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Abstract: Landslide susceptibility mapping is a crucial step in comprehensive landslide risk manage-
ment. The purpose of the present study is to analyze the landslide susceptibility of Mandi district,
Himachal Pradesh, India, based on optimum feature selection and hybrid integration of the Shannon
entropy (SE) model with random forest (RF) and support vector machine (SVM) models. An inven-
tory of 1723 rainfall-induced landslides was generated and randomly selected for training (1199;
70%) and validation (524; 30%) purposes. A set of 14 relevant factors was selected and checked for
multicollinearity. These factors were first ranked using Information Gain and Chi-square feature
ranking algorithms. Furthermore, Wilcoxon Signed Rank Test and One-Sample T-Test were applied
to check their statistical significance. An optimum subset of 11 landslide causative factors was then
used for generating landslide susceptibility maps (LSM) using hybrid SE-RF and SE-SVM models.
These LSM’s were validated and compared using receiver operating characteristic (ROC) curves and
performance matrices. The SE-RF performed better with training and validation accuracies of 96.93%
and 88.94%, respectively, compared with the SE-SVM model with training and validation accuracies
of 94.05% and 82.4%, respectively. The prediction matrices also confirmed that the SE-RF model is
better and is recommended for the landslide susceptibility analysis of similar mountainous regions
worldwide.

Keywords: landslide susceptibility; Shannon entropy; random forest; support vector machine;
feature selection; performance matrices

1. Introduction

Landslides are one of the most devastating natural disasters inflicting death and
destruction, especially in the mountainous regions, around the globe. Their occurrence can
be attributed to the downward movement of soil mass or debris due to natural triggering
factors like rainfall and earthquakes, or through anthropogenic activities like deforestation
and road construction [1,2]. Landslides have affected 4.5 million people and have caused
the death of 18,000 people worldwide [3]. The central Himalayan region of northern India
also witnesses frequent landslides, especially in monsoon season. The state of Himachal
Pradesh witnessed 18 major landslide incidences during the monsoon season of 2020. An
estimated 20 buildings collapsed, and 44 people died due to these incidences, inflicting
a revenue loss of $ $57.5 million to the state [4]. To reduce these losses, it is necessary to
predict the potential landslide-prone areas in order to administer adequate response and
emergency measures on time.

The landslide susceptibility analysis is considered a foremost tool for comprehensive
landslide risk management [5,6]. The susceptibility analysis is considered a complex pro-
cess. It is a readily perceived research area in recent times, and experts have proposed vari-
ous techniques and methodologies in different geological and meteorological settings [7,8].
Using appropriate prediction models, the analysis involves zoning the area into potentially
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susceptible zones by generating landslide susceptibility maps (LSM) [9,10]. The predictive
potential of these models depends on the accuracy of the landslide inventory, the relevance
of the landslide thematic variables, and the type of landslide predictive models [11,12].
Any study related to landslides depends on the accuracy of the landslide inventory data
collected and mapped [13,14]. This data can be prepared by satellite image processing,
historical documentation and reports, and field surveys of landslide locations [15]. The
occurrence of landslides in a region is influenced by various topographical, geological,
hydrological, and anthropological factors. These factors are extracted and mapped us-
ing high-resolution remote sensing images and digital elevation models (DEM), and are
characterized using geographical information system (GIS) [16–18]. Remote sensing ben-
efits mapping landside areas according to the research demand using updated satellite
images [19]. These satellite images and aerial photographs, being stereoscopic, provide
three-dimensional perspectives for the characterization of landslides based on the spatial
and temporal features of the region [13,20]. This spatial and temporal thematic dataset
needs to be integrated with ground-based information. For this purpose, GIS is a widely
accepted tool as it can store and analyze extensive data [21–23]. Landslide susceptibility
mapping (LSM) is carried out using various statistical models to determine the frequency
and probability of a landslide event [24]. Some commonly used models include frequency
ratio (FR) [25–27], certainty factor (CF) [28–30], Shannon entropy (SE) [31–34], weight of
index (WOI) [35,36], and evidential belief function (EBF) [37,38]. The disadvantages of
statistical methods include lower predictive potential, simplifying complex relationships,
and human interference during feature selection [8,39]. Machine learning (ML) techniques
can minimize human interference and have the advantage of quantitatively analyzing
factor dependence and continuous updating and reproducing datasets [40,41]. Some com-
monly applied ML techniques includes logistic regression (LR) [42–44], support vector
machine (SVM) [45,46], decision trees (DT) [47,48], artificial neural network (ANN) [49–51],
naïve Bayes (NB) [52,53], and random forest (RF) [54,55]. However, ML techniques also
have limitations, including overfitting data and difficulty relating the results with existing
scientific landslide theories. In recent times, several studies have been carried out using
integrated statistical and ML techniques such as the SVM-IOE model [56], WOE and SVM
technique [35], random subspace-based classification and regression tree (RSCART) [57],
adaptive network-based fuzzy inference system with frequency ratio (FR-ANFIS) [12], and
bivariate statistical-based kernel logistic regression (KLR) models with different kernel
functions [58]. These studies suggested that the hybrid integration of models generally
performed better than individual models. The present study aims to integrate the Shannon
entropy (SE) statistical model with random forest (FR) and support vector machine (SVM)
machine learning models using the optimum feature selection process for landslide suscep-
tibility mapping. The next objective is to establish a systematic spatial relation between the
selected features and landslide occurrences using landslide susceptibility maps. Finally,
the accuracies of the SE-RF and SE-SVM models are analyzed using performance matrices
and curves.

