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Abstract: The process of positioning, using only distances from control stations, is called trilateration
(or multilateration if the problem is over-determined). The observation equation is Pythagoras’s
formula, in terms of the summed squares of coordinate differences and, thus, is nonlinear. There
is one observation equation for each control station, at a minimum, which produces a system of
simultaneous equations to solve. Over-determined nonlinear systems of simultaneous equations
are typically solved using iterative least squares after forming the system as a truncated Taylor’s
series, omitting the nonlinear terms. This paper provides a linearization of the observation equation
that is not a truncated infinite series—it is exact—and, thus, is solved exactly, with full rigor, without
iteration and, thus, without the need of first providing approximate coordinates to seed the iteration.
However, there is a cost of requiring an additional observation beyond that required by the non-linear
approach. The examples and terminology come from terrestrial land surveying, but the method
is fully general: it works for, say, radio beacon positioning, as well. The approach can use slope
distances directly, which avoids the possible errors introduced by atmospheric refraction into the
zenith-angle observations needed to provide horizontal distances. The formulas are derived for
two- and three-dimensional cases and illustrated with an example using total-station and global
navigation satellite system (GNSS) data.

Keywords: multilateration; linearization; terrestrial surveying

1. Introduction

A station’s coordinates can be determined from distances—with no angles—using a
technique known as trilateration, or multilateration if there are redundant observations.
The U.S. Bureau of Land Management [1] defines trilateration as, “A method of determining
horizontal positions by measuring the lengths of triangle sides, usually with the use of
electronic instruments.” This definition predates global navigation satellite systems (GNSSs)
and is a little dated. The method is used extensively nowadays because it is how GNSSs are
used to determine the coordinates of a receiver [2,3], and such positions are inherently three
dimensional. For terrestrial surveying, slope distances observed with an electronic distance
meter (EDM) can be used, likewise producing three-dimensional positions. The trilateration
problem can be stated: given the coordinates of at least three/four control marks and the
distances from the control marks to a target mark, determine the horizontal/3-d coordinates
of a target mark. This is similar to the resection problem, but resection uses directions
instead of distances [4].

Pythagoras’s formula is the observation equation, written with the lengths of the
shorter sides are given as differences in Cartesian coordinates, Equation (3). There is one
equation for each control station, so there is a set of simultaneous equations solve. The
system has an analytical solution—there are three equations and three unknowns in a
quadratic—however, the exact solution is somewhat unwieldy and, worse, cannot handle
an over-determined system, having more observations than the minimum of three. The
typical solution strategy is to linearize the system by expanding the equations in a Taylor’s
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series and retain only the first-order terms, then solve by iterative least squares. However,
as will be shown, taking the difference of the observation equations linearizes the system
without any approximations, which allows the solution to be found without iteration.

Multilateration uses mark-to-mark slope distances. If the height of the prism target
above the unknown station, hr, equals the height of the optical center of the telescope in a
total station, hi, then the observed slope distance s′ equals mark-to-mark slope distance s.
Otherwise, let ζ′ denote the observed zenith angle. Then the mark-to-mark zenith angle
is [5]

cot ζ = csc ζ′ hi− hr
s′ + cot ζ′ (1)

and the mark-to-mark slope distance is

s =
s′ sin ζ′

sin ζ
(2)

Hereafter, all slope distance will be assumed to be mark-to-mark.
Suppose we are to determine the coordinates of station i = (ei, ni, ui) given the

coordinates of a set of control stations C =
{(

ej, nj, uj
)
, . . . (em, nm, um)

}
, and |C| = n, i.e.,

there are n control stations. The slope distance from station i to station j, sij, is related to the
stations’ Cartesian coordinates by [6].

s2
ij =

(
ej − ei

)2
+
(
nj − ni

)2
+
(
uj − ui

)2 (3)

Similarly, the slope distance from station i to station k, sik, is related to the stations’
coordinates by

s2
ik = (ek − ei)

2 + (nk − ni)
2 + (uk − ui)

2 (4)

Expanding the quadratic terms, showing only the easting terms for brevity, gives

s2
ij = e2

j + 2ejei + e2
i + · · ·s2

ik = e2
k + 2ekei + e2

i + · · · (5)

Taking s2
ij − s2

ik eliminates the e2
i , n2

i , and u2
i terms, leaving

s2
ij − s2

ik = e2
j + 2ejei + e2

i + · · · −
(

e2
k + 2ekei + e2

i + · · ·
)
= e2

j − e2
k + 2ei

(
ej − ek

)
+ · · · (6)

Putting constants on the right and factoring on the left, gives

(
ej − ek

)
ei +

(
nj − nk

)
ni +

(
uj − uk

)
ui =

(
s2

ij − s2
ik + e2

k − e2
j + n2

k − n2
j + u2

k − u2
j

)
2

(7)

The only unknown terms are ei, ni, and ui. If station i has been observed from stations
j . . . m, then these equations can be written as a matrix expression as


ej − ek nj − nk uj − uk

ej − el nj − nl uj − ul
...

