and long-term impacts [2].

Wildfire smoke composition, which depends on multiple factors such as the type of
burning material, moisture content, fire temperature, and wind conditions, consists of a
large amount of fine particulate matter and harmful gases such as nitrogen oxides and
sulphur oxides [1]. Wildfire smoke is a significant contributor to particulate matter [3],
and, among wildfire emissions, fine particles are the most harmful and the most concern-
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ing components for human health [2]. Exposure to smoke-generated PM2.5 is strongly
associated with mortality and respiratory morbidity [1,4,5].

The province of Alberta, Canada, with a population of about 4.4 million, has experi-
enced one or more wildfire smoke episodes almost every summer during the fire season.
Smoke drifts over Alberta from seasonal wildfires in southern Alberta, the province of
British Colombia (BC), as well as from the United States, leading to poor air quality across
the province (Alberta Health Services (https://www.albertahealthservices.ca/)). Wildfire
events are likely to continue to occur in upcoming fire seasons, therefore it is important to
quantify PM2.5 levels at a fine spatial and temporal resolution to: (1) evaluate the risk posed
to the Alberta population by smoke-generated PM2.5 exposure; (2) provide the population,
and particularly the vulnerable groups, with timely warnings; and (3) assess the association
between the level of PM2.5 concentration and the health problems reported during each
smoke episode.

Evaluating the health impact of PM2.5 emissions from wildfire is dependent on accu-
rately quantifying smoke-generated PM2.5 concentration; however, ground-based PM2.5
measurements are spatially sparse. Satellite measurements of aerosol optical depth (AOD)
are known to be appropriate complements to air quality (AQ) stations’ measurements
to improve the spatial coverage and resolution of PM2.5 concentration. They have been
widely used in studies utilizing different methodologies [6–15].

A comprehensive review of various techniques used to predict PM2.5 levels using
AOD has been summarized in a systematic study by Youssouf et al. (2014) [1]. This study
included a variety of models ranging from simple linear regression to more complex ap-
proaches, such as chemical air quality models and machine learning approaches. Generally,
such studies provide information on the relationship between ambient PM2.5 and AOD,
but not during fire smoke periods. Thus far, only a few studies have been published aimed
at predicting wildfire-generated PM2.5 [16–19].

Identifying the most appropriate model for a particular problem is not straightforward
and depends on numerous factors. Two of the most substantial factors are the complex-
ity of the problem and understanding the problem at hand [20,21]. There is a negative
relationship between the complexity of a problem and its theoretical understanding. In gen-
eral, provided that a complete perception of the problem and adequate data are available,
the most suitable solution for addressing a problem is a full physical model [20,21]. In com-
plex problems, and when large datasets, numerous variables, and nonlinearity are involved,
artificial networks, particularly multilayer perceptron (MLP), are more appropriate [20].
Some prior assumptions concerning the data distribution, linearity, and stationarity may
need to be considered by traditional regression models such as multiple linear regres-
sion. Many forms of nonlinear regression and model forms deal with the violation of
each assumption (e.g., Spatial AutoRegression (SAR), Geographically Weighted Regres-
sion (GWR), etc.). However, when the numbers of observations and variables are very
large, the problem may be the simultaneous presence of different nonlinear distributions,
or simply the difficulty of correctly identifying the distribution of each variable. In such
situations, non-parametric machine learning approaches may be more suitable [22]. One of
the main advantages of an MLP approach is its ability to deal with nonlinear systems [23].
The effective ability of artificial neural networks (ANNs) as an alternative approach to more
traditional statistical techniques has been previously proven in various studies [23,24].

An ANN is constructed based on a biologically inspired computational approach,
with a set of processing neurons that are connected with coefficients called weights [25,26].
ANN has been applied to studies in the field of air quality to forecast and predict air
pollution and also to detect traffic-based air pollution [20,27–32].