2. Materials and Methods
2.1. Study Area and Landslide Inventory

The Mandi district in the state of Himachal Pradesh, India, has geographic coordinates
of 31◦13’ and 32◦05’ north latitudes and 76◦37’ and 77◦25’ east longitudes, and a 3951 km2

area (Figure 1). The area’s elevation increases from west to east and south to north, and
ranges between 500 m to 3400 m. The area falls in the mid-hills-sub-humid zone and
high hills temperate wet agro-climatic zone, which receives an annual average rainfall of
1240 mm and an annual temperature of 24 ◦C. The road density of the Mandi district is
155 km per 100 km2. The two major National Highways that run across the district’s length
and breadth are NH-3 (Atari–Manali–Leh) and NH-154 (Pathankot–Sundernagar–Bilaspur).
The Beas river runs through the northern part of the district whereas the southern part is
drained by the Satluj river.
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Figure 1. Study area: Mandi District, Himachal Pradesh, with landslide training and validation
datasets.

The landslide inventory map’s main elements include the geographical location of
the landslide, its date and time of occurrence, triggering factors like heavy rainfall or
earthquake, and damages incurred in terms of life and property [59]. The landslide
inventory of the Mandi district was prepared by analyzing high-resolution satellite and
Google Earth images, historical reports, and field surveys using handheld GPS (Figure 1).
A total of 1723 rainfall-induced landslides and their location, type, and triggering factor,
etc., were documented, with areas ranging from 26 m2 to 23,164 m2 and an average area
of about 844 m2. Based on accepted terminology, the landslides were then categorized as
shallow transitional slides with some deep rotational landslides [60]. Furthermore, it was
found that a common triggering factor for all the landslides was rainfall during monsoon
season and road construction activities in the region. The landslide inventory was further
split into 1199 (70%) training and 524 (30%) validation datasets using a random sampling
procedure in the ArcGIS environment.

2.2. Landslide Causative Factors (LCF’s)

The interaction between geological, morphometric, topographical, and hydrological
factors in a region influences landslides’ occurrence. Hence, the appropriate selection of
these causative factors is a primary step in landslide susceptibility analysis [61]. In the
present study, 14 landslide causative factors, namely, slope gradient, plan curvature, slope
aspect, elevation, drainage density, lithology, geology, land use and landcover (LULC),
normalized difference vegetation index (NDVI), soil characteristics, lineament density,
stream power index (SPI), topographic wetness index (TWI), and distance from the roads,
were identified using expert opinions and data availability. The list of various data sources
is presented in Table 1. These factors were rasterized to a resolution of 30 m in the GIS
environment.
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Table 1. Data purpose and sources for landslide susceptibility mapping.

Data Data Purpose Data Source Scale/Resolution

District Administration Mandi,
Himachal Pradesh

Administrative boundary of
Mandi

https:
//hpmandi.nic.in/map-of-district/

(accessed on 20 September 2020)
1:50,000

H.P. Disaster Revenue Reports
(2015–2019), Google Earth,

GSI-BHUKOSH, Handheld GPS
Landslide inventory

https://hpsdma.nic.in/
https://bhukosh.gsi.gov.in/

(accessed on 25 September 2020
1:50,000

ALOS-PALSAR DEM
Slope, curvature, aspect,

elevation, drainage density,
and TWI

https://search.asf.alaska.edu
(accessed on 12 October 2020) 12.5 m

Landsat-8 OLI NDVI and lineaments http://earthexplored.usgs.gov
(accessed on 7 October 2020) 30 m

Geological Survey of India (GSI),
BHUKOSH Geology and lithology https://bhukosh.gsi.gov.in/

(accessed on 17 July 2020) 1:50,000

Ministry of Road Transport and
Highways (MoRTH) Major roads of Mandi district https://morth.nic.in/

(accessed on 22 July 2020) 1:50,000

National Bureau of Soil Survey
and Land Use Planning
(ICAR-NBSS and LUP)

