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Abstract: This study validates the hourly satellite based and reanalysis based global horizontal ir-
radiance (GHI) for sites in South Africa. Hourly GHI satellite based namely: SOLCAST, Copernicus 
Atmosphere Monitoring Service (CAMS), and Satellite Application Facility on Climate Monitoring 
(CMSAF SARAH) and two reanalysis based, namely, Fifth generation European Center for Me-
dium-Range Weather Forecasts atmospheric reanalysis (ERA5) and Modern-Era Retrospective 
Analysis for Research and Applications (MERRA2) were assessed by comparing in situ measured 
data from 13 South African Weather Service radiometric stations, located in the country’s six macro 
climatological regions, for the period 2013–2019. The in situ data were first quality controlled using 
the Baseline Surface Radiation Network methodology. Data visualization and statistical metrics rel-
ative mean bias error (rMBE), relative root mean square error (rRMSE), relative mean absolute error 
(rMAE), and the coefficient of determination (R2) were used to evaluate the performance of the da-
tasets. There was very good correlation against in situ GHI for the satellite based GHI, all with R2 
above 0.95. The R2 correlations for the reanalysis based GHI were less than 0.95 (0.931 for ERA5 and 
0.888 for MERRA2). The satellite and reanalysis based GHI showed a positive rMBE (SOLCAST 
0.81%, CAMS 2.14%, CMSAF 2.13%, ERA5 1.7%, and MERRA2 11%), suggesting consistent overes-
timation over the country. SOLCAST satellite based GHI showed the best rRMSE (14%) and rMAE 
(9%) combinations. MERRA2 reanalysis based GHI showed the weakest rRMSE (37%) and rMAE 
(22%) combinations. SOLCAST satellite based GHI showed the best overall performance. When 
considering only the freely available datasets, CAMS and CMSAF performed better with the same 
overall rMBE (2%), however, CAMS showed slightly better rRMSE (16%), rMAE(10%), and R2 (0.98) 
combinations than CMSAF rRMSE (17%), rMAE (11%), and R2 (0.97). CAMS and CMSAF are viable 
freely available data sources for South African locations.  

Keywords: satellite; reanalysis; global horizontal irradiance; SOLCAST; Copernicus Atmosphere 
Monitoring Service (CAMS); Satellite Application Facility on Climate Monitoring (CMSAF); Fifth 
generation European Center for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5); 
Modern-Era Retrospective Analysis for Research and Applications (MERRA2) 
 

1. Introduction 
Solar radiation is the electromagnetic radiation or energy emitted from the surface of 

the Sun because of the fusion of atoms inside the sun [1]. Global horizontal Irradiance 
(GHI) is the electromagnetic radiation that reaches the Earth’s horizontal surface after 
passing through the atmosphere and is the sum of direct normal irradiance (DNI), which 
is the incident radiative flux on the surface without interacting with the atmosphere and 
diffuse horizontal irradiance (DIF), which is because of the scattering of radiation by the 
atmospheric constituents [2]. Accurate knowledge of GHI is important for the technical 
and economic evaluation of solar energy technologies [3–8] and in the development and 
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validation of empirical models [6]. Amongst the myriad of applications, GHI is important 
in climate change and environmental studies, agricultural sciences, hydrology, atmos-
pheric research [6,7], and in astronomy [6]. GHI is also important in assessing ultraviolet 
effects on health as well as in material science [6], and in the development of a typical 
meteorological year of a country. Therefore, obtaining true solar measurements at a loca-
tion is important.  

GHI measurements taken from radiometric stations using at least a good quality 
(broadband) operational pyranometer remain the most accurate way to collect GHI data. 
However, GHI monitoring stations are sparse and expensive to install and maintain. As a 
result, data are only available for a limited number of locations [6,8–14]. 

Alternative sources of GHI data include models such as the Ångström–Prescott 
model. Though the model with calibrated coefficients can be used to accurately estimate 
GHI data [13–15], the drawback might be the unavailability of sunshine duration data that 
are needed as an input at some areas. Another limitation of the Ångström–Prescott model 
is that the highest possible temporal resolution of estimated GHI is the daily average, so 
the model is not capable of estimating hourly averages. According to Žák et al. [16], GHI 
data can also be generated by interpolation of measured in situ GHI. The drawback of the 
interpolation method is the biases that are introduced by interpolation, and the additional 
errors introduced by using sparsely distributed in situ stations. 

Given that GHI datasets are critical for better understanding of wider coverage of 
solar radiation [10], satellite and reanalysis based GHI datasets can be used to provide 
reliable alternative GHI data and compensate for the scarcity of monitoring stations by 
increasing the density of GHI data. The satellite or reanalysis-based datasets must first be 
validated by using GHI data from a good quality pyranometer [9,11,12,16–20] to obtain 
proof of their reliability before they are used in different applications.  

The satellite based, reanalysis based, and in situ measurements differ in spatial and 
temporal resolutions. This creates challenges when using satellite based and reanalysis 
based GHI datasets as alternative GHI sources [21]. To address these challenges, there has 
been an improvement in the spatio-temporal resolution of satellites and reanalysis-based 
datasets in the past few years [21,22]. According to Slater (2016) [22], the improvement 
was due to the advances in modeling and data assimilation systems. However, there are 
still challenges due to limited spatio-temporal coverage of observation data in some areas 
as required by the models, for example, in South Africa, there is only one Baseline Surface 
Radiation Network (BSRN) station. Baseline Surface Radiation Network (BSRN) was es-
tablished in 1992, and is a centralized database that archives one minute temporal-resolu-
tion in situ radiation measurements from 59 stations worldwide. The archived data are 
used for the validation of satellite data and improvement in radiative transfer calculations 
in climate models [23].  

The algorithms that are used to convert satellite images to estimate GHI data depend 
on inputs of meteorological parameters (albedo, cloud thickness, aerosols, water vapor, 
and ozone content). When the parameters have not been measured in some areas, esti-
mated or monthly climatologies are used. Climatological values might not fully represent 
changes in atmospheric constituents, and as a result, introduce errors in the estimated 
GHI data when used as inputs. 