...
...

ej − em nj − nm uj − um

·
 ei

ni

ui

= 1
2


s2

ij − s2
ik + e2

k − e2
j + n2

k − n2
j + u2

k − u2
j

s2
ij − s2

il + e2
l − e2

j + n2
l − n2

j + u2
l − u2

j
...

s2
ij − s2

in + e2
n − e2

j + n2
n − n2

j + u2
n − u2

j

 (8)

Or
M x = k (9)

So, if M is 3× 3,
x = M−1k (10)
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If M has more than three rows, the system is over-determined, and it is solved with a
pseudo-inverse in the usual way:

x =
(

MT M
)−1

MTk (11)

Matrix M has the differences of pairs of control coordinates for its elements. There
are n(n− 1)/2 ways to pick two items from a set of n things, and each of these could
be a row in M. That would result in M having quite a few rows producing, supposedly,
a lot of built-in redundancy. However, the GNSS-positioning concept of “independent
baselines” applies here: many of the pairs would be trivial inverses of others, and no
real additional information is added. Therefore, like with GNSS, pick one station to be
a common station and form all differences with the common station. Station j is the
common station in Equation (8). The constant term k in Equation (9) can be written as
(s2

ij − s2
ik + |K|

2 − |J|2)/2, where |K|2 = e2
k + n2

k + u2
k is the square of distance from station

k to the origin of the coordinate system; similar for station j. This suggests two things.
First, picking the control station closest to the centroid of all the control stations to be the
common differencing station minimizes |K|2 − |J|2. Second, it is sensible to use localized
coordinates to keep the coordinates themselves as small as possible so that the quadratic
terms do not suffer undue truncation and round-off errors. For example, if station i is set to
be a local origin, then all other stations’ coordinates become

(
ej − ei, nj − ni, uj − ui

)
.

Our method is similar to that developed by Navidi et al. [7]. Their approach depends
on a special control station that they call the reference point that is required to be at the
centroid of the other control stations. They then add and subtract the coordinates of the
reference point from those of the other control stations to form a third type of distance that,
when added to the distances from the other control stations to the unknown point, causes
most of the nonlinear terms to cancel. Placing the reference point at the centroid is highly
auspicious because it causes the observation matrix to become orthogonal to the parameter
vector, which eliminates the remaining nonlinear term. Ignoring numerical stability issues,
our method and theirs must be equivalent: they are both least squares estimators, and,
since least squares is a best linear unbiased estimator, any two different approaches to the
same problem using least squares must be equivalent. However, the problem formulations
can differ and that can lead to implementation issues. As just stated above, we recommend
that the common differencing station be near the centroid, but it is not a requirement. The
method by Navidi et al. requires that the reference point be at the centroid, which could
be onerous depending on how difficult it is to stake out that position, assuming that it is
possible at all.

The positioning equation for GNSS uses multilateration but it includes additional
terms [8], p. 410:

sij =
√(

xi − xj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2
+ c bu + εpi (12)

where x, y, and z are geocentric Cartesian coordinates in the reference frame of the broadcast
ephemeris, c is the speed of light in a vacuum, bu is the unknown time offset of the receiver’s
clock to GPS time (called a time bias), and εpi is a “catch-all” error term for ionospheric
and tropospheric delays, multipath, and c. Unfortunately, our scheme does not apply here
because squaring the right-hand side of the equation mixes the terms together so that the
quadratic terms do not cancel after differencing. Therefore, the equation is linearized by a
truncated Taylor’s series and solved with iteration.

2. Stochastic Model

One can reasonably assume that the slope-distance observations are independent and
normally distributed as sj ∼ N(µj, σ2

j ) where µj is the true distance, and σj is the EDM
standard deviation given by σj = c + sj/1000× ppm, where c is the constant term, and
ppm is the “parts per million” millimeters per kilometer term. This model ignores setup
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uncertainty at the instrument and at the target. As such, the n× n covariance matrix of the
observations Q = diag

(
σ2

1 , σ2
2 , . . . , σ2

n
)

is a diagonal matrix. The inverse of the covariance
matrix W = Q−1 = diag

(
1/σ2

1 , 1/σ2
2 , . . . , 1/σ2

n
)

can be used as a weight matrix, and is
applied as

sijW M x = W k (13)

which is solved by

W M x= W k

MtW M x= MtW k(
MtW M

)−1MtW M x=
(

MtW M
)−1MtW k

x=
(

MtW M
)−1MtW k

(14)

The matrix
(

MtW−1M
)−1 is called a cofactor matrix, and it is proportional to the

estimated covariance of the estimations. The constant of proportionality is called the
variance of unit weight, or just “unit variance,” and the estimated covariance of the
estimations is σ2

0
(

MtQ−1M
)−1. The unit variance can itself be estimated as follows, [9,10].