In our previous studies, we approached the relationship between smoke-related
PM2.5 and AOD with land use regression [18] and linear mixed effect (LME) models [16].
Although each approach has merit, a significant problem was the presence of gaps in
the data and the need to integrate them with data from different sources. There may be
no alternatives to filling gaps in observations with model estimates and gaps in satellite
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coverage with satellite data at the different spatial or temporal resolution, however these
strategies yield inconsistent variables that hardly conform to known statistical distributions.

For these reasons, we are proposing to assess a machine learning approach in com-
parison with those models. The main objective of the present study was to determine the
prediction ability of ANNs, and more specifically MLP, to quantify spatial and temporal
wildfire-generated PM2.5 using remote sensing data and relevant ancillary variables. To the
best of our knowledge, machine learning methods have not been used for PM2.5 prediction
during wildfire episodes.

We examined the performance of ANNs for different levels of PM2.5 concentration over
four consecutive fire seasons throughout Alberta. The ANNs were developed temporally
(for each year separately) and spatially (for different regions). We also compared the
performance of the ANN with that of a mixed (MLE) model [16] by training the 2017 ANN
on the data for the entire 4-year period and using a very similar set of input parameters.
Multiple linear regression (MLR), in particular meteorological–AOD–land use regression
(MET_AOD_LUR) models were also developed as benchmarks to compare and investigate
the short-term prediction performance of neural networks for wildfire-specific air pollution.

2. Materials and Methods
2.1. Study Domain and Period

The spatial domain of our study included the province of Alberta, Canada (Figure 1,
left), with an area of 661,848 km2 and a population of about 4.4 million (https://www.alberta.
ca/municipal-census.aspx). The province of Alberta includes ten airshed zones. More than
70 air monitoring stations located across the province provide data contributing to the Air
Quality Health Index (AQHI) [33] (AAC 2006). The temporal domain included August and
September from 2014 to 2017, which included severe smoky periods due to the occurrence of
seasonal wildfires.
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Two approaches were used to allocate the data to the ANNs. The first was temporal:
the dataset was divided into years, and for each year, an ANN was developed and trained
separately for the province, resulting in four separate temporal ANNs.

The second was spatial: Alberta is relatively large and diverse, therefore smoke levels
are likely to vary across the province based on the proximity to the fire source and the
ground topology, as well as wind speeds and direction. The study region was divided
into four regions—southern, central, northwest (NW), and northeast (NE), based on the
borders of airshed zones with sufficient data (Figure 1, right)—and four separate ANNs
were developed and trained for each region.

2.2. Data

PM2.5, temperature, wind: Ground-based PM2.5 measurements (the dependent variable),
and meteorological predictors, i.e., temperature (TEMP), wind speed (WSPE–W, WSPN–S),
and wind directions were collected at the location of continuous AQ stations for each fire
season. The number of stations with available PM2.5 measurement ability varied for each
year, and ranged from 24 stations in 2014 to 46 stations in 2017.

Hourly PM2.5 concentrations and temperature values were averaged into daily mean
PM2.5 concentration and temperature.

The wind is represented by two vectors in the east-west (E–W) and north-south (N–S)
direction as follow:

WSPE−W = WSP∗ cos(θ)

WSPN−S = WSP∗ sin(θ)

where WSP denotes the hourly wind speed for each station, and θ is the wind direction
angle. The daily average WSPE–W and WSPN–S were calculated and used as two input
variables to develop the ANN. The background of Figure 1 (left) shows the 30-year mean
speed and prevailing direction for Summer in Alberta [34].

AOD images: Daily 0.1 degrees (~10 km × 10 km) spatial resolution AOD images
were collected from MODIS (MODerate resolution Imaging Spectrodiameter Instruments)
Terra collection data [35]. More details about AOD image collecting and preprocessing can
be found in our previous paper [18].

Elevation, latitude and longitude: A digital elevation map was created from the DMTI
Spatial contour lines data of Alberta [36] using ArcGIS, and the elevation of each AQ station
was extracted. Latitude and longitude were also used as input variables.

