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Abstract: Multiscale methods have become progressively valuable in geomorphometric analysis
as data have become increasingly detailed. This paper evaluates the theoretical and empirical
properties of several common scaling approaches in geomorphometry. Direct interpolation (DI),
cubic convolution resampling (RES), mean aggregation (MA), local quadratic regression (LQR),
and an efficiency optimized Gaussian scale-space implementation (fGSS) method were tested. The
results showed that when manipulating resolution, the choice of interpolator had a negligible impact
relative to the effects of manipulating scale. The LQR method was not ideal for rigorous multiscale
analyses due to the inherently non-linear processing time of the algorithm and an increasingly poor
fit with the surface. The fGSS method combined several desirable properties and was identified as an
optimal scaling method for geomorphometric analysis. The results support the efficacy of Gaussian
scale-space as a general scaling framework for geomorphometric analyses.
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1. Introduction

Many environmental processes interact with the Earth’s surface in complex ways
to produce spatial distributions of landscape phenomena [1]. Topography is described
mathematically as a closed, continuously differentiable two-dimensional manifold in three-
dimensional Euclidean space [2]. Geomorphometry is the field of study concerned with the
quantitative description of the Earth’s surface [3] using topographic data consisting of mea-
surements of the three-dimensional location of the Earth’s surface. These measurements are
used to create digital models of the surface given the sampling density and areal coverage,
referred to individually as spatial resolution and extent respectively, and collectively as
scale [4].

One of the primary functions of geomorphometry is characterizing topographic prop-
erties as land-surface parameters (LSPs, e.g., spatial distributions of slope, orientation,
curvature, roughness, etc.) from the quantitative analysis of digital elevation models
(DEMs) [5]. LSPs describe the morphology of the land surface using geometric and sta-
tistical, as well as application-specific measures [6]. Because the scaling resolution and
extent are parameterized prior to LSP analyses, nearly all LSPs have well documented
scale-dependency (e.g., [7–11]). Several application domains have demonstrated how scale-
dependency propagates through analyses to affect results [12–14]. This is problematic
because these scaling variables are first determined by sampling frameworks rather than
the topography or phenomenon [15], providing a strong rationale for the integration of
multiscale analysis in geomorphometry. Moreover, the relationship between scale and LSP
measurement extends beyond the sampling framework and the surface generalization it
imparts. The scale at which an LSP is measured specifies which landforms and processes
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are being measured [16]. Without a priori knowledge to narrow scale selection, all scales
must be approached as potentially relevant.

Several families of scaling techniques have been devised to manipulate scale in geospa-
tial analysis [4], many of which have direct application to geomorphometry. A direct
approach to scaling involves manipulating the data resolution by predicting values at new
locations, as if sampled with different spacing. The performance characteristics of this
paradigm are largely determined by the quality and suitability of the predictive function
(e.g., nearest neighbor, bilinear interpolation, kriging), and a large body of research exists
comparing specific methods (e.g., [17,18]). Another approach involves manipulating the
extent of the analysis, whether by a process-specific boundary such as a watershed, or by
using local subsets of data defined by a neighborhood (e.g., [8,10,19,20]). Spatial filtering
is particularly important because some LSPs are defined in terms of a local area, either
by data requirements (e.g., finite difference methods), or by definition (e.g., topographic
position). Spectral methods manipulate resolution by operating in the frequency domain,
either through spatial filters [21,22] or wavelets [23]. Other scaling methods have been
proposed, such as critical point selection methods for triangulated irregular network (TIN)
data structures [24] or high-order polynomial approximation [25].

The variety of scaling approaches introduces a complex optimization process on
practitioners in order to make informed decisions regarding method selection. The choice
of approach and implementation impose limitations on study design by changing data
parameters (e.g., changing cell size), restricting which LSPs are computable with a given
methodological approach (e.g., [26]), or affecting the feasibility of computation. Processing
time requirements are a subtly important consideration for multiscale analyses because
non-linear processing time combined with the analysis of a continuous scale dimension is
often time prohibitive [27], introducing a tradeoff between analysis quality (i.e., the density
of scale sampling) and feasibility. Research comparing implementations and methods of the
same framework (e.g., different interpolators) is abundant; however, there is little guidance
to support decision making between the different scaling frameworks given the nuances
and implications on study design. Understanding the performance tradeoffs of the scaling
frameworks improves the ability to identify optimal methodological approaches for a given
research objective.