This study aims to contribute to the reviewed literature by quantifying the errors 
between the in situ measured GHI and estimated gridded datasets such as to validate 
satellite-based datasets (SOLCAST, CAMS, and CMSAF SARAH) and reanalysis-based 
datasets (ERA5 and MERRA2) relative to quality controlled in situ data from 13 reference 
stations managed by the South African Weather Services (SAWS). The validation was con-
ducted on an hourly temporal scale over all six macro climatic zones of South Africa. This 
can be applied in studies for overall local accuracy of the datasets to be evaluated. 

Validated datasets could be used to estimate GHI in the long-term and over a wide 
spatial resolution in South Africa. This will enable climate studies, which is generally not 
possible with ground observed data because there are no continuous long-term records 
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covering decades and covering all areas of the country. The validated datasets could also 
be used as an additional quality control parameter of the measured data. The bias infor-
mation from different sources of GHI in different areas of the country can be used as a 
basis for bias correction. The bias corrected data sources could also be merged with meas-
ured in situ data by applying interpolation with external drift kriging to produce most 
accurate GHI maps than when using an individual data source, as shown by [24,25]. 

2. Literature Review 
GHI varies from point to point in an area and from time to time. Validation studies 

have been carried out worldwide to quantify the errors between in situ measured GHI 
and gridded data sources and is an ongoing process. This is because the algorithms and 
inputs that are used to generate the gridded data sources are continuously evolving. The 
findings, the challenges, and recommendations of some of the studies that have been car-
ried out are summarized in Table 1. 

The study by Bright [26] validated hourly SOLCAST GHI data, which is satellite 
based, against 48 BSRN stations by considering individual stations and grouping stations 
into global climates. There was a good agreement across all climates (Table 1). The author 
emphasized that a comparative study against freely available alternative satellite based 
and reanalysis GHI datasets is necessary to gauge its performance. Yang and Bright [17] 
validated six satellite based and two reanalysis based GHI data sources using hourly data 
from 57 BSRN stations spread across all continents. They found that reanalysis products 
did not perform well compared to satellite-based products, since they overestimated irra-
diance in most sites (Table 1). The authors found that each gridded product had a site 
where it performed better, so testing different available gridded datasets at different sites 
was emphasized. It was also shown that SOLCAST, which is a commercial satellite-based 
product, did not outperform the freely available products at all sites, but overall, it was 
the best performing product. 

Merchand et al. [27] validated the CAMS satellite-based dataset against hourly GHI 
from 16 stations from the Royal Meteorological Institute KNMI in the Netherlands, a tem-
perature climate without a dry season and warm winter. The reference stations were lo-
cated inland and along the coast. They found that CAMS satellite-based datasets could 
very well estimate the hourly-to-hourly variation in GHI (Table 1). The biases reported 
were suspected to be due to the McClear model, described by Lefèvre et al. in [28], and an 
input to the Heliosat-4 method, described by Qu et al. in [29], but failed to identify actual 
cloud free conditions in some regions due to errors in aerosols used as inputs to the 
McClear model. Negative rMBEs were reported from stations located along the southern 
coast and positive rMBE were reported from inland stations (Table 1). The authors con-
cluded that the data were of low moderate quality and disagreed with some studies, for 
example, in [9], which found the data to be of moderate quality. The disagreement was 
suspected to be due to the low number of cloud free days in the Netherlands. 

Thomas et al. [30] used the CAMS satellite based against hourly GHI data from 42 
stations in Brazil to assess the quality of the satellite datasets in Brazil. Prior to their vali-
dation exercise, the datasets were only validated in Europe and North Africa. They found 
that the CAMS satellite-based dataset could estimate hourly GHI (Table 1). The biases 
increased with the viewing angle of the satellite. Additionally, the biases were high in 
tropical climates because of high humidity. CAMS overestimated GHI, but it was deemed 
suitable for solar energy applications.  

Ameen et al. [20] validated CAMS satellite-based dataset in Northeast Iraq, which 
has a complex topography, using hourly observation data from nine stations. It was found 
that the CAMS satellite-based dataset captured the spatio-temporal trends of the meas-
ured data in clear sky, cloudy sky, and all sky conditions (combination of clear sky and 
cloud conditions). The performance was found to be better for clear sky and all sky con-
ditions, but worse in cloudy sky conditions. For all sky, the results were as shown in Table 
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1. The dataset was recommended for use in solar resource applications. Further validation 
of the CAMS satellite-based data in other areas was recommended.  

Marchand et al. [9] validated the CAMS satellite-based dataset against hourly ob-
served GHI from five stations located in northern and central parts of Morocco to investi-
gate how the bias of the stations located in the same climate varied. They found that the 
dataset was capable of estimating GHI (Table 1) and CAMS slightly overestimated GHI. 
Overall, there was a variation from site to site, but the dataset was recommended as a 
reliable source of estimated GHI data.  

Trolliet et al. [31] validated satellite-based datasets (CMSAF SARAH and CAMS) and 
reanalysis based (ERA5 and MERRA2) against hourly observed GHI data in the tropical 
Atlantic Ocean collected by five buoys of the Prediction and Research Moored Array in 
the Tropical Atlantic (PIRATA) network. The PIRATA network was established in the 
mid-1990s to study ocean–atmosphere interactions in the tropical Atlantic that affect re-
gional weather and climate variability [32]. It was found that satellite-based datasets per-
formed well (Table 1). Reanalysis datasets were found to report clear sky conditions while 
the actual conditions were cloudy and vice-versa. The reanalysis cloud parameterization 
scheme was suspected to be weak and contributed to large biases reported. ERA5 and 
MERRA2 were not recommended to estimate hourly temporal variability of GHI in the 
tropical Atlantic Ocean, but that they could be used in annual variability studies. The lim-
itations of the study were that some buoys gathered African dust and the pyranometers 
may have been affected by the motion of the buoys; these factors might have contributed 
to the biases reported. 

Table 1. Summary of the validation results from the literature review (the rMBE and rRMSE results were rounded off to 
the nearest whole number). 