Soil-Type, depth, and
drainage of Mandi District

https://www.nbsslup.in/
(accessed on 19 July 2020) 1:50,000

An ALOS-PALSAR Digital Elevation Model (DEM) with a 12.5 m resolution was used
to derive the elevation, slope gradient, slope aspect, curvature, topographical wetness index
(TWI), stream power index, and drainage density of the study area using ArcGIS software.
The slope gradient of an area is defined as the rate of change of elevation over a distance
in the direction of the steepest fall that influences landslides in a particular area [62]. The
slope gradient map was classified as flat (<15◦), moderate (15–25◦), moderately steep
(25–35◦), steep (35–45◦), and very steep (>45◦). The plan curvature of the slope represents
the direction of the maximum slope and has an essential role in landslide occurrence as it
controls the inflow and outflow of the drainage networks of an area [63]. The curvature map
of the area was divided into five categories: convex, slight convex, flat, slightly concave, and
concave. The slope’s aspect is the orientation of the slope, measured clockwise in degrees
from 0 to 360, where 0 is north-facing, 90 is east-facing, 180 is south-facing, and 270 is west-
facing. Aspect is again an essential parameter for better understanding the slope stability
in a particular direction [64]. Elevation is extensively used in landslide susceptibility. Even
though a direct relationship between landslide occurrences and elevation could not be
established, it still affects other parameters like rainfall and seismicity [65]. The Beas river
basin surrounds the northern part of the Mandi District. It is characterized by a lower
elevation, including the Balh valley in the Mandi District. The southwestern part of the
Mandi District is characterized by low to moderate elevation zones with elevations ranging
from 600 to 1500 m. The drainage density of an area influences the surface runoff and slope
erosion potential [52]. The Beas and Satluj rivers in the Mandi District, and their tributaries
and distributaries, drain the area well. Although most of the study area has a very low
drainage density, there is still a considerable area with a moderate to high drainage density
and significant landslides. TWI is used to quantify the hydrological impact of the drainage
networks on the wetness/saturation of the soils on the slopes. The greater the value of the
TWI, greater is the soil’s water content, and the more significant is its hence tendency for
erosion [66]. The TWI map was generated by the combined arithmetic applications of slope
gradient and flow accumulation parameters, using TWI = (Ln (As)/Tan (β)), where Ln is
the natural log, As is the flow accumulation, and β is the slope gradient in radians. The
TWI of the area was classified into the following five categories: very low, low, moderate,
high, and very high. Lineament density is defined as the total length of all of the lineaments
divided by the area under study. Stream power index (SPI) describes the potential of flow

https://hpmandi.nic.in/map-of-district/
https://hpmandi.nic.in/map-of-district/
https://hpsdma.nic.in/
https://bhukosh.gsi.gov.in/
https://search.asf.alaska.edu
http://earthexplored.usgs.gov
https://bhukosh.gsi.gov.in/
https://morth.nic.in/
https://www.nbsslup.in/
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erosion of a particular point on the topographic surface. In a given catchment area, the
amount of water contributed by the upslope area increases with the increase in the slope
gradient. This, in turn, increases the SPI and risk of erosion at a given point on the surface.
An SPI map of the study area was also prepared by the combined arithmetic application
of morphometric variables, which includes the slope gradient and flow accumulation
parameters using SPI = As x Tan(β). The lineament density was computed using the line
density tool in the GIS environment. The Operational Land Imager (OLI) and Thermal
Infrared Sensor (TRIS) of the Landsat-8 satellite with 12-Band multispectral images with a
30-m resolution were procured from 2015 to 2020, from the first week of October to the last
week of November, were considered adequate due to the availability of cloud-free data just
after the monsoon season is over. The NDVI map is one of the most fundamental and widely
accepted indexes to detect vegetation and landcover changes caused by infrastructural
developmental activities [67]. NDVI provides information about landcover changes using
the energy absorbed and emitted by the objects on the Earth’s surface, and is prepared
by image analysis techniques on high-resolution Landsat-8 images using the following:
NDVI = (NIR − RED)/(NIR + RED), where NIR (Near Infra-Red Band) and RED bands
represent the spectral reflectance bands of the electromagnetic spectrum. The LULC
characteristics of an area indicate the physical characteristics of the Earth’s surface and
the change brought due to human interference. Deforestation, intensive agriculture, and
new infrastructure development may lead to soil and slide degradation, which are the
main causative factors for landslide occurrences [35]. The LULC map of the area was
generated using Landsat-8 images by the maximum likelihood classification method in
ERDAS Imagine software. An area’s geological and lithological boundaries are closely
related to the slope and rock strength, and such boundaries may lead to increased landslide
activity [61]. The study area lies within the lesser Himalayan region. The Jutog, Chail, Shah,
and Tertiary group of rocks are predominant in the district. The oldest rocks belong to Jutog
groups, whereas the youngest valley fills are of a recent age, comprising clay, sand, and
gravel beds. The Jutog formation comprises slates, Schists, and Quartzite, with Hematite
and magnetite bands included in Chail formation. The Granitic rocks are found to occur
around the Karsog area. Thin bands of Slates are also found to occur. Salt grit, locally
known as lokhan, is overlain by Mandi Darla volcanics [68]. The soil type is characterized
by the percentage of sand, silt, and clay minerals present, configuring the soil’s texture
and hydraulic properties. Even though it is not straightforward to define the complex
relationship between the soil’s hydrological properties and the mechanics through which
landslides occur, soils with a higher permeability still allow the water to flow through them,
making them more susceptible to landslides. Additionally, different types of soils have
different cohesion values. Therefore, the infiltrated water might erode the soils with lesser
cohesion values [69]. Five soils were identified in the study area, along with their depth,
drainage, and erosion properties. The road construction activities in mountainous regions
result in loss of support and crack development due to an increased strain in the upper
soil mass. In addition, road construction leads to a change in each area’s natural drainage
corridor [70]. Hence, landslide occurrences are more common along the road alignment.
The distance to the roads of the study area was divided into six classes: 0–100, 100–200,
200–300, 300–400, 400–500, and >500 m. The thematic layers of landslide causative factors
were prepared using Arc GIS 10.4.1 and GEOMATICA. The mathematical calculations for
statistical and machine learning methods were carried out in SPSS software and integrated
R-ArcGIS bridge for spatial data analysis.