Let X =
(

MtW M
)−1MtW x be the estimated values of the distances according to the least

squares model, and let V = M X− x be a column vector of the estimation residuals. Then

σ2
0 =

VtW V
n− u

(15)

where, n = |k| is the number of observations and u = |x| is the number of coordinates to
estimate (i.e., three in this case).

3. Coordinate Systems

The formulas require Cartesian coordinates for the control stations. There are three
choices: geocentric Cartesian (called XYZ), topocentric Cartesian (called ENU), or grid co-
ordinates. Grid coordinates require additional reductions be applied to the slope distances,
which is thoroughly covered in standard surveying texts and an unnecessary distraction
here. In fact, XYZ coordinates are well suited for this application, at least in principle.

4. Example: More Control than the Minimum

Hereafter, all linear quantities will be given in meters. In this example, we pretend to con-
firm the coordinates for the CTMA CORS ARP NAD 83(2011) coordinates (https://www.ngs.
noaa.gov/cgi-bin/ds_cors.prl?CorsSelected=\T1\textbar{}CTMA&CorsTypeSelected=Arp, ac-
cessed on 28 June 2021), which are x = 1, 456, 379.711, y = −4, 539, 030.822, z = 4, 223, 420.343.
Suppose there are five control stations available whose XYZ coordinates were determined
using GNSS positioning as tabulated in Table 1. In fact, these stations’ coordinates were
generated in Mathematica™ using random-number generators, such that the horizontal
coordinates follow uniform distributions ±300 m from CTMA and the vertical coordinates
follow a uniform distribution ±5 m from CTMA.

Table 1. Randomly generated coordinates for five control stations around CTMA.

Station A B C D E

X 1,456,384.836 1,456,361.528 1,456,385.694 1,456,392.590 1,456,528.776
Y −4,539,056.940 −4,539,041.958 −4,538,904.001 −4,539,083.089 −4,538,786.795
Z 4,223,384.124 4,223,414.509 4,223,553.263 4,223,358.456 4,223,631.667

Inversing the control coordinates with CTMA produces exact slope distances that
a perfect EDM would observe. These slope distances from the five control stations to

https://www.ngs.noaa.gov/cgi-bin/ds_cors.prl?CorsSelected=\T1\textbar {}CTMA&CorsTypeSelected=Arp
https://www.ngs.noaa.gov/cgi-bin/ds_cors.prl?CorsSelected=\T1\textbar {}CTMA&CorsTypeSelected=Arp
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the “unknown station” CTMA are 44.947, 22.106, 183.812, 82.023, and 355.566, to three
significant digits. First, use the coordinates as given. The system of equations is


x2 − x1

x3 − x1

x4 − x1

x5 − x1

y2 − y1

y3 − y1

y4 − y1

y5 − y1

z2 − z1

z3 − z1

z4 − z1

z5 − z1


 x

y
z

= 1
2


s2

1 − s2
2 − x2

1 + x2
2 − y2

1 + y2
2 − z2

1 + z2
2

s2
1 − s2

3 − x2
1 + x2

3 − y2
1 + y2

3 − z2
1 + z2

3
s2

1 − s2
4 − x2

1 + x2
4 − y2

1 + y2
4 − z2

1 + z2
4

s2
1 − s2

5 − x2
1 + x2

5 − y2
1 + y2

5 − z2
1 + z2

5



−23.3078

0.85885
7.755

143.940

14.9819
152.939
−26.149
270.146

30.3852
169.139
−25.668
247.543


 x

y
z

 =


2.638× 107

2.140× 107

2.158× 107

2.891× 107


(16)

Using Mathematica, the solution works out to x = 1, 456, 379.711, y = −4, 539, 030.822,
z = 4, 223, 420.343. These coordinates differ from CTMA by−9.8× 10−6, 0.00003,−0.00003,
which is good but it is not even machine precision. The issue is the large values in k, which
involve the squares of the coordinate values, the right side of Equation (8). The solution
can be improved by localizing the coordinates, which makes them much smaller numbers
and, thus, improves numerical stability. For example, subtract station A’s coordinates from
the other control stations, resulting in the coordinates in Table 2.