Study  Dataset rMBE rRMSE R2 
Bright [26] SOLCAST (climates)  −0.1% to 1% - - 

 
SOLCAST (individual sta-

tions) −18% to 6% 6% to 44% 0.42 to 0.97 

Yang and Bright 
[17] SOLCAST  −5% to 3% 9% to 30% - 

 CAMS −14% to 30% 9% to 45% - 
 CMSAF 27% to 40% 10% to 80% - 
 ERA5 15% to 72% 8% to 120% - 
 MERRA2 20% to 76% 10% to 128% - 

Merchand et al. [27] CAMS −4% to 10% 20% to 28% 0.94 to 0.97 
 CAMS (inland) 1% to 10% 20% to 28% 0.94 to 0.97 
 CAMS (southern coast) −4% to −3% 23% to 24% 0.96 

Thomas et al. [30] CAMS 2% to 16% 17% to 35% 0.89 to 0.97 
Ameen et al. [20] CAMS (all sky conditions) −5% to 5.3% 14% to 20% 0.92 to 0.96 

Marchand et al. [9] CAMS −4% to 7% 11% and 21% 0.92 to 0.98 
Trolliet et al. [31] CMSAF SARAH 2% to 12% - 0.92 to 0.98 

 CAMS 2% to 8% - 0.93 to 0.97 
 ERA5 −2% and 5% - 0.88 to 0.93 
 MERRA2 −10% to 4% - 0.83 to 0.91 

Since the satellite and reanalysis gridded datasets considered were generated by ap-
plying different algorithms, a variation in performance was expected in different stations, 
hence the need for quantifying errors in different locations.  
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3. Materials and Methods 
3.1. Observation or Reference GHI Data  

The South African Weather Service (SAWS) manages a radiometric network of 13 
stations that are distributed in all six macro-climate regions in South Africa (with location 
and climate as shown in Figure 1 and given in Table 2). The color shaded climate zones 
shown in Figure 1 are based on SAWS macro classification and the climate codes, which 
are indicated in square brackets, are the “micro” zones based on the Council for Scientific 
and Industrial Research (CSIR) Köppen–Geiger climate classification (KGCC), as given by 
Conradie in [33].  

Information on each of the stations (including site parameters, instrumentation, dat-
alogging, and quality control) is given in [15,34,35]. The area of study included all 13 South 
African Weather Service radiometric sites.  

 
Figure 1. A map showing the location of the South African Weather Service’s radiometric station, SAWS macro climate 
zones, and with CSIR Köppen–Geiger “micro” climate in square brackets (Adapted from [15], [34], and [35]). 
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Table 2. South African Weather Services radiometric stations with Köppen–Geiger climate classification (KGCC), altitude, 
latitude, climatic zones, average number of clear sky days per year (percentage of clear sky days per year), annual aggre-
gated diffuse fraction, humidity, and the percentage of data outliers removed per station (colors are described in Table 3). 

Station KGCC Altitude 
(m) 

Latitude 
(°) 

GHI Observation 
Period 

Clear sky 
days 

Diffuse 
Fraction 

Humidity Outliers (%)  

Upington BWh 848 −28.48 01-02-2014 to 30-11-2019 97 (27) 0.18 35.4 4.47 
Prieska BWh 989 −29.68 01-09-2013 to 31-08-2019 78 (21) 0.18 38 3.88 
De Aar BWk 1284 −30.67 01-05-2014 to 31-12-2019 58 (16) 0.2 44.5 4.23 

Bethlehem Cwb 1688 −28.25 01-01-2015 to 31-12-2019 43 (12) 0.31 59.1 6.57 
Irene Cwb 1524 −25.91 01-03-2014 to 31-12-2019 62 (17) 0.3 54.9 2.99 

Mahikeng BSh 1289 −25.81 01-01-2016 to 31-12-2019 77 (21) 0.24 43.9 6.4 
Polokwane BSk 1233 −23.86 01-03-2015 to 31-12-2019 49 (13) 0.31 58.2 5.12 
Nelspruit Cwa 870 −25.39 01-02-2014 to 31-12-2019 39 (11) 0.4 62 5.85 

Thohoyandou BSh 619 −23.08 01-03-2015 to 31-10-2017 50 (14) 0.34 60.8 4.06 
Mthatha Cfb 744 −31.55 01-07-2014 to 31-12-2019 19 (5) 0.33 68.1 4.98 
Durban Cfa 91 −29.61 01-03-2015 to 31-12-2019 20 (5) 0.39 72.8 5.34 

Cape Point Csb 86 −34.35 01-02-2015 to 31-12-2019 12 (3) 0.34 77.2 4.96 
George Cfb 192 −34.01 01-01-2015 to 31-12-2019 11 (3) 0.36 79.2 2.75 

Table 3. The coding representing the different levels of clear sky days, diffuse fraction, and humidity. 

Parameter/Colour Humidity (H) Clear Sky Days (CL) Diffuse Fraction (DF) 
Green H < 50% CL > 20% DF < 0.2 
Yellow 50% < H < 60% 15% < CL < 20% 0.2 < DF < 0.25 

Blue 60% < H < 70% 10% < CL < 15% 0.25 < DF < 0.32 
Orange H > 70% CL < 5% DF > 0.32 

In Table 2, the cells for clear sky days, diffuse fraction, and humidity are color coded. 
The coding represents different levels of clear sky days, diffuse fraction, and humidity. 
The meteorological information is used to explain the reason behind the performance of 
satellite-based and reanalysis datasets in different stations. The color-coding limits and 
distributions are summarized in Table 3.  

ERA5 hourly cloud data from 2013–2019 were used to calculate the average clear sky 
days per year for each station, and this information was used to evaluate the performance 
of datasets based on the frequency of cloud occurrences. Diffuse fraction and relative hu-
midity information for the study site were from Mabasa et al. (2018) [35].  

3.2. Reanalysis Data  
The choice of reanalysis datasets was based on the general free availability. The spa-

tial and temporal characteristics as well as the level of accessibility and applicable regions 
of the reanalysis datasets are given in Table 4. Reanalysis datasets are generated by assim-
ilating historical observation data from various platforms (ground observation, satellites, 
ships, and aircrafts) and numerical weather prediction models using a consistent algo-
rithm. Reanalysis datasets have an advantage of global spatial coverage and long-time 
series [36]. 