In the landslide susceptibility analysis, landslide causative factors are usually selected
based on the area’s landslide categories, geological, and topographical characteristics [43].
As no definite guidelines are available for the optimum selection of these factors, many
research studies selected these factors randomly or based on data availability. However,
to avoid overfitting data and achieve the maximum predictive potential from the model,
it is necessary to quantify and select the best-suited subset from the available factors and
to remove non-essential factors with a low correlation to landslide occurrence [61]. Many
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researchers have used various techniques, like linear correlation, factor analysis, chi-square
ranking, and multi-factor approach, to carry out feature selection process but encountered
problems of excess time consumption and inability in order to decide the threshold for
minimum factor inclusion in the model [71–74]. However, some studies have used a hybrid
approach of combining feature ranking with a statistical significance test to select the
optimum feature subset. The statistical significance indicates the level of confidence based
on which a null hypothesis can be accepted or rejected. A hypothesis can only be accepted
at a 95% significance level (p > 0.05) for the systematic pairwise difference between the
different model performances. A k-fold cross-validation procedure is generally applied
to split the dataset into subsets, allowing for different training samples for each process.
In the present study, Chi-squared and information gain algorithms were used for feature
ranking, logistic regression (LR) was used as the initial predictive model, and Wilcoxon’s
Signed-Rank test and One-Sample T-Test were used to measure the statistical significance
level to obtain the optimum feature subset. The detailed methodology of the study is
depicted in Figure 2.
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2.3. Shannon Entropy (SE) Model

The entropy of a system conceptually measures the degree of randomness, disorder,
uncertainty, or instability of a system [6,33]. Claude Shannon, in 1948, developed the
concept of entropy to analyze a fundamental communication problem of information
theory, but later, this theory was found to be helpful in other areas. The concept of
the entropy of landslides refers to the probability distribution of landslide occurrences
concerning its frequency in each subclass of landslide causative factors [34,63]. Thus,
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entropy values can be used to calculate the relative weights of the data based on an index
system using the following equations

Ej= −∑
Nj
i=1 Pij log2 Pij, j = 1, . . . , n (1)

Ejmax = log2 Nj, j = number of subclasses

Hj =

(
Ejmax −

Ej

Ejmax

)
, H =(0, 1), j = 1, . . . , n

(2)

Wj= Hj∗FR (3)

where Ej and Ejmax are the entropy values, Hj is the information coefficient, and Nj is the
number of classes in each landslide causative factor. Wj is the relative weight assigned to
each landslide causative factor and FR is the frequency ratio value.

2.4. Random Forest (RF) Model

The RF model is a supervised learning algorithm that combines decision tree predic-
tors. Each tree has randomly sampled independent data, and each tree fits independently
in the data subset, achieved by splitting existing samples and regenerating random new
samples using bootstrapping [75]. The RF model is a widely used model for regression and
classification problems. It provides a high prediction accuracy, low errors, and can reduce
the risk of overfitting [42,54]. To achieve good model performance and minimize the errors
in the RF model, three hyperparameters are defined, namely: (i) the number of trees to be
grown/combined (ntree), (iii) the maximum number of features to be considered at each
split (mtree), and (iv) the size of the terminal nodes (nodesize).

2.5. Support Vector Machine (SVM) Model

SVM is a machine learning algorithm based on statistical learning and structural risk
minimization theory [76]. The primary aim of SVM is to separate the non-linear dataset us-
ing an optimal hyperplane into two sample classes. The optimal classification hyperplane
maximizes the margin of separation and splits the dataset points as ±1, where +1 refers
to the presence and -1 refers to the absence of point on the classification hyperplane. The
distance between the training points adjoining the classification hyperplane (support vec-
tors) is known as the classification margin [77]. The activation kernel function transforms
non-linear data into a higher dimensional feature space for linear classification. The kernel
functions can be classified as linear, polynomial, radial, and sigmoid. Previous studies
used these radial basis kernels, as well as polynomial kernel functions, the most in the
landslide susceptibility analysis [78,79]. The optimum hyperplane is generated using the
decision function f(x) = (ω.φ(x)) + b, whereω represents the coefficient vector defining the
orientation of the classification hyperplane, φ(x) is the input sample x converted to high
dimensional feature space, and b is the offset of hyperplane taken from origin.