This research aims to evaluate the merits of the various raster-based families of scaling
frameworks for multiscale geomorphometric analyses. A multiscale analysis exploring
different theoretical approaches and comparing each method’s outputs reveals the complex
and nuanced relationships between approaches to scaling that guide experimental design.
An ideal scaling framework should (1) maintain the spatial characteristics of the source
data, (2) have a continuous scale parameter, and (3) have a relatively low computation time.
The first criterion guards against spatial information loss, which introduces uncertainty
due to the reduced ability to position a sample accurately in continuous space [20]. More
specifically, maintaining spatial resolution allows the measurement of larger topographic
structures without the need to coarsen the sampling interval. The second criterion ensures
that the discretization of the scale dimension is as fine as the analysis requires rather
than being imposed by methodological limitations (e.g., odd integers). The third criterion
ensures that the framework is fast enough to apply to an arbitrary number of scales,
allowing a scale-space sampling density suitable to the phenomenon under investigation.
A constant time implementation of Gaussian scale-space is introduced to geomorphometry
as a favorable general solution for multiscale analyses.

2. Background

This section provides an overview of the scaling frameworks and specific methods
representing the framework. Three resolution-based methods (direct interpolation (DI),
cubic convolution resampling (RES), and mean aggregation (MA)), one spatial filtering
method (local quadratic regression (LQR)), one spectral method (fast Gaussian scale-space
(fGSS)), were used to examine the properties of common raster-based scaling approaches
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in geomorphometry. A summary of the theoretical properties of each of the tested scaling
methods evaluated in this research is given below (Table 1).

Table 1. A summary of the theoretical properties of used methods. ‘p’ in the big O notation represents
the scale parameter, approximating the relationship between computation time and scale.

Resolution Spatial Filter Spectral

Method DI RES MA LQR fGSS
Maintains spatial resolution No No No Yes Yes

Continuous scale Yes Yes No No Yes
Time complexity order O (1) O (1) O (p2) O (p2) O (1)

2.1. Resolution Methods

Resolution methods manipulate scale by changing the spatial support of the data.
Spatial support refers to the geometry of the measurement units [28], which is the spatial
resolution in the case of a regular gridded raster. This is achieved with the raster data
structure by predicting values at unknown locations from known values using some
predictive function, such as the interpolators used in the DI and RES methods, or by
aggregating data into larger spatial units as exemplified by the MA method. Other data
structures can also use resolution-based scaling by manipulating data density, such as the
selection of points in a TIN data structure [29]. Because resolution methods achieve scaling
by directly modifying the sample distance, they all modify spatial support by definition.
Interpolators can scale continuously (i.e., they have a continuous scale parameter) because
they predict values at arbitrary spacing. However, selecting a suitable interpolator is an
important consideration because they are a known source of error [30]. Many predictive
functions have been used, including simple linear interpolation [18], kriging methods [31],
and more recently machine learning methods [32]. Aggregation summarizes sub-units into
a spatially aggregated unit [33], thus the scaling is not continuous and is limited to integer
multiples of aggregation units.

The DI method used in this research produces a raster grid via the linear interpolation
of the triangular facets of a TIN generated by the Delaunay triangulation of LiDAR points.
The RES method used cubic-convolution interpolator to resample existing raster grids to
the specified sample spacing. DI and RES use different predictive functions (linear and
cubic) applied to different data structures (TIN and raster) to generate regular gridded
rasters of elevation at grid spacing (r). The DI and RES methods have constant processing
times as neither interpolator varies with r. The MA method aggregates raster cells using an
aggregation factor (a), to compute the mean of a neighborhood of a2 cells. The MA method
typically has non-linear processing time as increasingly large mean filters are required;
however, the tested MA method implemented the same constant time integral image-based
mean filter as in [27].