Normalized difference vegetation index (NDVI): NDVI is a greenness index used to measure
the vegetation and biomass production of the area. More details can be found in [18].

2.3. Methods

Machine learning approaches such as neural networks, support vector machine, random
forest, etc., have the ability to predict variables of interest when there is no complete theoretical
description about the process, but a useful set of observations is available [37]. As noted,
ANNs do not require prior assumptions on data distribution and can handle large amounts
of data. Therefore, the ANN approach presents the potential of yielding reliable predictions
despite inconsistent datasets for the analysis of smoke-related PM2.5. ANN is also applicable
for addressing complex problems, such as the spatiotemporal prediction of wildfire-generated
PM2.5, where numerous factors affect the PM2.5 concentration and the AOD–PM2.5 relationship.
In addition to large gaps in the AOD images, temporal and spatial mismatching between the
AOD measurements and the point-based PM2.5 data, and uncertainties in the data accuracy,
there are concerns with the dependency of the PM2.5 concentration on unknown factors,
which cannot be explicitly included in the model, however are likely to interact with the
model variables and errors. Additionally, ANNs have a great capacity for solving nonlinear
problems [26].

The main features of ANNs are their topology or architecture, activation function,
and training algorithms. Network architecture, including the number of layers and nodes
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in the hidden layers, is one of the initial steps in developing an ANN. The complexity of
the model, the probable noise in the data, and the size of the training dataset are known as
the most important factors affecting the optimum number of nodes in hidden layers [20].

The multilayer perceptron (MLP) network is a commonly used type of feed-forward
ANN topology (where the data moves in only one direction, forward, from the input
nodes, through the hidden nodes to the output nodes) that consists of at least three layers
including a layer of input neurons (nodes), one or more hidden layers, and an output layer.

The selection of a sufficiently informative and significant set of input predictors to
employ in the model is a key consideration for any model building procedure. The per-
formance of the ANN is affected by uninformative input predictors, which yield weakly
informative or redundant information. Therefore, it is necessary to have prior knowledge
of the impact of different input data on the behaviour of output and network performance.
Relevance is one of the key considerations for selecting an optimal set of inputs obtained
through expert knowledge of data and model and having a reasonable input data set [38].
The predictors for each year have been finalized separately by forward stepwise linear
regression model.

To evaluate and compare the performance of the developed models, two performance
indices were used: the coefficient of determination (R2) and the root mean square error
(RMSE). The coefficient of determination shows the correlation between the observed
values and the predicted values, with a value of one indicating a complete correlation
between the observed and the calculated values. RMSE is the standard deviation of
the residuals.

3. Results
3.1. Descriptive Statistics

Descriptive statistics of PM2.5 concentration and temporal predictors measured at
the AQ stations for each year are summarized in Table 1 [18]. The table presents the
average of each variable over all available stations (the number of stations varied over
the years) and 61 days (August and September). The number, N, for each year represents
the number of available stations for each year multiplied by the number of days with
available data. The table shows that the highest daily concentration of PM2.5 (173 µg/m3)
in 2017 when Alberta was dealing with the smoke-related to three large wildfires, and the
second highest was measured in 2015 (111 µg/m3), when Alberta was under the smoke of
the wildfires raging in the state of Washington (U.S.A.) (The event is known as the 2015
Pacific Northwest (PNW) wildfires, one of the most severe fire seasons in that region).
The highest average PM2.5 level was 10 µg/m3, corresponding to the 2017 dataset. It can
be seen that the lowest average and maximum daily PM2.5 concentrations was measured
in 2016 (which was a very rainy season, explaining the low PM2.5 levels).