3. Results
3.1. Multicollinearity Analysis

A multicollinearity test was conducted to identify the interdependence among the
landslide causative factors. Any collinearity among variables can result in errors in output
and decrease the model’s predictive potential [80]. Variance inflation factor (VIF) values >
10 or tolerance values < 0.1 suggest the problem of collinearity among the independent
variables. Out of the 14 landslide causative factors initially selected for analysis, it was
found that all factors have acceptable values of VIF and tolerance (Table 2). Hence, all
14 landslide causative factors were deemed suitable for further analysis of the optimum
feature selection and landslide susceptibility analysis.
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Table 2. Multicollinearity coefficients for landslide causative factors.

Model
Collinearity Statistics

Tolerance VIF

Slope 0.798 3.658
Aspect 0.557 2.784

Curvature 0.217 5.633
Elevation 0.451 2.741

Drainage Density 0.751 5.214
Lineament Density 366 7.212

Geology 0.421 1.322
NDVI 0.257 6.369

Soil 0.785 4.321
Roads 0.741 2.357
TWI 0.679 4.212

3.2. Optimum Selection of LCF’s

In the present study, landslide causative factors’ quality and usefulness were deter-
mined using information gain and Chi-square ranking algorithms. The logistic regression
(LR) model was applied iteratively to access the prediction capabilities of feature datasets
with an additional feature in each step.

A k-fold method was applied to split the landslide inventory dataset into 10 subsets to
produce a new training dataset for each iterative step. It can be observed from Table 3 that
both these methods produced different weights. In the next step, the Wilcoxon signed-rank
test and One-Sample T-Test were applied as a statistical significance test for a pairwise
comparison of the prediction models.

Table 3. Feature weights and order using feature ranking algorithms.

Information Gain Chi-Squared

TWI 0.301 Distance to Roads 0.579
Drainage Density 0.247 TWI 0.447
Distance to Roads 0.158 Slope Gradient 0.438

NDVI 0.147 Drainage Density 0.301
Plan Curvature 0.121 Soil 0.295
Slope Gradient 0.123 Geology 0.278

Geology 0.097 Elevation 0.199
Elevation 0.082 Slope Aspect 0.154

Slope Aspect 0.065 NDVI 0.125
Soil 0.047 Plan Curvature 0.081

Lineament Density 0.031 Lineament Density 0.065
SPI 0.020 LULC 0.042

Lithology 0.012 Lithology 0.015
LULC 0.010 SPI 0.008

The results of all of the possible model scenarios are shown in Table 4. It was observed
that Case-4 and Model-11 had relevant features, a high prediction performance, and a high
confidence level, and were selected as the optimum feature subsets for further analyses.
The selected features are shown in Figure 3.
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Table 4. Optimum feature subset using the feature selection process.

Feature Ranking
Methods Case No. Statistical Tests Model and

Subset Size Features in the Optimum Subset

Information Gain

Case-1 One Sample T-Test Model-12
Slope; Aspect; Curvature; Elevation; Drainage

Density; Lithology; NDVI; LULC; Soil; SPI; TWI
Distance to Roads

Case-2 Wilcoxon Signed-Rank
Test Model-11

Slope; Aspect; Curvature; Elevation; Drainage
Density; Geology; NDVI; Lineament Density; SPI;

TWI; Distance from Roads

Chi-Squared

Case-3 One Sample T-Test Model-9 Slope; Curvature; Drainage Density; Geology; LULC;
Soil; Lineament Density; SPI; Distance to Roads

Case-4 Wilcoxon Signed-Rank
Test Model-11

Slope; Aspect; Curvature; Elevation; Drainage
Density; Geology; NDVI; Soil; Lineament Density;

TWI; Distance from Roads

3.3. LSM Using SE-RF Model

The Ej values calculated for the Shannon entropy model were used to reclassify
the subsets of landslide causative factors, and each factor was assigned a relative Wj
value (Table 5). The landslide inventory data were split into 10-folds using the k-fold
cross-validation method. These factors were then used as inputs for the FR model. The
hyperparameters for the RF model were taken as ntree = 250, mtree = 5, and nodesize = 5.
The LSM SE-RF produced was classified into five susceptibility classes, as follows: very
low (0–0.196), low (0.196–0.372), moderate (0.372–0.552), high (0.552–0.745), and very
high (0.745–1). The percentage of area in each susceptibility class was calculated as very
low (22.47%), low (23.72%), moderate (22.12%), high (17.51%), and very high (14.17%;
Figure 4a).

Table 5. Spatial correlation between landslide occurrence and landslide causative factors.

Class Pixels Percent of
Pixels

Landslide
Pixels

Percent of
Pixels

Frequency
Ratio Shanon Entropy

FR Values Pij Wj

Landslide Causative
Factors

Slope Gradient (Degree)

Flat (<15◦) 435,014 0.102 9 0.008 0.079 0.016

0.093
Moderate (15–25◦) 948,259 0.222 85 0.076 0.341 0.069

Moderately Steep (25–35◦) 1,374,272 0.322 304 0.271 0.842 0.170
Steep (35–45◦) 1,047,813 0.245 490 0.437 1.780 0.359