2.2. Spatial Filtering

Spatial filtering is a convolution operation, where the spatial filter is the convolution
kernel acting on the matrix of rasterized elevation values [34]. Spatial filtering methods
manipulate scale by relating the size of convolution matrix to the spatial resolution of the
underlying raster, allowing the manipulation of the areal extent of an analysis. While a
spatial filter can be any shape or size, they are commonly used in geomorphometry to
define a symmetrical, rectangular neighborhood around a center cell, which defines the
spatial extent of the values included in the convolution function. Because the convolution
is applied independently to every cell, the spatial resolution remains unchanged by the
convolution operation. The symmetrical geometry of the convolution kernel limits possible
filter sizes to odd integer values, thus limiting possible scales to odd integer multiples of r.
Similar to resolution methods, the quality of the output and processing time both depend
on the analytical function applied by the kernel, however, naïve filtering approaches
increase exponentially with the filter edge length. Research in the field of computer vision
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has focused on improving the computational performance of filtering methods, often by
accounting for redundancy in overlapping kernels (e.g., [35]). Some of these methods were
evaluated in [26].

The LQR method uses a convolution kernel that applies a least-squares fitting scheme
to solve the coefficients of a bivariate quadratic equation (Equation (1)). Several local
derivatives, including slope (s) and profile curvature (cprof), as defined in [36], are computed
once the six coefficients of the paraboloid (a, b, c, d, e and f ) are known (Equations (2) and
(3); taken from [20]). Equation (3) has been multiplied by 100 to express curvature as a
percent gradient per unit length.

z(x, y) = ax2 + by2 + cxy + dx + ey + f , (1)

where x and y are the coordinates of a spatial position.

s = arctan
(√

d2 + e2
)

(2)

cpro f =
−200

(
ad2 + be2 + cde

)
(e2 + d2)(1 + d2 + e2)

1.5 (3)

This system of equations can be expressed as a 6 × 6 matrix solving for each the
coefficients of the paraboloid using local elevation values as defined by the spatial filter.
Expressing all elevation samples in the convolution kernel as relative vertical changes and
constraining the constant f to the origin of the central cell (i.e., f = 0) results in an exact
predictor at the origin (Equation (4)) [20]. This simultaneously simplifies matrix operations
by removing the last row of the matrix and associated vectors, and improves the estimated
local derivative by forcing the surface to travel through the origin of the central cell.


a
b
c
d
e

 =


∑ x4

i ∑ x2
i y2

i 0 0 0
∑ x2

i y2
i ∑ x4

i 0 0 0
0 0 ∑ x2

i y2
i 0 0

0 0 0 ∑ x2
i 0

0 0 0 0 ∑ x2
i


−1

∑ zix2
i

∑ ziy2
i

∑ zixiyi
∑ zixi
∑ ziyi

, (4)

where i is a sample in the convolution kernel and zi is the difference in elevation between
the sample and the center cell.

2.3. Spectral Methods

Spectral methods manipulate topographic signals in the frequency domain rather
than the spatial domain (though often implemented in the spatial domain). Scale-space
theory was developed in the 1980s in the field of computer vision to address scaling in
images [37,38]. Scaling was modelled as the diffusion of brightness in an image using the
Gaussian function as a solution to the heat diffusion equation [39]. The theory stipulates that
scale-space implementations use linear and shift-invariant operators, have a continuous
scale parameter, and that the structure within the input image should monotonically
disappear as scale is coarsened [40]. The constraint that fine structure disappears inversely
to scale preserves the signal of progressively larger scale features; a process that has been
described as “lifting off detail” [37]. Convolution using a bivariate Gaussian function
Equation (5) was quickly recognized to satisfy the axioms of scale-space theory and was
proven to be uniquely suitable [41,42].

G(x, y, g) =
1

2πg2 e
− x2+y2

2g2 , (5)

where x and y are coordinates in two-dimensional space and g is the standard deviation.
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Despite the clear application for Gaussian scale-space in geomorphometry, it has seen
little application in the field largely due to the prohibitively high computation times at
large scales. Working in the field of computer vision, [43] published a Gaussian kernel
approximation method that achieved a small and fixed computational cost irrespective of
the filter size based on repeated mean filtering. This implementation reduces processing
time requirements significantly, remaining constant with increasing scale rather than the
usual increase in computation.

2.4. Recursive Methods

Recursion-based scaling itself is not a scaling framework, but an implementation of
a scaling framework. While recursion is too large of a topic to cover adequately, in the
context of this research recursive methods are defined as the re-application of some scaling
operation to its own output until some stopping condition is reached. This is meant to
differentiate recursive implementations from the common approach of iteratively modify-
ing a scaling parameter (e.g., [8,10,44]). Recursion is well-known in region-growing image
segmentation (e.g., [45]) because it forms strict hierarchies of objects at different scales.
Region-growing image segmentation is at the core of geographic object-based image analy-
sis (GEOBIA) [46] and has been applied to geomorphometric analyses [44,47], although not
in a strictly recursive sense. Other recent examples of recursive methods in geomorphome-
try include discrete wavelet decomposition [48,49] and Gaussian pyramiding [50].