Table 1. Descriptive statistics of PM2.5 concentration, aerosol optical depth (AOD), and temporal predictive variables for
each year (Var: variable, SD: standard deviation, TEMP: temperature, NDVI: Normalized difference vegetation index,
WSPE−W : wind speed in the east-west direction, WSPN−S: wind speed in the north-south direction)

Var. Min Mean Max SD Min Mean Max SD

2014 (N = 630)

PM2.5 0.15 9 44 7.4

2015 (N = 772)

0.1 7.0 111 8.7
AOD 0.001 0.2 2.3 0.3 0.02 0.18 2.6 0.3
TEMP 2.3 16 28 5 4 15.0 29 5
NDVI 0.3 0.5 0.8 0.1 0.28 0.54 0.5 0.1

WSPE−W −28 −0.9 14 4.7 −5 −0.02 6 1.3
WSPN−S −31 −1.6 27 5.6 −6 −0.03 5 1.3

2016 (N = 1480)

PM2.5 0.04 4.5 35 2.61

2017 (N = 2329)

0.04 10 173 11.7
AOD 0.0007 0.08 0.5 0.07 0.003 0.3 3.4 0.4
TEMP 3 14 25 4 3 15.0 27 4
NDVI 0.3 0.6 0.8 0.12 0.28 0.7 0.9 0.1

WSPE−W −25 −0.3 22 5.4 −22 −5.0 14 4.1
WSPN−S 25 −3 22 5.2 −26 −2.0 23 6.4
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Figure 2 presents the temporal variation of daily PM2.5 concentration as boxplots through-
out Alberta during the yearly study periods. The severe fire episodes that occurred in 2015
and 2017 are evident in Figure 2b,d. Figure 2b displays the elevated recorded PM2.5 due to the
2015 Pacific Northwest PNW wildfires, discussed in [16,18]. Figure 2a (2014) also depicts some
small variations in the level of measured PM2.5 during the period; however, the maximum
values (<40 µg/m3) are much lower than the level of PM2.5 recorded during the fire periods of
2015 and 2017.
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Figure 2. Temporal average daily PM2.5 measurements over two months of the fire seasons in each year.
The red line represents the three-year average of the annual 98th percentile of the daily 24-h average concentra-
tions (https://open.alberta.ca/dataset/684c673a-14a3-45b9-b5df-a158c8e83234/resource/0929eb23-9655-4046-b8df-0c0
fc4e195fd/download/alberta-air-zones-report-2014-2016.pdf).

The temporal variation of PM2.5 concentration of 2016 (Figure 2c) shows that a rainy
season can bring a very different variation of the PM2.5 levels, and it constitutes an anomaly
in our study: no significant elevated level of PM2.5 was observed during this period,
with all recorded values under 20 µg/m3. Consequently, the present study provided
the opportunity of comparing the performance of an ANN model during fire seasons,
including the high-level variations of PM2.5, with a more normal (low level) variation of
PM2.5 concentration.

3.2. ANN Implementation Process

The results presented here have been obtained from the most suitable ANNs for
each dataset amongst numerous ANN-built topologies that included different numbers
of hidden layers, nodes in each layer, different training algorithms, test-train dataset,
and variables (predictors). The ANN models were implemented, visualized, and tested
using R [39].

Train and test dataset: To predict the spatial and temporal (regional and daily) PM2.5 con-
centration, the ANNs were trained, temporally, for each of the four seasonal datasets, and,
spatially, for each of the four regions, separately. This resulted in a total of eight models.
Moreover, a single ANN was built to predict daily PM2.5, which considered the pooled
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dataset obtained by aggregating the four years of data for the whole study area. The topol-
ogy of each network and the number of training samples varied for each dataset and was
optimized using the trial-and-error approach. To validate the performance of the models,
each dataset was randomly split into two datasets: 80% for training the model and 20% for
testing it. As an additional validation approach, we also excluded data from one station
and used that data to compare the predicted vs. recorded temporal PM2.5 values.