Table 2. Localized XYZ control coordinates.

Station A B C D E

local X 0 −23.308 0.859 7.755 143.940
local Y 0 14.982 152.939 −26.149 270.145
local Z 0 30.385 169.139 −25.668 247.543

Matrix M is unaffected by localization. The k vector’s values become much smaller:
177,359.991, 1,148,807.296, −188,483.583, and 1,758,500.670. The solution now matches
CTMA’s coordinates no worse than 2× 10−9 m for each coordinate.

5. ENU Coordinates

If the control stations’ coordinates had been determined by radial surveying from
station A using a perfect total station, we would have the control coordinates shown in
Table 3.

Table 3. ENU control coordinates.

Station A B C D E

e 0 −17.616 47.543 −0.605 219.592
n 0 36.911 222.984 −37.306 326.684
u 0 4.265 4.104 3.264 5.623

ENU coordinates are XYZ coordinates that have been translated and rotated—no
scaling or stretching—which means the distances and angles between the stations are
preserved exactly in the two systems. Therefore, the ENU solution must, in principle,
be identical to the XYZ solution, and would be exactly identical if exact arithmetic were
available. The implication here is that, in principle, there is no need to reduce slope
distances to horizontal distances.

Good strength-of-figure results from surrounding the unknown station with observa-
tions from all directions. It is unlikely, however, that the unknown station can be observed
from far below or above. There might be a situation where an observation could be, say,
made from a rooftop, but it will usually happen that the control stations are generally
around the same height. The concepts of dilutions of precision pertain here. Borrowing from
GNSS [11], the dilutions of precisions are various combinations of the diagonal elements of
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the estimated position’s covariance matrix, being the variances of the estimated coordinates.
As with GNSS positioning, and fundamentally for the same reason, the horizontal dilution
of precision will be better (lower) than the vertical dilution of precision because, for GNSS,
it is impossible to observe the satellites (a.k.a. space vehicles [SVs]) below the horizon so
the positioning cannot be controlled from below. If all the Up-coordinates are the same so

that their differences are zero, then matrix M =

 a b 0
c d 0
e f 0

 has a row echelon form of

 1 0 0
0 1 0
0 0 0

, which shows the matrix cannot be inverted. More generally, co-planar con-

trol stations produce an M matrix that cannot be inverted. However, M can be inverted, in
principle, if the stations are not exactly coplanar, but M can become ill-conditioned [10]. For
example, replacing the Up-coordinates in the previous example with normally distributed
random numbers u′ ∼ N(0, 0.01) produced a MTWM matrix with elements differing
by ten orders of magnitude, resulting in a position estimate of (0.024, 0.023,−503.181)
instead of (0,0,0). The accuracies of the horizontal coordinates are compromised by the
ill-conditioning brought about by the vertical coordinates. Not including the vertical
coordinates mitigates this, so we now re-work the problem for horizontal positioning.

6. Horizontal Positioning

The horizontal-only equations come from dropping the Up-coordinates in Equation
(8) and replacing the slope distances with horizontal distances, s = s cos(ζ), where ζ is the
mark-to-mark zenith angle. Equation (8) becomes


ej − ek nj − nk
ej − el nj − nl

...
...

ej − em nj − nm

·
[

ei
ni

]
=

1
2


s2

ij − s2
ik + e2

k − e2
j + n2

k − n2
j

s2
ij − s2

il + e2
l − e2

j + n2
l − n2

j
...

s2
ij − s2

in + e2
n − e2

j + n2
n − n2

j

 (17)

Solving Equation (17) with horizontal distances from the previous examples produces
a position estimate of

(
−1.5× 10−14, 1.0× 10−14), which is around machine precision for

double-precision floating point arithmetic.

7. Fieldwork Example

Observations were collected on the campus of New Mexico State University in May
2020. Five stations were positioned using a static GNSS survey lasting for at least 25 min,
with a 1-s sampling interval, using Topcon HiPer Lite+ GNSS receivers. The specifi-
cations of the receivers, as reported by the manufacturer, are horizontal accuracies of
±3 mm ± 0.5 ppm and vertical accuracies of ±5 mm ± 0.5 ppm for GNSS static surveys.
Data were then processed using the Online Positioning User Service (OPUS) tool provided
by NGS (https://geodesy.noaa.gov/OPUS/, accessed on 28 June 2021), [12]. Seven CORSs
provided control, being an average of around 100 km away (DK7580, DM3997, DJ8945,
DG7417, DG6517, DG5392, DG5481). The average RMS values for all coordinates was less
than 3 cm, as reported by OPUS. We also measured the mark-to-mark distances using
a Leica TS02 total station and accompanied Leica reflector, both erected atop a slip-leg
tripod and a tribrach with an optical plummet. Leica reports the accuracy of the EDM as
1.5 mm + 2 ppm. Each distance was measured three times in both the left and right faces.
The height of instrument and the height of the reflector were measured and input to the
total station. We then documented the observed horizontal and slope distances (Table 4).