Very Steep (>45◦) 466,470 0.109 234 0.209 1.910 0.386

Plan Curvature

Convex (−45–−25) 94,610 0.022 55 0.049 2.213 0.299

0.033
Slight Convex (−25–−5) 711,548 0.167 407 0.363 2.178 0.294

Flat (−5–5) 1,953,189 0.457 254 0.226 0.495 0.093
Slight Concave (5–25) 1,346,104 0.315 233 0.208 0.659 0.089

Concave (25–50) 166,377 0.039 73 0.065 1.671 0.225

Slope Aspect

Flat 33,660 0.008 4 0.004 0.452 0.054

0.013

North 484,657 0.113 126 0.112 0.990 0.119
Northeast 515,422 0.121 115 0.102 0.849 0.102

East 497,821 0.117 81 0.072 0.619 0.074
Southeast 503,993 0.118 108 0.096 0.816 0.098

South 545,067 0.128 175 0.156 1.222 0.147
Southwest 647,098 0.151 238 0.212 1.400 0.168

West 546,964 0.128 195 0.174 1.357 0.163
Northwest 497,146 0.116 80 0.071 0.613 0.074
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Table 5. Cont.

Class Pixels Percent of
Pixels

Landslide
Pixels

Percent of
Pixels

Frequency
Ratio Shanon Entropy

FR Values Pij Wj

Elevation (m)

Low (400–1000) 995,824 0.233 212 0.189 0.811 0.188

0.066
Moderate (1000–1500) 1,624,309 0.380 266 0.237 0.623 0.144

Moderately High
(1500–2000) 1,028,156 0.241 539 0.480 1.996 0.462

High (2000–2500) 537,465 0.126 101 0.090 0.715 0.166
Very High (2500–3500) 86,074 0.020 4 0.004 0.177 0.041

Drainage Density

Very Low (0–0.6) 1,299,831 0.305 150 0.134 0.439 0.017

0.269
Low (0.6–1.2) 1,908,487 0.448 229 0.204 0.456 0.018

Moderate (1.2–1.8) 877,782 0.206 337 0.300 1.459 0.058
High (1.8–2.4) 179,820 0.042 393 0.350 8.307 0.321

Very High (2.4–3.0) 5908 0.001 23 0.020 14.797 0.586

Lineament Density

Very Low (−0.1–0.3) 585,993 0.138 67 0.060 0.434 0.081

0.048
Low (0.3–0.6) 1,093,925 0.257 113 0.101 0.392 0.073

Moderate (0.6–0.9) 1,109,204 0.260 329 0.293 1.126 0.211
High (0.9–1.2) 1,085,918 0.255 407 0.363 1.423 0.266

Very High (1.2–1.6) 396,788 0.093 206 0.184 1.971 0.369

Geology

Larji Group 17,112 0.004 6 0.005 1.335 0.115

0.060
Shali Group 480,871 0.113 99 0.088 0.784 0.068

Jaunsar Group 90,819 0.021 6 0.005 0.252 0.022
Middle Siwalik Group 77,936 0.018 37 0.033 1.808 0.156

Salkhala Group 1,020,010 0.239 326 0.291 1.217 0.105
Hajaribagh Granite and

Pegmatite 481,719 0.113 77 0.069 0.609 0.052

Dharmasala Group,
Dagshai and Kasauli

Formations
761,109 0.178 186 0.070 1.679 0.145

Upper Siwalik Group 258,408 0.060 4 0.004 0.059 0.005
Rampur Group 2779 0.001 0 0.000 0.000 0.000

Lower Siwalik Group 61,338 0.014 3 0.003 0.186 0.016
Sundernagar Formation 100,192 0.023 33 0.119 0.650 0.056

Malani Volcanic Suite 15,813 0.004 1 0.007 0.112 0.010
Simlipal Ultramafics 368,975 0.086 144 0.128 1.486 0.128

Kulu Formation 534,747 0.125 200 0.178 1.424 0.123

NDVI

Waterbodies (−0.15–0.015) 16,242 0.004 33 0.029 7.736 0.574

0.121

Urban (0.015–0.14) 492,012 0.115 286 0.255 2.213 0.164
Barren Land (0.14–0.18) 470,706 0.110 152 0.135 1.230 0.091
Shrubs and Grassland

(0.18–0.27) 1,933,318 0.453 399 0.356 0.786 0.058

Sparse Vegetation
(0.27–0.36) 1,204,917 0.282 219.000 0.195 0.692 0.051

Dense Vegetation
(0.36–0.74) 154,633 0.036 33 0.029 0.813 0.060
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Table 5. Cont.