ANN architecture, training, and validation: Different ANN architectures were examined
by changing the number of hidden layers, the quantity of the nodes on the hidden layers,
the activation function, and the learning algorithm to identify the most suitable topology
of ANN for each dataset separately. Figure 3 presents the final topology of the MLP used
to predict daily PM2.5 in this study. To obtain the most optimal topology, up to two hidden
layers and between 5 to 35 neurons in the hidden layer(s) were tested. The ideal number
of neurons in the hidden layer(s) was decided by considering their RMSE and the point
at which the network started to overfit. Based on the selected relevant variables (possible
predictors), the input layer in all networks included eight neurons (nodes), as shown in
Figure 3, with each node corresponding to one predictor. The training process of the final
ANNs was repeated 100 times using randomly chosen training and test datasets to remove
any effects of the random selection of the initial weights.
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Figure 3. The structure of the ANN model in which the number of nodes on the hidden layer for each dataset was
determined by the training process.

A logistic sigmoid activation function (Figure 3) was chosen for the hidden layer
transformation function. We also scaled the values of each variable to a scalar between 0
and 1 to provide a similar impact to all input predictors.

In the case of the learning algorithm for MLP, different algorithms were examined,
and the most suitable result was obtained by the resilient propagation (RPROP) learning
function for all networks [40].
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3.3. MLR Models and Temporal ANN Results

The predicted variables, coefficients, and the accuracy of the MLR models are pre-
sented in Table 2, and the performance of the developed temporal ANNs evaluated by R2

and RMSE is provided in Table 3. The best MLR model was obtained for the 2014 dataset,
and the weakest performance corresponds to the 2016 dataset. The best ANN performance
based on RMSE and the R2 test was achieved for the 2014 dataset, whereas the 2016 ANN
showed the worst results.

Table 2. Results of the multiple linear regression (MLR) (MET_AOD_LUR) models, the benchmarks,
for the yearly and pooled (four-year aggregated) data sets. The input data were normalized to 0–1
using min-max values, therefore the root mean square error (RMSE) is unitless.

2014
R2 = 0.46

2015
R2 = 0.36

RMSE = 0.047 RMSE = 0.062

Coef. p-Value Coef. p-Value

Intercept −0.10 9.52 × 10−7 0.03 1.34 × 10−3

AOD 0.40 <2 × 10−16 0.35 <2 × 10−16

TEMP 0.07 8.26 × 10−13 0.10 1.33 × 10−14

NDVI −0.03 2.52 × 10−5 −0.05 2.59 × 10−6

WSP_X - - - -
WSP_Y 0.041 4.17 × 10−6 - -

lat 0.08 1.17 × 10−6 - -
long 0.06 1.07 × 10−7 −0.03 1.93 × 10−2

ELV 0.06 8.65 × 10−4 - -

2016
R2 = 0.15

2017
R2 = 0.33

RMSE = 0.067 RMSE = 0.055

Coef. p-Value Coef. p-Value

Intercept 0.05 5.06 × 10−7 0.02 7.09 × 10−3

AOD 0.05 2.85 × 10−5 0.30 <2 × 10−16

TEMP 0.10 1.12 × 10−12 0.06 1.06 × 10−15

NDVI −0.052 1.12 × 10−12 −0.01 1.89 × 10−2

WSP_X - - −0.03 1.52 × 10−2

WSP_Y 0.09 2.65 × 10−9 −0.04 6.88 × 10−5

lat - - - -
long - - - -
ELV −0.02 2.89 × 10−2 0.04 5.60 × 10−11

4-year dataset R2 = 0.35
RMSE = 0.043

Coef. p-Value

Intercept 0.02 9.48 × 10−4

AOD 0.28 <2 × 10−16

TEMP 0.06 <2 × 10−16

NDVI −0.02 5.70 × 10−14

WSP_X −0.03 8.97 × 10−7

WSP_Y −0.01 5.78 × 10−3

lat 0.01 6.15 × 10−2

long - -

ELV 0.02 7.34 × 10−7
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Table 3. Results including the R2 for the training and test set obtained by the final ANN models and
by the regression models for each year and pooled dataset (the best ANN model was recognized
based on the lowest RMSE).