The International Terrestrial Reference Frame (ITRF) 2014 coordinates are tabulated
in Table 5. Stations A, B, C, D, and U were positioned with OPUS, and station CG is the
average of stations A, B, C, D. Station U is the check station, whose coordinates are to be
determined using stations A, B, C, D. The XYZ coordinates were converted to geodetic

https://geodesy.noaa.gov/OPUS/
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longitude, latitude, and height (λ, φ, h), and then to local topocentric ENU using CG as the
origin. The direct-inverse observations where averaged to mitigate collimation error, [13]
and then all corrected pairs averaged to a single value. This is not necessary: M and k
can be formed from the individual collimation-corrected averages but using the single
ensemble average values yielded nearly identical estimates and makes the examples below
easier to read. In practice, it might be preferable to use the individual collimation-corrected
averages for blunder detection.

Table 4. Total-station slope distances and horizontal distances observed from the fieldwork.

From To L R

slope_distance A U 35.763 35.763
slope_distance A U 35.767 35.767
slope_distance A U 35.765 35.765
slope_distance B U 49.618 49.618
slope_distance B U 49.616 49.616
slope_distance B U 49.620 49.620
slope_distance C U 44.689 44.689
slope_distance C U 44.691 44.691
slope_distance C U 44.690 44.691
slope_distance D U 39.547 39.548
slope_distance D U 39.548 39.548
slope_distance D U 39.550 39.549

From To L R

hz_distance A U 35.761 35.761
hz_distance A U 35.765 35.765
hz_distance A U 35.763 35.763
hz_distance B U 49.616 49.616
hz_distance B U 49.614 49.614
hz_distance B U 49.618 49.618
hz_distance C U 44.683 44.683
hz_distance C U 44.685 44.685
hz_distance C U 44.684 44.685
hz_distance D U 39.542 39.543
hz_distance D U 39.543 39.543
hz_distance D U 39.545 39.544

Table 5. Station coordinates in ITRF 2014 in XYZ, local XYZ, and ENU coordinate systems.

Name x y z x’ y’ z’ e n u

A −1,555,853.353 −5,169,686.486 3,387,031.050 −28.227 −11.773 −31.486 −23.636 −36.985 −0.405
B −1,555,799.191 −5,169,663.062 3,387,092.663 25.935 11.651 30.127 21.478 35.421 0.337
C −1,555,794.942 −5,169,696.699 3,387,044.381 30.184 −21.986 −18.155 35.240 −21.947 0.751
D −1,555,853.020 −5,169,652.603 3,387,082.050 −27.894 22.110 19.514 −33.082 23.512 −0.683

CG −1,555,825.127 −5,169,674.713 3,387,062.536 0 0 0 0 0 0
U −1,555,832.101 −5,169,675.751 3,387,057.746 −6.975 −1.038 −4.790 −6.379 −5.654 −0.018

1. Estimate station U’s coordinates using slope distances and XYZ control coordinates
(i.e., using the coordinates from OPUS directly),

M = X·k 54.162 23.424 61.613
58.411 −10.213 13.331
0.333 33.883 51.000

 =

 x
y
z

·
 3, 325, 326.313

7, 073, 056.703
−2, 942, 270.703

 (18)
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X = M−1·k x
y
z

 =

 4.849 −4.453 −4.695
14.831 −13.671 −14.344
−9.885 9.112 9.580

·
 3, 325, 326.313

7, 073, 056.703
−2, 942, 270.703


 x

y
z

 =

 −1, 555, 830.328
−5, 169, 670.346
3, 387, 054.140


(19)

• These coordinates differ from the check coordinates by (1.773, 5.405,−3.606 ),
which is 6.735 m in error (3-d).

2. Estimate station U’s coordinates using slope distances and XYZ coordinates localized
to their centroid, columns x′, y′, z′ in Table 5.

M = X·k 54.162 23.424 61.613
58.411 −10.213 13.331
0.333 33.883 51.000

 =

 x
y
z

·
 −696.755
−460.340
−281.990

 (20)

X = M−1·k x
y
z

 =

 4.849 −4.453 −4.695
14.831 −13.671 −14.344
−9.885 9.112 9.580

·
 −696.755
−460.340
−281.990


 x

y
z

 =

 −5.217
4.317
−8.363


(21)

• The XYZ coordinates are recovered by adding the coordinates of CG to the
estimated coordinates.