Class Pixels Percent of
Pixels

Landslide
Pixels

Percent of
Pixels

Frequency
Ratio Shanon Entropy

FR Values Pij Wj

Soil

Lesser Himalayan Soils of
Side/Reposed Slopes 2,736,453 0.641 899 0.801 1.251 0.289

0.075
Lesser Himalayan Soils of

Fluvial Valleys 280,750 0.066 124 0.111 1.682 0.389

Siwaliks Soils of
Side/Reposed Slopes 1,083,902 0.254 79 0.070 0.278 0.064

Siwaliks Soils of Fluvial
Valleys 62,713 0.015 16 0.014 0.971 0.225

Lesser Himalayas Soils of
Summits and Ridge Tops 108,010 0.025 4 0.004 0.141 0.033

TWI

Very Low (0.00–4.00) 3,192,586 0.747 349 0.311 0.416 0.004

0.140
Low (4.00–10.00) 1,031,330 0.241 436 0.389 1.610 0.014

Moderate (10.00–16.00) 37,036 0.009 208 0.185 21.383 0.182
High (16.00–22.00) 9038 0.002 105 0.094 44.232 0.377

Very High (22.00–28.00) 1838 0.000 24 0.021 49.715 0.424

Distance from Road (m)

0–100 240,721 0.056 406 0.362 6.421 0.359

0.082

100–200 196,740 0.046 297 0.265 5.747 0.321
200–300 172,030 0.040 111 0.099 2.456 0.137
300–400 156,805 0.037 80 0.071 1.942 0.109
400–500 145,918 0.034 43 0.038 1.122 0.063

>500 3,359,614 0.787 185 0.165 0.210 0.012
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3.4. LSM using SE-SVM Model 
The 10 k-fold cross-validation dataset and landslide causative factors reclassified us-

ing SE model factors were considered as an input in the radial kernel-based SVM algo-
rithm for calculating the LSMSE-SVM values. These values ranged from 0 to 1, where values 
closer to 0 indicated a lower probability of landslide occurrence and values closer to 1 
indicated a higher probability of landslide occurrence. The LSM produced using the SE-
SVM model was classified into five categories, namely very low (0–0.349), low (0.349–
0.450), moderate (0.450–0.556), high (0.556–0.674), and very high (0.674–1) (Figure 4b), us-
ing the natural breaks classification method in a GIS environment. The LSMSE-SVM map 
analysis indicated that the study area percentage was very low, low, moderate, high, and 
very high, with 17.76%, 24.35%, 26.12%, 19.28%, and 12.49%, respectively (Figure 4b).  

Figure 4. Landslide susceptibility maps: (a) SE-RF model and (b) SE-SVM model.

3.4. LSM Using SE-SVM Model

The 10 k-fold cross-validation dataset and landslide causative factors reclassified using
SE model factors were considered as an input in the radial kernel-based SVM algorithm for
calculating the LSMSE-SVM values. These values ranged from 0 to 1, where values closer to
0 indicated a lower probability of landslide occurrence and values closer to 1 indicated a
higher probability of landslide occurrence. The LSM produced using the SE-SVM model
was classified into five categories, namely very low (0–0.349), low (0.349–0.450), moderate
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(0.450–0.556), high (0.556–0.674), and very high (0.674–1) (Figure 4b), using the natural
breaks classification method in a GIS environment. The LSMSE-SVM map analysis indicated
that the study area percentage was very low, low, moderate, high, and very high, with
17.76%, 24.35%, 26.12%, 19.28%, and 12.49%, respectively (Figure 4b).

It was observed that the Wj values were the highest for the drainage density (0.269),
TWI (0.140), and NDVI (0.121), and the ranking algorithms also suggested that these
features had high ranking coefficients. Hence, these were identified as the primary factors
responsible for higher landslide susceptibility in the study area.

3.5. Performance and Validation of Models

In the present study, the predictive performance of the hybrid LSM models was
evaluated using various statistical and visual performance metrics. The confusion matrix is
generally used in classification problems. It represents the counts from actual and predicted
values using true positive (TP), true negative (TN), false positive (FP), and false-negative
(FN) values, where TP indicates the number of actual landslide pixels classified accurately,
TN indicates the number of non-landslide pixels classified accurately, FP indicates the
number of non-landslide pixels classified as landslides pixels, and FN indicates the number
of actual landslide pixels classified as non-landslides pixels. The confusion matrix accuracy,
precision, recall, root mean square error (RMSE), and mean absolute error (MAE) values
were calculated. Receiver operating characteristic (ROC) curves with area under curve
(AUC) values are generally used to access the classification performance. The higher
the AUC’s value, the better the model is for accurately predicting the landslide and non-
landslide pixels. The landslide inventory training dataset was used to generate the AUC
prediction curve, while the validation dataset was used to generate the AUC validation
curve and performance matrices. It was found that the SE-FR and SE-SVM models had
training accuracies with AUC = 96.933 and AUC = 94.053, respectively. In contrast, the
prediction capability of the models had AUC = 88.945 and AUC = 82.4 values, respectively
(Figure 5). In terms of the results obtained from the confusion matrices, the SE-FR and
SE-SVM models had values for accuracy of 0.896 and 0.854, precision of 0.958 and 0.931,
respectively, and recall of 0.814 and 0.790, respectively. The MAE and RMSE values of
the SE-FR and SE-SVM models were 0.135 and 0.174, and 0.295 and 0.347, respectively as
shown in Table 6. The results of the prediction matrices indicate that both models have
good accuracies, prediction, and recall values, and the MAE and RMSE errors generated in
both models are under acceptable limits. Based on these statistical and visual performance
metrics, it can be found that both models have a good predictive potential and acceptable
values of errors.
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Table 6. Performance metrics for the model comparison.