ERA5, as described by Hersbach et al. (2020) [37], is the fifth generation European 
Centre for Medium-Range Weather Forecasts (ECMWF, Reading, United Kingdom) at-
mospheric reanalysis of the global climate. ERA5 has a spatial resolution of 0.25° x 0.25° 
and has an hourly time resolution. It uses a new advanced model cycle for Integrated 
Forecasting System (IFS Cycle 41r2) for data assimilation, which increased the computa-
tional efficiency and forecast accuracy. ERA5 uses climatological aerosol information, and 
the Global Ozone Chemistry Aerosol Radiation and Transport (GEOCART) stratospheric 
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sulfate aerosol from volcanic eruptions is also included [37]. The dataset covers a period 
from 1979 to the present, hourly data are available in Joule per square meter (J/m2), so to 
obtain the hourly values in watt per square meter (W/m2), values should be divided by 
3600 (number of seconds in one hour). 

The Modern-Era Retrospective Analysis for Research and Applications, version 2 
(MERRA2), which was introduced by Gelaro et al. (2017) in [38], assimilates space-based 
observations of aerosols and represents their interactions with other physical processes in 
the climate system. MERRA2 products are generated using the GEOS 5.12.4 model, which 
uses real time aerosols as inputs. MERRA2 data are available from 1980 to the present 
with two months delay, has a spatial resolution of 0.5° × 0.625°, and has an hourly resolu-
tion for surface irradiance variables [38]. 

3.3. Satellite-Based Datasets  
The choice of satellite-based datasets was based on the general free availability and 

availability for research purposes. Information on the satellite datasets for this study is 
given in Table 4. The relationship between the satellite images and the actual ground GHI 
was established with an algorithm that combines cloud information, which is generated 
from a clear sky model and cloud index. Aerosol, water vapor, linke turbidity, and ozone 
information were also added as inputs to an algorithm, which will then generate esti-
mated GHI at the surface. The technique is also described in the literature including 
Ameen et al. (2018) [20].  

The Surface Solar Radiation Data Record—Heliosat Edition 2 (SARAH) dataset, as 
described by Pfeifroth et al. (2019) [39] is provided by the EUMETSAT Satellite Applica-
tion Facility on Climate Monitoring (CMSAF) and covers the time period from 1983 to 
present, with the temporal resolution ranging from 30 minute instantaneous values. 
Amongst the other products, the dataset provides GHI. CMSAF SARAH datasets are de-
rived from the geostationary METEOSAT satellite service of the first and second genera-
tion, which are geostationary over Europe, Africa, and a small part of South America. In 
this case, the data were retrieved by using the Heliosat method to estimate the cloud in-
dex, clear sky radiative transfer model, and several climatological parameters (precipita-
ble water vapor, monthly AOD climatology, monthly ozone climatology, and ground al-
bedo). CMSAF SARAH data have a higher stability in early years due to the removal of 
erroneous satellite images during the transition from the first to the second generation 
METEOSAT satellite. CMSAF, as also given in Table 4, has a spatial resolution of 0.05° x 
0.05° [39].  

CMSAF SARAH was validated using twelve BSRN stations from three continents, 
eight stations from Europe, one station from South America, and three from Africa (South 
Africa, Algeria, and Namibia). The validating irradiance datasets were first quality con-
trolled using BSRN methodology and outliers were discarded [40]. 

The Copernicus Atmosphere Monitoring Service (CAMS) radiation service is part of 
the Copernicus Program, an Earth observation program coordinated and managed by the 
European Commission in partnership with the European Space Agency. The CAMS radi-
ation service is available for free via the CAMS [41] and solar radiation data (SoDa) [42]. 
It makes use of the Heliosat-4 method [29], which models the radiative transfer in the 
atmosphere to compute the solar radiation parameters. The McClear model [28] is used to 
estimate clear sky irradiance. The AVHRR Processing scheme Over cLouds, Land and 
Ocean (APPOLLO) method is used to process the satellite images from the German Aer-
ospace Center database to yield information (cloud coverage, cloud level, and cloud type) 
for each pixel (3 km at nadir) every 15 min [29]. Ground albedo from Moderate Resolution 
Imaging Spectroradiometer (MODIS) is used, as given in Qu et al. (2017) [29]. The CAMS 
radiation service provides a time series of GHI with a spatial coverage of −66° to 66° in 
both latitudes and longitudes (i.e., North to South and East to West directions). The data 
are interpolated to the point of the user’s interest. The time coverage of data was from 1 
February 2004 to date with a two day delay and with a temporal resolution that ranged 
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from 1-minute average, 15-minute averages, hourly averages, daily averages, and 
monthly averages [29,41,42]. 

The CAMS satellite dataset is regularly validated using global BSRN and non BSRN 
stations. The validating in situ irradiation datasets were first quality controlled using the 
BSRN methodology and outliers were discarded. The recent validation process in 2020 
used 32 in situ stations and only one station from Southern Africa, Namibia (Gobabeb), 
was used in the recent validation process [43].  

SOLCAST is a commercial company [17,26,44]. The SOLCAST method estimates so-
lar irradiance from satellites by detecting cloud cover and characterizing cloud cover in 
terms of its impact on solar radiance, modeling the available solar irradiance under clear 
skies and then combining the estimate of the amount of solar irradiance reaching the 
Earth’s surface after it passes through the clouds. In Africa, the EUMETSAT Meteosat sat-
ellite and REST2v5 clear sky model [45] with MERRA2 reanalysis inputs (for metadata) 
were used in SOLCAST GHI data estimation. The temporal resolution ranged from basic 
time series (hourly averages) and alternative time series (5 minutes, 10 minutes, 15 
minutes, and 30 minutes). One-minute data are also available on request. The data are 
available from January 2007 to date with a seven day delay, through the SOLCAST web-
site [44]. SOLCAST provides global coverage of the data, except for ocean and polar re-
gions, with a spatial resolution of 1–2 km [17,26,44]. According to the website on SOL-
CAST validation and accuracy [46], SOLCAST has considered 46 of the BSRN sites for 
validation of GHI and reports a maximum bias deviation of 2.01%. The BSRN sites for 
steep mountain areas, oceanic, and polar sites were excluded in the SOLCAST validation. 

Table 4. Summary of the satellite-based and reanalysis based datasets. 