• The estimated coordinates differ from the check coordinates by (1.757, 5.356,−3.573),
which is 6.674 m in error (3-d), slightly worse than using the XYZ coordinates directly.

• The matrix M is identical for both “absolute” and these relative coordinates
because M is formed from the differences in coordinates.

• The k vector’s values are much smaller for the relative coordinates because
the distances from the stations to the local origin (CG) are far shorter than the
distances of the XYZ stations to their origin (Earth’s center of mass). These
smaller values will generally lead to better numerical precision, which should
have a good influence on improving the estimates, but that was not the case here.

• The XYZ coordinates yield terrible results because, although these are geomet-
rically 3-d coordinates, the stations are nearly coplanar, topologically 2-d. As
discussed above, this produces very poor strength-of-figure for the vertical coor-
dinate, but there is no notion of the vertical in an XYZ coordinate system so the
inherent weakness in the vertical direction bleeds into all three coordinates.

3. Estimate station U’s coordinates using topocentric Cartesian ENU coordinates using
station CG as the ENU coordinate system’s origin. See the e, n, u columns in Table 5.

M = X·k 45.114 72.406 0.741
58.876 15.038 1.155
−9.446 60.497 −0.278

 =

 e
n
u

·
 −696.755
−460.340
−281.990

 (22)
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X = M−1·k e
n
u

 =

 0.369 −0.324 −0.362
−0.027 0.028 0.042
−18.468 17.018 17.873

·
 −696.755
−460.340
−281.990


 e

n
u

 =

 −6.240
−5.666
−6.690


(23)

• The errors for these coordinates are (0.139,−0.012,−6.672), which is a dramatic
improvement for the horizontal coordinates.

• Almost all the error is in the Up coordinate, which validates the notion that it is
the vertical coordinate with poor strength-of-figure.

• The k vector is the same as the localized XYZ coordinates because (a) both
coordinate systems have the same origin (station CG) and (b) ENU distances
equal XYZ distances.

4. Estimate station U’s coordinates using horizontal distances and only the East and
North coordinates.

M = X·k 45.114 72.406
58.876 15.038
−9.446 60.497

·[ e
n

]
=

[
−696.702
−460.344

]
(24)

XX =
(

M−1M
)−1MT ·k[

e
n

]
=

[
0.000239 −9.4e−5

−9.4e−5 0.000146

]
·
[
−696.702
−460.344

]
[

e
n

]
=

[
−6.372
−5.654

] (25)

• The errors for these coordinates are (0.0071, 0.0002), which agrees with the check
values within their uncertainty.

• The numerical instability due to the ill-conditioned vertical coordinate has been
removed so the estimates are very good. Notice that these EN coordinates have
been estimated better than their ENU counterparts, because the deleterious effect
of the Up coordinate has no effect here.

• Notice that M is almost an identity matrix, which means that k has almost solved
the problem itself.

8. Discussion and Conclusions

A multilateration method for terrestrial surveying was presented using differenced
observation equations, which eliminated the quadratic terms in the unknown coordinates
and, thus, linearized the system to be solved. Consequently, the position can be determined
with a pseudo-inverse in the usual way, an operation that is well within reach of any spread-
sheet’s computational capabilities, and still provides full statistical rigor. The linearization
does have a cost: using differenced observations means one additional observation set than
is required by the non-linear equivalent (four instead of three).

Understanding the geometrical layout of the survey is difficult when looking at the
XYZ coordinates because they impart no notion of cardinal directionality or the vertical.
The ENU coordinates readily reveal that the stations are nearly at the same height and
occupy the four quadrants around the check station U. Slope distances can be used with
XYZ and ENU coordinates alike, and slope distances are largely unaffected by atmospheric
refraction and vertical-angle pointing errors that affect horizontal distances. However, as
the examples show, poor strength-of-figure can completely overwhelm these benefits when
the control stations are nearly coplanar.
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Standard practice is to observe all distances at least twice in independent observations.
A typical protocol would be to observe in different setups, not merely observing in the
direct and inverted positions of the telescope.