Temporal ANN RMSE Training R2 Testing R2 MLR Model R2 RMSE

2014 0.022 0.80 0.60 0.46 0.047
2015 0.039 0.63 0.45 0.36 0.062
2016 0.053 0.30 0.32 0.15 0.067
2017 0.036 0.61 0.60 0.33 0.055

All years 0.034 0.54 0.41 0.35 0.043

A comparison of R2 and RMSE obtained by temporal ANNs and MLR models shown
in Table 3 indicate that, for all datasets, the ANN model provided a higher prediction
accuracy. The R2 value of the four-year datasets increased by 30%, 25%, 113%, 81%, and 17%,
respectively; the RMSE of all models also improved when the ANN was applied. Based on
the multiple linear regression method, the 2014 model displayed the best performance.
However, the accuracy of the model based on R2 and RMSE was much lower than the
neural network, which was also the best ANN for the remaining three years. The temporal
ANNs results also showed a 10% to 92% increase in All_year_ANN R2, except for the
2016 ANN.

The scatterplots in Figure 4 display a visual representation of the measured versus the
estimated PM2.5 obtained by the training and testing dataset for each year. The regression
and 1:1 reference lines are also presented in each plot. The regression equations are similar
except for the 2016 data. The 1:1 line in the 2014 ANN plots suggests a low bias in the
results. The poor performance of the 2016 ANN is also demonstrated by its scatterplot.

3.4. Spatial ANN Results

Similarly to the temporal model, the best spatial model was selected from the four
regional ANNs using the lowest RMSE criterion. The results are presented in Figure 5.
As shown in Figure 2, no significant wildfire episodes were recorded in 2016. Indeed,
it was an unusually rainy summer in southern Alberta (http://www.agriculture.alberta.
ca/acis/climate-maps.jsp), during which PM levels were unusually low (see Figure 2).
As noted, the 2016 ANN yielded the worst temporal prediction. Hence, the 2016 data were
not included when developing the spatial ANN for southern Alberta.

The spatial ANN models run on each region yielded significant results when 2016 was
included (Figure 5): The northern regions, NE and NW, yielded the highest R2, (0.79 and
0.60 for testing, respectively, with training values approximately 0.70), and RMSE values
approximately 0.020. Conversely, the central and southern regions yielded worse results,
with testing R2 at approximately 0.50 (training 0.53 and 0.62, respectively), and RMSE > 0.05.

Conversely, excluding the 2016 data, only the South region yielded significant re-
sults, with a better fit than excluding 2016, with testing R2 = 0.65 (training R2 = 0.66)
and RMSE = 0.059.

Figure 5 displays the scatterplots of the predicted versus observed PM2.5 values
obtained by the training and testing datasets for each region, without 2016 for the southern
region. As illustrated, in the northern areas where there were lower smoke-related PM2.5
concentrations, the regression lines between the predicted and the measured values are
closer to the 1:1 line.

3.5. Validation of Temporal ANN Predictions

To validate the temporal models and evaluate their prediction performance, the Leth-
bridge station was removed from the Southern region dataset (only for the 2015 and 2017
data), and the models were used to predict its recorded PM2.5 concentrations for 2015 and
2017, as shown in Figure 6 Lethbridge AQ station, as the most southern AQ station in
Alberta, was one of the smokiest stations during wildfire episodes in 2015 and 2017 due
to its closer proximity to the source of fires originated in the U.S. Therefore, it was chosen

http://www.agriculture.alberta.ca/acis/climate-maps.jsp
http://www.agriculture.alberta.ca/acis/climate-maps.jsp
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to validate the temporal models. It can be seen that the observed peaks of PM2.5 due to
fire smoke were well predicted by the ANN models, even if the prediction was better for
recorded levels below 40 µg/m3 and if the higher concentration (>40 µg/m3) of some of
the peaks were underestimated.
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4. Discussion

The daily averaged PM2.5 concentration was proven to be more significant to exposed
population health compared to hourly measurements [21]. Therefore, the present study
performed different ANNs and multiple linear regression models to predict daily PM2.5
concentration in several wildfire episodes of 2014 to 2017 over the province of Alberta,
Canada. Remote sensing data have been widely used to predict PM2.5 through regression
models. However, regression models are more suitable for predicting mean values than the
episodic events that usually lead to overestimations and underestimations of low and high
concentration, respectively [21]. Therefore, to demonstrate the prediction improvement of
ANN and, also, to show the constraints of linear regression models in predicting short-term
PM2.5 during severe fire episodes, yearly MLRs were also developed, and the results were
compared to ANN models.