Data Data de-
rived from 

Time Period Spatial 
Resolution 

Temporal 
Resolution 

Data 
Availability 

Region 
Available 

SOLCAST 
[40]  satellite 2007 to present 1–2 km 1 hour   Not free 

Almost 
Global (ex-
cept Polar 

regions and 
oceans) 

CMSAF SA-
RAH [37] 

satellite 1983 to present 0.05° x 0.05° (5 km) ½ hour, 1 
day 

Free 

Europe, Af-
rica, and a 

small part of 
South Amer-

ica  

CAMS  
[39] satellite 2004 to (current day - 2 days) 

*Interpolated to a 
point of interest  

1 minute, 
15 minutes 
1 hour, 1 

day, 
1 month 

Free 

Europe, Af-
rica, Middle 
East, Eastern 

part of 
South Amer-
ica and At-

lantic Ocean  
ERA5 [35] reanalysis 1979 to present 0.25° x 0.25° (31 km) 1 hour Free Global 
MERRA2 

[36]   reanalysis 1980 to (present—2 months)  0.625° x 0.5° (50 km) 1 hour   Free Global 

*(3–5 km in Southern Africa). 

3.4. Methodology  
The methodology used in this study is summarized in the flow chart in Figure 2. The 

methodology consists of the following steps: (1) Preprocessing and quality control of in-
situ GHI data; (2) Averaging one minute to 15 minutes; (3) Averaging four slots of 15 
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minute to obtain hourly averages; (4) Gathering and preprocessing of satellite-based and 
reanalysis datasets; (5) Matching common time steps of in situ GHI and satellite/reanaly-
sis-based datasets; (6) Calculation of hourly zenith angles and removing datasets that fall 
on points where the zenith angle is greater than 90 degrees; and (7) Calculation of statis-
tical metrics. 

 
Figure 2. The flowchart summarizes the approach used from data prepossessing to data validation. 

3.5. Pre-Processing of Observation Data and Validation Process 
One-minute average GHI data recorded from each of the 13 stations using a CMP11 

pyranometer from Kipp and Zonen were pre-processed, subjected to “physical possible” 
limit check, which is aimed at detecting extremely large errors in the radiation data and 
“extremely rare” values checks of the BSRN QC test [23,47,48], and the outliers were re-
moved. The minute data that passed the BSRN QC test were converted to 15 minute av-
erages; then hourly averages were calculated from four slots of 15-minute averages. This 
methodology was used in [5,15,30,34,35,48,49]. All the datasets were synchronized to 
South African standard time (SAST) to avoid the misalignment of time series datasets. 
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Hourly average GHI observation data were also further processed by removing all 
the data points recorded on hours when the solar zenith angle was greater than 90°. 
Hourly averages were then averaged to daily average values. Daily averages were then 
subjected to HelioClim model QC, described by Geiger et al. in [50]. Hourly data on days 
that failed the HelioClim QC test were removed before any further analysis. The percent-
age of outliers removed from each station is given in the last column in Table 2.   

Solar zenith angles were calculated using the solar position algorithm (SPA) on Py-
thon PV_LIB [51,52]. Hourly average values were then compared to corresponding hourly 
average CAMS, CMSAF SARAH, SOLCAST, ERA5, and MERRA2. 

SOLCAST, ERA5, MERRA2, and CAMS were sourced as hourly averages while 
CMSAF SARAH was sourced as instantaneous 30 minute averages and then 2-time steps 
were averaged to obtain hourly averages.  

3.6. Statistical Metrics 
The statistical metrics that were used to quantify the difference between hourly esti-

mated and hourly measured GHI are relative mean bias error (rMBE), relative root mean 
square error (rRMSE), relative mean absolute error (rMAE), and the coefficient of deter-
mination (R2). These statistical metrics are given in the literature [53,54] and have also 
been described and applied in the authors’ previous studies [15,34].  

3.7. Most Feasible Gridded Dataset  
The most feasible option from the satellite-based and reanalysis datasets at each of 

the 13 stations is determined by first considering the best performing model for each met-
ric. The most feasible option at a station is then the model with the maximum count across 
all the metrics. A numerical relative rating of the optimal metric is calculated as the max-
imum count relative to the four metrics (rMBE, rRMSE, rMAE, and R2).  

4. Results 
The threshold or the range of the statistical metrics that are used to benchmark the 

optimal and/or the best applicable hourly gridded products based on their performance 
when compared to measured hourly data in the study area are summarized in (Table 5). 
The interval metrics were based on the distribution of the results.  

Table 5. Range of the statistical metrics used to benchmark the applicability of the gridded datasets. Green represents 
excellent performance, blue good performance, and orange poor performance). 

Skill rMBE rRMSE rMAE R2 
Poor 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > | ± 10|% rRMSE > 20% rMAE > 15% 𝑅𝑅2 < 90 
Good | ± 5|% < rMBE ≤ | ± 10|% 10% < rRMSE ≤ 20% 10% < rMAE ≤ 15% 90 < 𝑅𝑅2 < 95 

Excellent  rMBE ≤ | ± 5|% rRMSE ≤ 10% 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 10% 𝑅𝑅2 > 95 

4.1. CAMS 
From Figure 3, CAMS underestimated GHI in Upington (−3%), Prieska (−0.1%), De 

Aar (−2%), and Cape Point (−0.1%); and overestimated GHI at the remaining nine stations, 
rMBE ranged from 2%–6%. From Figure 4, hourly rRMSE was less than and slightly above 
20% for all stations. When considering the correlation R2 results in Table 6, CAMS had 
𝑅𝑅2 > 0.96 in all stations, suggesting that measured and estimated data correlate well. 
Good correlation was also demonstrated by scatterplots in Figures S1 to S13, given in the 
Supplementary Materials.  
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Figure 3. Hourly relative mean bias error of gridded datasets against measured in situ GHI. 

 
Figure 4. Hourly relative root mean square error of gridded datasets against measured in situ GHI. 

From Figures 3–5 and Table 6, the hourly metrics for CAMS varied as given below: 
• −3% ≤ hourly 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 6%;  
• 10% ≤ ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 𝑟𝑟𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 21%;  
• 6% ≤ hourly 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 13%; and 
• 0.962 ≤ hourly 𝑅𝑅2 ≤ 0.995.  
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Figure 5. Hourly relative mean absolute error of gridded datasets against measured in situ GHI. 