MT M is invertible, in theory, so long as the control stations are not coplanar, but MT M
becomes ill conditioned if the stations are bunched together or if they are nearly coplanar.
If MT M is ill conditioned, all three coordinates will have less accurate estimations because
the estimates are correlated. However, as demonstrated in the example, the Up-coordinate
can be especially erroneous, but perhaps sometimes not so much as to be blatantly incorrect,
which is a very insidious situation. In contrast, there is no numerical stability concerns
if solving for just the horizontal coordinates, provided that the control stations surround
the unknown station. The best evidence for whether the Up-coordinate is trustworthy
is, unsurprisingly, its standard deviation (and common sense). The covariance matrix

for the above ENU example works out to be 10−6

 2.5 −1.4 6.8
−1.4 1.1 −17
6.8 −17 769

 so the standard

deviations of the E-, N-, and U-coordinates are 1.6 mm, 1.1 mm, and 27.7 mm. As with
GNSS positioning, the horizontal coordinates should have similar standard deviations
and the Up-coordinate’s standard deviation should be larger. However, for GNSS, the
Up-coordinate is expected to be around, say, three times larger, and here, the Up-coordinate
is around 20 times larger. This is because, for GNSS, one expects there to be SVs spread
across the whole sky at a broad span of zenith angles, whereas for terrestrial surveying one
expects the control stations to be nearly at the same height, creating a scenario equivalent
for GNSS positioning in which all the SVs are within, say, 5◦ in elevation angle from one
another. Thus, in general, the Up-coordinate cannot be expected to have as good precision
as the horizontal coordinates in most cases.

There is no limit, per se, to the number of stations that can be positioned simultane-
ously with this method, but every unknown station must tie to enough control stations
to be positioned individually. In contrast, a typical traverse will run through “interior”
stations that have no, or insufficient, direct ties to control stations, such as stations 2 and 4
in Figure 1. That is not allowed here. The reason is in the M matrix: if any of M’s elements
(coordinate differences) are not unknown a priori, then M will contain variable elements,
and the system becomes nonlinear. This is true for k, too: k will not be a vector of numbers
only. This is not the case when solving the multilateration problem with a nonlinear system.
The nonlinear solution requires a priori estimates for all the unknown coordinates, so the
Jacobian matrix’s terms contain only numbers and, thus, the nonlinearity vanishes in the
calculation. Nevertheless, the traverse in Figure 1 can be solved in a bootstrapping fashion
by positioning stations 1 and 5, and then using those to control 2 and 4. However, if station
g were unknown, nothing could be done.

Geomatics 2021, 1, FOR PEER REVIEW 10 
 

 

and the system becomes nonlinear. This is true for k, too: k will not be a vector of numbers 

only. This is not the case when solving the multilateration problem with a nonlinear sys-

tem. The nonlinear solution requires a priori estimates for all the unknown coordinates, so 

the Jacobian matrix’s terms contain only numbers and, thus, the nonlinearity vanishes in 

the calculation. Nevertheless, the traverse in Figure 1 can be solved in a bootstrapping 

fashion by positioning stations 1 and 5, and then using those to control 2 and 4. However, 

if station g were unknown, nothing could be done. 

 

Figure 1. A traverse. Control stations are blue with single-letter designations. Unknown stations 

are red with number designations. Observed lines are brown. 

Author Contributions: Conceptualization, T.H.M.; methodology, T.H.M. and A.F.E.; software, 

T.H.M.; validation, A.F.E.; formal analysis, T.H.M.; writing—original draft preparation, T.H.M.; 

writing—review and editing, T.H.M. and A.F.E. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: not applicable. 

Informed Consent Statement: not applicable. 

Data Availability Statement: data will be made available upon reasonable request to the authors 

(E.A.). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. BLM. Glossaries of BLM Surveying and Mapping Terms; U.S. Department of the Interior Bureau of Land Management: Grand 

Junction, CO, USA, 1980; 130p. Available online: https://www.blm.gov/or/gis/geoscience/files/BLMglossary.pdf (accessed on 28 

June 2021). 

2. Tsui, J.B.-Y. Fundamentals of Global Positioning System Receivers: A Software Approach; John Wiley & Sons: Hoboken, NJ, USA, 2000; 

235p. 

3. Parkinson Bradford, W.; Spilker James, J., Jr. (Eds.) Global Positioning System: Theory and Applications; American Institute of 

Aeronautics and Astronautics, Inc.: Reston, VA, USA, 1996; Volume 2. 

4. Navidi, W.; Murphy, W.S., Jr.; Hereman, W. Statistical methods in surveying by trilateration. Comput. Stat. Data Anal. 1998, 27, 

209–227. 

5. ACSM. Definitions of Surveying and Associated Terms; American Congress for Surveying and Mapping: Eatontown, NJ, USA, 2005; 

313p. 

6. Meyer, T.H. Introduction to Geometrical and Physical Geodesy: Foundations of Geomatics; ESRI Press: Redlands, CA, USA, 2010; 246p. 