Model Accuracy AUC
Prediction

AUC
Validation MAE RMSE Precision Recall

SE-RF 0.8963 88.94 96.93 0.1354 0.2956 0.9589 0.8144
SE-SVM 0.8541 82.40 94.05 0.1747 0.3479 0.9314 0.7902

4. Discussion

Statistical and ML modeling is an essential component for determining the landslide
susceptibility of an area. The accuracy of statistical models depends on the data quality,
appropriate landslide causative factors, and model structure. The process of the generation
of landslide susceptibility maps is complex and requires a multistep analysis. The present
study focusses on three main issues: (a) the optimum selection of landslide causative
factors using feature selection process, (b) the mapping of landslide susceptibility of
Mandi District using hybrid SE-RF and SE-SVM models, and (c) the comparison of these
two hybrid models based on performance matrices. In the present study, 14 LCFs were
evaluated to find the optimum subset. It was found that the feature selection process,
which used a hybrid approach, resulted in the selection of 11 optimum feature subsets.

The analysis of the LSMs produced using SE-RF and SE-SVM models indicated that
areas with high TWI values, particularly in the 0–100 m distance to roads, are highly
prone to landslides. In mountainous regions like the study area, the continuous excavation
of slopes for road construction activities and the infiltration of water, especially during
monsoon season, results in an increased burden on slopes. The soil mass in such areas
becomes unstable and often results in sliding. Lower elevation regions have seen such
anthropological activities on a larger scale than the higher elevation regions of the study
area. In addition, higher-elevation regions have less accessibility, and few landslides
are reported.

Similarly, the analysis of the geology map confirms that the Middle Siwalik Group
was highly prone to landslides due to the presence of sedimentary rocks like medium-
to coarse-grained sandstone and conglomerate. The rest of the causative factors, such as
curvature, aspect, and lineaments, have a lower influence on the landslide susceptibility
of the region. Such a combination of LCF’s is seen in similar studies of mountainous
regions [5,11,12,36,48,70,81].

RF and SVM are two highly efficient machine learning models that can tackle complex
non-linear relationships among variables, and are readily used by researchers in classifica-
tion problems. FR is a combined tree-based model that can handle high dimensional spaces
and categorical features with a high accuracy and is easily interpretable. A disadvantage of
the RF model is its incapacity to calculate the relative importance of each subclass of the
landslide causative factors. SVM uses “support vectors” and performs better when data
are sparce and non-linearly separable. SVM has the advantage of having non-linear kernel
functions but has a higher tendency of overfitting. SE is a statistical bivariate model that
can calculate the factors’ relative weights and subclasses with relative ease and minimal
time consumption. The analysis of the results of this study indicated that the integration of
SE-RF and SE-SVM models resulted in increased accuracy and efficiency for both models.

In comparison with each other, the SE-RF model performed better than the SE-SVM
model. The SE-SVM model has a +2.88% higher AUC for model validation and +6.54%
higher AUC for model prediction. The performance matrices also indicated an increase
in +4.2% accuracy and +2.7% precision, with a 3.9% decrease in MAE and 5.2% decrease
in RMSE errors. This may be attributed to the overdependence of the SVM model on
data pre-processing and kernel functions. Such results are consistent with the findings
of [80] who combined LR and SVM with the IOE method, who combined EBF method
with RF to obtain landslide susceptibility, who used an ensemble of WOE with different
kernel functions of SVM, and who used various DEM’s and an integrated FR-RF model
for assessment of the landslide susceptibility. Thus, using a hybrid approach to integrate
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statistical and ML models helps eliminate the disadvantages of individual models and
increases the overall efficiency prediction capabilities of the models.

5. Conclusions

The analysis of landslide susceptibility is the primary step in managing and mitigating
landslide risk in a mountainous region. Many statistical and ML algorithms have been
used in recent years, but no definitive method is considered best for preparing the LSM
of a region. The hybrid integration of these methods has the advantage of a better pre-
diction potential compared with individual models. In the present study, a statistical SE
model is integrated with RF and SVM models to overcome the shortcomings of the indi-
vidual method. A total of 14 LCFs (slope gradient, plan curvature, slope aspect, elevation,
drainage density, lithology, geology, land use and landcover (LULC), normalized difference
vegetation index (NDVI), soil characteristics, lineament density, stream power index (SPI),
topographic wetness index (TWI), and distance from the roads) were identified. A feature
selection process was carried out using two feature ranking algorithms, i.e., information
gain and Chi-square, which were used to determine the individual scores of the LCFs, and
Wilcoxon signed-rank test and One-Sample T-Test were used to determine the statistical
significance of the factors. The results of both hybrid models indicated TWI and distance
from roads to be the two primary factors responsible for landslide occurrences in the study
area. The results also indicated that although both models performed satisfactorily, the
SE-RF model had +2.88% and +6.54% higher AUC values than the SE-SVM model. The
main advantage of such an approach is that only relevant LCFs were used to generate the
LSM. The integration of models helps establish an effective spatial relationship between
landslide occurrences and LCFs, while reducing overfitting problems. This study will help
regional planners and stakeholders in effective landslide risk management and sustainable
developmental activities.
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