Table 6. Hourly mean measured GHI (W/m2) and correlation (R2) of gridded datasets against measured in situ GHI. Green 
color represents the best (𝑅𝑅2 > 95), blue color represents the intermediate (90 < 𝑅𝑅2 < 95), and orange color represents 
the poor correlation (𝑅𝑅2 < 90)}. 

Station Mean GHI 
(W/m2) 

CAMS CMSAF SOLCAST ERA5 MERRA2 

Upington 522.86 0.995 0.995 0.996 0.987 0.985 
Prieska 490.95 0.986 0.983 0.991 0.962 0.955 
DeAar 497.67 0.984 0.981 0.992 0.958 0.833 

Bethlehem 459.50 0.976 0.976 0.983 0.932 0.914 
Irene 458.15 0.973 0.969 0.979 0.932 0.907 

Mahikeng 492.13 0.972 0.978 0.977 0.923 0.826 
Polokwane 466.63 0.978 0.977 0.985 0.932 0.910 
Nelspruit 404.24 0.962 0.908 0.970 0.868 0.823 

Thohoyandou 408.46 0.972 0.970 0.983 0.922 0.856 
Mthatha 382.77 0.975 0.976 0.975 0.915 0.873 
Durban 364.64 0.972 0.977 0.979 0.919 0.871 

Cape Point 415.41 0.970 0.972 0.969 0.938 0.920 
George 387.46 0.968 0.974 0.977 0.909 0.875 

4.2. CMSAF 
From Figure 3, CMSAF underestimated GHI in Upington (−2%) and De Aar (−1%) 

and overestimated GHI at the remaining 11 stations; rMBE ranged from 0%–7%. In Figure 
4, when considering rRMSE, CMSAF showed a very good performance at Upington 
(10%), the worst performance at Nelspruit (33%), and the rest of the stations had a rRMSE 
between 10% and 20%. 

From Table 6, when considering the hourly correlation R2 results, CMSAF had 𝑅𝑅2 >
0.96 at all stations except in Nelspruit (0.908), which shows a very good correlation be-
tween the in situ observed and estimated data. This is also demonstrated by scatterplots 
in Figures S1 to S13, given in the Supplementary Materials.  

From Figures 3–5 and Table 6, the hourly metrics for CMSAF varied as given below: 
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• −2% ≤ ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 7%;  
• 10% ≤ ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 𝑟𝑟𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 33%;  
• 7% ≤ ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 19%;  and 
• 0.908 ≤ hourly 𝑅𝑅2 ≤ 0.995. 

4.3. SOLCAST 
From Table 7, which gives the most feasible hourly dataset per station by combining 

all the hourly metrices, SOLCAST was most prominent in 10 out of 13 stations for the 
hourly aggregates. From Figure 3, the SOLCAST dataset slightly underestimated hourly 
GHI at De Aar (−0.1%), Mthatha (−2%), George (−3%), and Durban (−2%) and it overesti-
mated hourly GHI at the rest of the stations; rMBE ranged from 1% to 4%. From Table 6, 
SOLCAST had the correlation 𝑅𝑅2 > 0.96 in all 13 stations, showing a very good agree-
ment between the measured and estimated data. This was also demonstrated by the scat-
terplots in Figures S1 to S13, given in the Supplementary Materials. 

Table 7. Best performing gridded dataset per hourly metric, most feasible model, and level of performance (rating). The 
colors were used to show the best performing gridded dataset based on the hourly statical metric per station and the most 
feasible dataset per station based level of rating out of 4 (the number of statistical metrics used). Green represents SOL-
CAST, yellow CAMS, blue CMSAF, orange ERA5, and red MERRA2. 

Hourly Minimum 
rMBE 

Minimum 
rRMSE 

Minimum 
rMAE 

Maximum 
R2 

Most  
Feasible Rating 

Upington SOLCAST SOLCAST SOLCAST SOLCAST SOLCAST 4/4 
Prieska CAMS CMSAF SOLCAST SOLCAST SOLCAST 2/4 
De Aar ERA5 SOLCAST SOLCAST SOLCAST SOLCAST 3/4 

Bethlehem CMSAF SOLCAST SOLCAST SOLCAST SOLCAST 3/4 
Irene ERA5 SOLCAST CAMS SOLCAST SOLCAST 2/4 

Mahikeng MERRA2 CMSAF CMSAF CMSAF CMSAF 3/4 
Polokwane ERA5 SOLCAST SOLCAST SOLCAST SOLCAST 3/4 
Nelspruit ERA5 SOLCAST SOLCAST SOLCAST SOLCAST 3/4 

Thohoyandou SOLCAST SOLCAST SOLCAST SOLCAST SOLCAST 4/4 
Mthatha SOLCAST SOLCAST CAMS CMSAF SOLCAST 2/4 
Durban SOLCAST SOLCAST SOLCAST SOLCAST SOLCAST 4/4 

Cape Point CAMS CMSAF SOLCAST CMSAF CMSAF 2/4 
George SOLCAST SOLCAST SOLCAST SOLCAST SOLCAST 4/4 

SOLCAST hourly rRMSE was less than 15% at eight stations and more than 15% in 
five stations George (17%), Cape Point (19%), Durban (17%), Mthatha (17%), and Nel-
spruit (19%).  

From Figure 3–5 and Table 6, the hourly metrics for SOLCAST varied as given below: 
• −3% ≤ ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 rMBE ≤ 4%; 
• 8% ≤ ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 rRMSE ≤ 19%; 
• 5% ≤ ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 rMAE ≤ 12%; 
• 0.969 ≤ hourly 𝑅𝑅2 ≤ 0.996; 

4.4. ERA5 
From Figure 4, two stations Upington (15%) and De Aar (19%) had a rRMSE less than 

20%. Seven stations had rRMSE between 20% and 30%, and four stations, namely Mthatha 
(31%), Durban (32%), George (34%), and Nelspruit (38%) had rRMSEs greater than 30%. 
When considering hourly R2 results, three stations namely Upington (0.987), Prieska 
(0.962), and De Aar (0.958) had 𝑅𝑅2 > 0.95, and nine stations had 0.9 < 𝑅𝑅2 < 0.95. Nel-
spruit (0.868) was the only station with hourly 𝑅𝑅2 < 0.9. The poor correlation of ERA5 
reanalysis hourly data was also demonstrated by scatterplots in Figures S1 to S13, given 
in the Supplementary Materials, with data points not elongated along the 1:1 line. From 
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Figure 3, ERA5 reanalysis data underestimated hourly GHI in Upington (−1%), Mahikeng 
(−1%), and Mthatha (−4%) and overestimated in 10 stations with rMBE ranging from 0% 
to 11%.  