Comparing the neural network models with MLRs indicated the robust performance
of the machine learning approach for quantifying the spatiotemporal smoke-generated
PM2.5. The considerable increase in the ANN R2 compared to MLR models (17% to 113%)
illustrates the crucial capability of neural networks; however, the prediction results still
need to be improved by applying finer resolution data, denser AQ stations, and also more
relevant and informative predictors. The order of the best to the worst prediction model
remained fixed for both approaches; the 2014 ANN and regression models resulted in the
best prediction, and 2016 models presented the weakest ones, which could indicate the
influence of quantity and distribution of sample data in prediction accuracy.

4.1. Temporal and Spatial Prediction

Figures 4 and 5 presented the predicted values versus observed values obtained by
temporal and spatial models for both training and test dataset.

Dividing the dataset temporally based on each year also helped to improve the result,
except for in the 2016 dataset. The ANNs developed by the three other datasets when
fire smoke was present (2014, 2015, and 2017) significantly had an increased prediction
accuracy over the pooled dataset ANN: the models’ correlation coefficient increased from
0.41 for the pooled dataset to 0.6 for 2014 and 2017 and to 0.45 for 2015, i.e., an increase of
10% to 46%. The relatively poor performance of both the MLR and ANN models for the
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2016 dataset was due to low PM2.5 concentration, as discussed earlier. Excluding the 2016
dataset from the spatial Southern dataset also increased the R2 of the test model by 22%.

The province of Alberta is relatively large and all AAZs do not experience fire smoke
on the same day, therefore regional ANNs were performed to improve the accuracy of the
ANNs by dividing the study area into four regions and training the ANN for each region
individually. The higher R2 and lower RMSE of the spatial models for the test dataset
(Figure 5) indicated that all spatial ANNs (regional) improved compared to by the pooled
ANN (provincial) shown in Table 3. The R2 showed an increment of 29%, 24%, 46%, and 92%
for the southern, central, NW, and NE regions, respectively. Therefore, having enough
numbers of the training dataset (i.e., ground measurements) enables the development
of regional models where the spatial and meteorological criteria in the location of the
ground stations are closer to each other and can result in better prediction. Regarding the
number of AQ stations in the present study, performing separate ANNs for each AAZ was
not possible.

The results also show higher improvements in R2 and RMSE by spatial ANNs com-
pared to temporal ANNs. That demonstrates the geographic dispersion as well as the
temporal dispersion of fire smoke, implying that more complex spatiotemporal ANNs
would perform better; however, it would require more data. The obtained results of the
2017 ANN were also compared to our previous study [16], where a linear mixed effect
(LME) model was applied by developing nested period-zone specific random effects of
the AOD–PM2.5 relationship to predict daily PM2.5 concentration for the same study area
and period. To be able to compare the ANN model with the developed LME model,
the same number of PM2.5 measurements were used, and most of the predictors remained
fixed. However, due to the different model’s requirements and to train the ANN model,
a few more predictors had to be added to the neural network. The R2 of the nested LME
model was 0.74 compared to 0.57 for the ANN model. Comparing the obtained results of
both models demonstrated that the nested LME model performed better to predict daily
fire-generated PM2.5. However, the ANN prediction performance was also relatively good.
Furthermore, ANNs are relatively more straightforward to implement and need fewer
hypotheses related to data distribution.