Gaussian pyramiding is scale-space implementation originally developed to rapidly
generate multiscale representations of visual information [51]. Gaussian pyramids leverage
down-sampling and cascaded Gaussians to reduce data volume and filter sizes while
simultaneously minimizing aliasing artifacts [52]. First a low-pass Gaussian convolution is
applied to remove high-frequency information from the signal, followed by the decimation
of samples rendered redundant by the smoothing filter. These two operations are repeated,
successively blurring and resampling the image, using the rescaled output image as the
input to the next iteration until there are too few samples to repeat the process. The recur-
sive implementation of Gaussian smoothing differs from an iterative approach described
above (Section 2.3) in that sigma values are fixed, effectively limiting scale intervals to
>
√

2 [52]. The rather coarse scale sequence and rapid reduction in data volume enables
short computation time for the full range of scales supported by the number of samples.
Up-sampling back to the original resolution is possible using the same Gaussian function
as the interpolator [50]. A more detailed description of the original approach (a Laplacian
pyramid) developed for image processing is found in [53]. Konlambigue et al. [54] have
implemented a Gaussian pyramid using a similar mean filter approximation method as [43],
resulting in comparable computational efficiency.

3. Materials and Methods
3.1. Study Site and Source Data

This research used a LiDAR data set covering ~47 km2 of the sand dune field at White
Sands National Monument (WSNM), approximately 40 km west of Alamogrodo, New Mex-
ico, USA (North: 32.872402◦, South: 32.795823◦, East: −106.186273◦, West: −106.314333◦)
(Figure 1). The site is located to the east of a large, aerodynamically smooth gypsum flat,
where aeolian processes have formed a large dune field [55]. The dune ridges are generally
oriented along the north-south axis until approximately 7000 m east of the margin between
the flat and the dune field (~7000 m downwind of the upwind margin), where the dunes
transition from crescentic and barchan dunes to parabolic dunes [55,56]. The crest spacing
(i.e., wavelength) increases from 80 m to 150 m and crest heights decrease from 14 m to
8 m along the west-to-east gradient [55]. Furthermore, the site has very low relief with an
elevation range for the entire data set less than 32 m.
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Figure 1. Map of the WSNM site and a 2-m resolution DEM draped over a hillshade image. A portion
of the gypsum flat is visible along the left edge, as are the parabolic dunes along the right edge.

The data were collected on 24 January 2009 by the National Center for Airborne Laser
Mapping (NCALM) with a point density of 5.25 points/m2 and a vertical RMS of 0.041 m
between control points and the nearest LiDAR point [57]. A ground point filter was used
to remove off-terrain objects. A baseline 2-m resolution DEM was generated by applying
the DI method to the LiDAR point cloud.

3.2. Comparing Scales

Because the resolution, spatial filtering, spectral, and recursive scaling approaches
use fundamentally different methods and parameters to manipulate scale (i.e., resolution,
neighborhood size, spectra respectively), a consistent quantification of scale was required
to facilitate comparisons across methods. Let λ be a parameter that represents the shortest
theoretical wavelength in the elevation field resulting from the application of a scaling
method. This describes the reduction in the apparent detail by limiting the ability to
characterize topographic wavelengths below λ. Let a scaling operation be a function that
maps a method-specific scale parameter (p) to the λ of the output (Equation (6)).

S(p) 7→ λ (6)

The scale parameter for resolution methods is the resolution of the data (r), which is a
regular spatial sampling interval. The Shannon–Nyquist sampling theorem states that “to
keep features with a wavelength, a resolution less than or equal to half of the wavelength
is required [to reconstruct the continuous function]” [30] (p. 482), or formally, r ≤ λ/2,
assuming rx = ry. λ can be defined in terms of r by rearranging the sampling theorem
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and expressed in units of length, and thus any scaling operation that manipulates r takes
the form

S(r) = 2M(r), {r ∈ R ∧ r > 0} (7)

where M(r) 7→ r is a method of manipulating the resolution of a DEM such that the output
has resolution r.