From Figure 3–5 and Table 6, the hourly metrics for ERA5 varied as given below: 
• −4% ≤ hourly rMBE ≤ 11 
• 15% ≤ hourly rRMSE ≤ 38%; 
• 9% ≤ hourly rMAE ≤ 25%; 
• 0.868 ≤ hourly 𝑅𝑅2 ≤ 0.987; 

4.5. MERRA2 
From Figure 3, the MERRA2 reanalysis hourly dataset overestimated GHI in 12 sta-

tions, rMBE ranged from 1% to 23%, and slightly underestimated GHI in Mahikeng 
(−0.54%). From the rRMSEs given in Figure 4, Upington (16%), Cape Point (29.86%), and 
Polokwane (29.89%) were the only stations with an hourly rRMSE less than 30%. Ten other 
stations had hourly rRMSE ranging from 30% to 50%. When considering hourly R2 results, 
two stations, namely Upington (0.985) and Prieska (0.955) had 𝑅𝑅2 > 0.95, three stations 
had 0.9 < 𝑅𝑅2 < 0.95 . Seven stations had 𝑅𝑅2 < 0.9 . The poor correlation of hourly 
MERRA2 reanalysis data was also demonstrated by scatterplots in Figures S1 to S13, given 
in the Supplementary Materials, where the data points were not elongated along the 1:1 
line and were mostly above the 1:1 line, indicating overestimation. 

From Figure 3–5 and Table 6, the hourly metrics for MERRA2 varied as given below: 
• −1% ≤ hourly 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 23%;  
• 16% ≤ ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 𝑟𝑟𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 50%;  
• 9% ≤ hourly 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 32%; and 
• 0.823 ≤ hourly 𝑅𝑅2 ≤ 0.985. 

Figures 6–9, which shows the aggregated hourly averages, demonstrates that all the 
gridded datasets could capture the temporal variability of GHI in different sites nonethe-
less, with varying accuracy. The MERRA2 reanalysis dataset overestimated GHI and it 
did not perform well as its line diverged from the reference measured dataset as well as 
the other datasets, in almost all the stations. ERA5 reanalysis also overestimated, and it 
diverged from observation and satellite datasets lines in most stations. SOLCAST, 
CMSAF, and CAMS satellite-based datasets lines were adjacent to the observation in most 
stations, which showed good performance.  
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Figure 6. Aggregated measured and estimated hourly GHI values in De Aar (a), Bethlehem (b), Prieska (c), and Upington 
(d). The aggregated GHI Observation period for each station is given in Table 2. 

 
Figure 7. Aggregated measured and estimated hourly GHI values in Polokwane (a), Irene (b), Mahikeng (c), and 
Thohoyandou (d). The aggregated GHI Observation period for each station is given in Table 2. 
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Figure 8. Aggregated measured and estimated hourly GHI values in values in Cape Point (a), George (b), Durban (c), and 
Mthatha (d). The aggregated GHI Observation period for each station is given in Table 2. 

  
Figure 9. Aggregated measured and estimated hourly GHI values in values in Nelspruit. The aggregated GHI Observation 
period for each station is given in Table 2. 

(d) (c) 

(a) (b) 
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5. Discussion  
5.1. CAMS 

The above statistical metrics suggest that the CAMS dataset has good performance 
in South Africa. The findings are similar to the studies by Marchand et al. (2018) [9] in 
Morocco; Ameen et al. (2018) [20] in Iraq; Yang and Bright [17] for 57 BSRN stations; 
Thomas et al. [30] in Brazil; and Trolliet et al. [31] in the tropical Atlantic Ocean, which 
found that CAMS could accurately estimate the hourly GHI and can therefore be used 
with quantitative confidence as a reliable alternative source of estimated GHI data. The 
relatively high rRMSE observed for Nelspruit, Thohoyandou, Mthatha, Durban, Cape 
Point, and George may be due to the characteristic high annual humidity (greater than 
60% in Tables 2 and 3). The same tendency was also observed by Thomas et al. [30]. George 
and Nelspruit stations also had a high diffuse fraction (DF > 0.32). This implies that the 
performance of CAMS is affected by high aerosols, high humidity, and hence, many days 
with diffuse skies. When considering areas where there is infrequent cloud occurrence, 
there was no significance difference in bias, meaning that McClear can accurately estimate 
clear sky conditions in the study area. The previous study by Mabasa et al. [32] showed 
that the McClear clear sky model had a good performance in South Africa. For CAMS, 
cloud properties were derived from Meteosat satellites with 15-minute temporal resolu-
tion.  

For CAMS, the main inputs to Heliosat-4 are aerosol properties, total column water 
vapor, and ozone content, as provided by the CAMS global services every three hours. 
The lower temporal resolution in aerosol, total column vapor, and ozone content may ac-
count for the observed biases between ground truth and CAMS estimated GHI. The over-
all good performance of CAMS datasets might be attributed to having a high spatial res-
olution 3–5 km in Southern Africa. 

5.2. CMSAF 
The overall results show that there is relatively good performance by the CMSAF 

satellite-based dataset, which suggests that CMSAF is a viable tool to estimate GHI for 
sites such as the 13 stations in this study. CMSAF satellite-based dataset showed a rela-
tively poor performance at Nelspruit Station. Nelspruit is a station with the highest diffuse 
fraction (Tables 2 and 3). CMSAF satellite-based dataset uses aerosol climatology as input 
to satellite retrieval algorithms as given by Riihelä et al. [49], however, aerosol climatology 
might not capture the aerosol climate variability. Mueller et al. [55] showed that aerosol 
climatologies used in CMSAF satellite retrievals algorithms were underestimated when 
compared to real aerosol measurements. The poorer metrics for Nelspruit might be due 
to the use of aerosol climatology information in the CMSAF satellite retrieval algorithm. 
No significant bias has been observed for the stations with high humidity and more fre-
quent cloud occurrence compared to areas with low humidity and less frequent cloud 
occurrence. This means that the CMSAF cloud and water vapor parameterization scheme 
is effective in South Africa. 