We also need to mention that when the PM2.5 concentration was very low and under
the background level (e.g., in the 2016 dataset), the ANN model, like the linear regression
model, poorly performed in modelling the AOD–PM2.5 relationship. Therefore, it seems
that AOD may not present a reasonable prediction at lower PM2.5 concentrations, because
the predictive ability of the AOD_PM2.5 model will decrease.

4.2. Limitations

Based on the results, a relatively weak correlation between AOD and PM2.5 was
demonstrated in the low correlation coefficient of the models, even when adding ancillary
variables to the AOD–PM2.5 relationship did not help improve the predictive accuracy of
any of the MLR models. Despite the numerous advantages of remote sensing products,
there are also some weaknesses in applying satellite data (Kumar 2010).

Associations between AOD values and PM2.5 measurements were also affected by
different factors, such as the removal of dense smoke plumes generated by wildfires by the
MODIS AOD algorithm, or mistaking cloud as the aerosol, and, also, it is highly influenced
by the vertical distribution of AOD. Another possibility for a relatively poor AOD–PM2.5
relationship can be due to high relative humidity that leads to an increase in the size of
some hygroscopic particles (ammonium sulphate and ammonium nitrate). Under this
situation, the inflated particles will affect the light extinction efficiencies, and results in a
higher value of AOD while the PM2.5 concentration does not change [21].

The present study suffers from these limitations too. The weak relationship between
AOD and PM2.5 was probably due to the uncertainty of the satellite products. Relatively
coarse resolution of the AOD images and the spatial and temporal mismatch between
the PM2.5 measurements and AOD values are two of the possible limitations. The PM2.5
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measurements and other meteorological predictors used in this study are averages of
24-h recorded values, while the AOD for each pixel was a single value obtained at the
Aqua/Terra overpass time. Spatial mismatching could also be another source of uncertainty
in the AOD–PM2.5 relationship; each AOD pixel in our study covered a 10-by-10 km area,
while PM2.5 data were point-based measurements aggregated across 24 h. However, the
ANN models were able to improve the results significantly and could reduce the influence
of these limitations.

5. Conclusions

Quantitative spatial information of PM2.5 concentrations during elevated smoke pe-
riods due to wildfire is very useful for regulating air quality and monitoring fire smoke-
related problems of exposed, vulnerable populations. Satellite-based data provide an infor-
mative tool for monitoring PM2.5 with a relatively high spatial and temporal resolution.
AOD derived from satellite images is widely used to predict surface PM2.5 concentrations.
In the present study, ANNs have been utilized to predict daily PM2.5 concentrations gener-
ated from wildfires over the province of Alberta, Canada, during the fire seasons of 2014
to 2017.

Different ANNs were developed for the different datasets, including: (i) a pooled
data set combining all four years of data for the whole province; (ii) yearly datasets
for the entire study area; and (iii) regional four-year datasets for the southern, central,
northwest, and northeast regions of the province. To improve the accuracy of the models,
and also to investigate the effects of the low level of PM2.5 concentrations in ANN models,
the 2016 dataset, which had the lowest level of PM2.5 concentration, were excluded from
the southern Alberta dataset, and the model was trained again. The spatial resolution
of the current study was 10 × 10 km, which was determined by the spatial resolution of
MODIS AOD images.

The models were validated by dividing the data into test and training datasets and
running each network 100 times. We also validated the temporal ANN using one of the AQ
stations (Lethbridge), which was excluded from the training process. Spatial and temporal
ANNs were trained by grouping the data based on each year (temporal ANN) and by
dividing the entire study area based on neighbouring AAZs (spatial ANN). The temporal
and spatial ANNS have improved the prediction accuracy of the pooled one.

The ANNs provided acceptable predictions of PM2.5, in spite of the sparse distribution
of ground AQ monitoring, gaps and uncertainty in AOD images, and also the complexity
of the problem due to the fact that PM2.5 during the study period was generated from
different sources. ANNs significantly improved linear regression models’ performance in
predicting PM2.5 concentration using AOD images, temporally and spatially.
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