Note that the Shannon–Nyquist sampling theorem applies specifically to the resolution
that the elevation field was sampled at rather than the resolution property of the DEM.
While these two are the same thing prior to any scaling operation, there is a one-way
information loss as scale is increased such that information is lost even if data are down-
sampled back to the original resolution.

Spatial filtering methods use the filter size as the scale parameter. The spatial char-
acteristics of a filter can be described by the number of cells along the filter edge (L)
assuming Lx = Ly. The large flexibility of filter functions makes general statements about
the relationships between scaling and filter size difficult. In the case of the LQR method,
the information within the extent of the filter is analyzed by the filter function, or more
specifically the elevation samples are used to model a continuous parabolic surface from
which measurements are made. This particular case of spatial filtering does not manipulate
the scale of the elevation field, but the scale at which a LSP is measured. Because the
paraboloid can only have one extremum in each dimension, the smallest wavelength the
parabolic surface can model is length rL. Wavelengths between the resolution of the data
and this length cannot be reproduced by the model and presents as a poor fit between the
paraboloid and the underlying elevation samples.

S(r, L) = rL, {L|n ∈ N, L = 2n + 1} (8)

Gaussian smoothing is used as the example of spectral smoothing, where smoothing
in frequency domain results in the attenuation of high frequencies. Because the Fourier
transform of a Gaussian function is another Gaussian function, the standard deviation
parameter in the standard deviation in the frequency domain (gf) is related to the standard
deviation in the spatial domain (g) by:

g f =
1

2πg
(9)

A cut-off frequency (fc) can be defined to identify a frequency such that greater frequen-
cies are weighted sufficiently low by the Gaussian function (Equation (10)). For example,
the field of computer vision commonly uses the frequency at half amplitude as cut-off
frequency because frequencies beyond

√
2ln(2) × gf are weighted ≤0.5.

fc = g f

√
2ln(w) (10)

where w is the frequency response of the filter.
The reciprocal of the shortest wavelength corresponds to the largest frequency, which

when equated to fc allows λ to be expressed in terms of g:

S(g) =
2πg√
2ln(w)

, {g ∈ R ∧ r > 0} (11)

3.3. Evaluation

Four experiments were conducted to empirically evaluate the performance of each
scaling method. First a sequence of 14 target λ ranging from 6 m to 318 m was used
to generate theoretically comparable outputs for each scaling method. The upper limit
of the target λ range exceeds the largest dune crest spacing and is therefore sufficiently
large to observe the loss of topographic detail in the data set (i.e., the dunes are no longer
expressed). A w value was selected for the fGSS such that the cut-off frequency was



Geomatics 2022, 2 43

three standard deviations in the frequency domain, where frequencies above this cut-off
are reduced by approximately 99.73% (i.e., are weighted 0.0027). Slope (s) and profile
convexity (cprof) were derived for all DEM outputs (i.e., the resolution methods and fGSS
method) using the LQR method using the minimum filter size of three cells (see Section 2.2
for details). The scaling effect of this additional LQR measurement is ignored because a
neighborhood of at least 3 × 3 is required to compute the local derivatives. Thus, a LQR
filter size of 3 is exclusively considered a measurement, while larger filters were evaluated
as scaling operations. Restricting LSP generation to the LQR method also restricts the
interpretation of scaling operations to the impact on the topographic surface, rather than
the LSP formulation.

Second, the processing time of each scale and method was recorded to evaluate
processing time requirements. The DI method required the interpolated rasters mosaicked
together to form the final raster at every scale. The sum of the execution time of DI and
mosaic operations was recorded as execution time since both operations were required
for the LiDAR tiles. However, this only affects the absolute processing time rather than
the time complexity order since the number of tiles being mosaicked is constant across
scales and is specific to the data set. A rigorous benchmark was not necessary because
the variation in runtime for a method-scale pair was small, and the differences between
methods are generally large.

Third, empirical quantile-quantile plots comparing scaled DEMs and LSPs to the
baseline counterparts were generated to examine how each scaling method modifies distri-
butions across scales. The deviation from the initial distribution (represented by the 1:1 line)
shows the changes imparted by the scaling operation. A linear regression was conducted to
model QQ-plot distributions for each scale to quantify the effect of each scaling operation.
The coefficient of the linear model compares the distributions of the base example and
scaled counterpart as a ratio where a coefficient of 1 lies on the 1:1 line of the QQ-plot,
and implies no change to the distribution as a result of the scaling operation. Finally, a
goodness-of-fit analysis was conducted on the LQR method to investigate how well the
paraboloid fit the surface at each location across the range of scales. This analysis quan-
tifies how the modeled surface responds to changes in the filter size. All tested methods
used parallel processing implementations wherever possible and were integrated into the
WhiteboxTools software environment [58].