7. Rongshin, H. Effects Due to the Constrained Unknowns. Surv. Rev. 1998, 34, 297–306, doi: 10.1179/sre.1998.34.267.297 

8. Bossler John, D.; Hanson Robert, H. Application of Special Variance Estimators to Geodesy; NOAA Technical Report NOS 84 NGS 

15; NOAA: Rockville, MD, USA, 1980; 8p. 

9. Bähr, H.; Altamimi, Z.; Heck, B. Variance Component Estimation for Combination of Terrestrial Reference Frames; Universitätsverlag 

Karlsruhe: karlsruhe, Germany, 2007; 82p. 

10. Gao, X.; Dia, W.; Song, Z.; Cai, C. Reference satellite selection method for GNSS high-precision relative positioning. Geod. Geodyn. 

2017, 8, 125–129, doi:10.1016/j.geog.2016.07.007 

Figure 1. A traverse. Control stations are blue with single-letter designations. Unknown stations are
red with number designations. Observed lines are brown.



Geomatics 2021, 1 334

Author Contributions: Conceptualization, T.H.M.; methodology, T.H.M. and A.F.E.; software,
T.H.M.; validation, A.F.E.; formal analysis, T.H.M.; writing—original draft preparation, T.H.M.;
writing—review and editing, T.H.M. and A.F.E. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available upon reasonable request to the authors (E.A.).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. BLM. Glossaries of BLM Surveying and Mapping Terms; U.S. Department of the Interior Bureau of Land Management: Grand

Junction, CO, USA, 1980; 130p. Available online: https://www.blm.gov/or/gis/geoscience/files/BLMglossary.pdf (accessed on
28 June 2021).

2. Tsui, J.B.-Y. Fundamentals of Global Positioning System Receivers: A Software Approach; John Wiley & Sons: Hoboken, NJ, USA,
2000; 235p.

3. Parkinson Bradford, W.; Spilker James, J., Jr.; Hereman, W. (Eds.) Global Positioning System: Theory and Applications; American
Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 1996; Volume 2.

4. Navidi, W.; Murphy, W.S., Jr.; Hereman, W. Statistical methods in surveying by trilateration. Comput. Stat. Data Anal. 1998, 27,
209–227. [CrossRef]

5. ACSM. Definitions of Surveying and Associated Terms; American Congress for Surveying and Mapping: Eatontown, NJ, USA,
2005; 313p.

6. Meyer, T.H. Introduction to Geometrical and Physical Geodesy: Foundations of Geomatics; ESRI Press: Redlands, CA, USA, 2010; 246p.
7. Rongshin, H. Effects Due to the Constrained Unknowns. Surv. Rev. 1998, 34, 297–306. [CrossRef]
8. Bossler John, D.; Hanson Robert, H. Application of Special Variance Estimators to Geodesy; NOAA Technical Report NOS 84 NGS 15;

NOAA: Rockville, MD, USA, 1980; 8p.
9. Bähr, H.; Altamimi, Z.; Heck, B. Variance Component Estimation for Combination of Terrestrial Reference Frames; Universitätsverlag

Karlsruhe: karlsruhe, Germany, 2007; 82p.
10. Gao, X.; Dia, W.; Song, Z.; Cai, C. Reference satellite selection method for GNSS high-precision relative positioning. Geod. Geodyn.

2017, 8, 125–129. [CrossRef]
11. Lichtblau, D.; Weisstein, E.W. Condition Number. From MathWorld—A Wolfram Web Resource. Available online: https:

//mathworld.wolfram.com/ConditionNumber.html (accessed on 12 March 2020).
12. Mader, G.L.; Weston, N.D.; Morrison, M.L.; Milbert, D.G. The on-line positioning user service (OPUS). Prof. Surv. 2003, 23, 26–28.
13. Meyer, T.H. Trigonometric Tips and Tricks for Surveying. Surv. Land Inf. Sci. 2021. accepted.

https://www.blm.gov/or/gis/geoscience/files/BLMglossary.pdf
http://doi.org/10.1016/S0167-9473(97)00053-4
http://doi.org/10.1179/sre.1998.34.267.297
http://doi.org/10.1016/j.geog.2016.07.007
https://mathworld.wolfram.com/ConditionNumber.html
https://mathworld.wolfram.com/ConditionNumber.html

	Introduction 
	Stochastic Model 
	Coordinate Systems 
	Example: More Control than the Minimum 
	ENU Coordinates 
	Horizontal Positioning 
	Fieldwork Example 
	Discussion and Conclusions 
	References