The CMSAF satellite-based dataset outperformed CAMS, ERA5, and MERRA2 at all 
13 stations under this study (Table 7). CMSAF was outperformed by SOLCAST in 11 sta-
tions, this might be due to the use of hourly average from only two intervals (half hour 
and hour) instead of four intervals (15 minutes, 30 minutes, 45 minutes, and hour). The 
good performance of CMSAF datasets might also be attributed to having a high spatial 
resolution 5 km. 

5.3. SOLCAST 
These results show an overall very good performance of SOLCAST satellite-based 

dataset in all 13 stations in this study. The results agreed with the study by Yang and 
Bright [17] and Bright [26], who found that the SOLCAST satellite-based dataset per-
formed well. Overall SOLCAST was outperformed by CMSAF (from Table 7) at Mahikeng 
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and Cape Point Stations; this was similar to the findings by Yang and Bright [17], where 
SOLCAST did not outperform some freely available products at all sites. The stations 
where rRMSE was greater than 15% when referencing from Tables 2 and 3. They all had 
a low number of clear sky days (less than 5%), high humidity (greater than 60%), and high 
diffuse fraction (greater than 0.33), except Nelspruit Station with (more than 10%) number 
of clear sky days. This implies that frequent cloud occurrence, higher humidity, and 
higher diffuse fraction slightly affected the performance of the SOLCAST satellite-based 
dataset. 

The excellent performance of the SOLCAST dataset might be due to the use of the 
REST2v5 [45] clear sky model to calculate the clear sky index when converting the satellite 
image to GHI. Sun X et al. [56] found that the REST2v5 clear sky model had an excellent 
worldwide performance. The use of very high spatial resolution satellite images 1–2 km 
enabled almost all features (e.g., terrain difference) in an area of interest or a grid to be 
properly identified and properly interpolated.  

5.4. ERA5 
Overall, the ERA5 reanalysis dataset showed a poor performance in estimating GHI 

in South Africa. The results were similar to Yang and Bright [17] and Trolliet et al. [31], 
who found that ERA5 datasets had poor performance, overestimated GHI for most sites, 
and were outperformed by the satellite-based dataset; rMBE was 72% (Table 1). ERA5 
reanalysis data showed a very poor performance in areas with frequent cloud occurrences, 
high humidity, and high diffuse fraction. From Supplementary Materials S1–S13, ERA5 
estimates tended to estimate cloud conditions while observations showing actual condi-
tions as clear conditions was shown by irradiance values, this might be contributing to the 
higher biases. Basically, ERA5 cloud models struggle to differentiate non cloud and cloud 
conditions. ERA5 uses climatological aerosol information [37] instead of measured aero-
sols which captures changes in atmospheric constituents. This might also be one of the 
reasons for poor performance. The low spatial resolution (0.25° x 0.25°) of the ERA5 rea-
nalysis data might also be a contributing factor to poor performance of the ERA5 datasets 
in South Africa. 

5.5. MERRA2 
Overall, MERRA2 reanalysis showed a very poor performance and it overestimated 

hourly GHI in all 13 sites under study. The performance of MERRA2 in South Africa was 
similar to the findings by Yang and Bright [17] for 57 BSRN stations and Trolliet et al. [31] 
in the tropical Atlantic Ocean (i.e., poor performance, overestimating GHI, and being out-
performed by satellite-based datasets; rMBE was 76%) (Table 1). MERRA2 data showed a 
very poor performance in areas with frequent cloud occurrences, high humidity, and high 
diffuse fraction. The very low spatial resolution (0.625° x 0.5°) of MERRA2 reanalysis data 
might also be a contributing factor to poor performance of MERRA2, as it was the overall 
worst performing dataset in the study. 

6. Conclusions 
The study validated hourly global horizontal irradiance (GHI) from three satellite-

based GHI datasets (namely SOLCAST, CAMS, and CMSAF SARAH) and two reanalysis 
based GHI datasets (namely ERA5 and MERRA2) against quality-controlled hourly in situ 
GHI recorded at 13 radiometric stations in South Africa. The study demonstrated that GHI 
from the satellite-based datasets had better performance than reanalysis-based datasets in 
South Africa. The overall statistical metrics used to gauge the performance of the datasets 
varied, as tabulated below (Table 8).  
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Table 8. Summary of the overall validation results. Colors are used to show the overall performance ranking of the five 
datasets with green (1/5), yellow (2/5), blue (3/5), orange (4/5), and red (5/5). 

Dataset rMBE rRMSE rMAE R2 
SOLCAST −3% to 4% 8% to 19% 5% to 12% 0.969 to 0.996 

CAMS −3% to 6% 10% to 21% 6% to 13% 0.962 to 0.995 
CMSAF −2% to 7% 10% to 33% 7% to 19% 0.908 to 0.995 
ERA5 −4% to 11%  15% to 38% 9% to 25% 0.868 to 0.987 

MERRA2 −1% to 23% 16% to 50% 9% to 32% 0.823 to 0.985 

SOLCAST was the best performing overall, while MERRA2 was the overall worst 
performing dataset. Freely available satellite-based datasets (CAMS and CMSAF) are rec-
ommended for use with quantitative confidence in diverse solar energy applications that 
require GHI data. Reanalysis based GHI datasets (ERA5 and MERRA2) are not good 
enough to be used in South Africa. Low spatial resolution, weak cloud parameterization 
schemes, and the use of climatological inputs instead of real in situ measurement in rea-
nalysis GHI deriving algorithms might be some of the reasons behind the poor perfor-
mance of reanalysis based GHI estimates in the study.  

Supplementary Materials: The following are available online at www.mdpi.com/article/10.3390/ge-
omatics1040025/s1. Figures S1–S13: Hourly measured and estimated GHI correlation graphs.  
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