4. Results

The multiscale analysis conducted on the WSNM site generated a sequence of scaled
outputs for each method, defined in terms of λ. The LQR method was applied to the
smoothed elevation outputs to generate slope (s) and profile convexity (cprof) spatial distri-
butions. Figure 2 shows a subset of output rasters to demonstrate the differences in cprof
outputs between scales and methods represented as rows and columns respectively. The
scale rows were chosen to demonstrate outputs far below (λ = 30 m), near (λ = 126 m), and
far above (λ = 294 m) the dune crest spacing distances found in the site description. The
methods are hardly distinguishable at 30 m scale (Figure 2(A1,B1,C1)), although the fGSS
method produced lower magnitude values. At the 126 m scale (Figure 2(A2,B2,C2)) the
fGSS method diverges from the other methods, with vast areas of the site possessing values
near zero, while LQR and DI methods remained very similar, with the latter retaining more
detail in flat areas. At 294 m (Figure 2(A3,B3,C3)), the fGSS method (Figure 2(A3)) showed
only large curvature structures, effectively minimizing the impact of the dune topography
on the cprof values. The LQR method (Figure 2(B3)) shows the same large-scale structure at
the margin between the gypsum flat and the dune field as the fGSS method; however, it
also retained much information from smaller dunes. The DI method (Figure 2(C3)) exhibits
a spatial pattern similar to the LQR method. However, the large cell sizes obscure the
relationship between cprof value and the underlying topography such that the topographic
geometry driving the measured curvature value is unknown. The RES and MA methods
are not shown due to the visual similarity to the DI method. However, RES and DI differed
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slightly when presenting the spatial pattern of dune structures. MA followed the spatial
pattern of DI more closely, but presented curvature values at smaller magnitudes relative
to DI.
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a standard Gaussian filter must be used. The LQR method took exponentially longer as 
scale increased, requiring over 700 s at the end of the experimental range. The DI method 
was relatively slow due to the additional mosaic operation required to combine the ras-
terized LiDAR tiles; however, the TIN gridding operation alone required less than 10 s 
for all scales. The MA and RES methods were the fastest, with both consistently com-
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Figure 2. A matrix of cprof rasters with 30 m, 126 m, and 294 m scales as the rows (subfigures 1, 2,
and 3), and the fGSS, LQR and DI methods as the columns (subfigures A, B, and C). The images
focus on the upper left corner of the site at the transition between the gypsum flat and the dune field
to exaggerate fine detail. Because all methods reduce cprof values as scale increases, each scale has
a unique, symmetrical color ramp. Negative curvature is shown as red, 0.0 curvature is shown as
white, and positive curvature are shown as blue.

The processing time analysis showed scale-independent processing time requirements
for all methods except LQR, which had non-linear processing time (Figure 3). The fGSS
method was scale independent due to the fast Gaussian approximation implementation,
requiring 1.5 s per scale on average. The first scale required less time than the rest due
to a minimum standard deviation limitation of the fast implementation, below which a
standard Gaussian filter must be used. The LQR method took exponentially longer as scale
increased, requiring over 700 s at the end of the experimental range. The DI method was
relatively slow due to the additional mosaic operation required to combine the rasterized
LiDAR tiles; however, the TIN gridding operation alone required less than 10 s for all scales.
The MA and RES methods were the fastest, with both consistently completing in under
a second.
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The scaled elevation and local derivative outputs were compared to a base line data set
generated using the DI method to produce a base DEM with λ = 2 m using a 3 × 3 LQR filter
to compute s and cprof distributions. Figure 4 shows a matrix of QQ-plots (n = 500) using
the base line content as the theoretical distribution to demonstrate how the distribution is
modified as scale increases for each method (rows 1 to 6) and s and cprof (columns A and B).
All methods reduce the value of the output local derivatives, flattening all distributions
towards zero as scale increases. Importantly, the shape of the modified distributions remains
the same for all methods across scales. Figure 4B shows that fGSS modifies distributions
the most aggressively, while the LQR and DI methods are the most conservative. Because
the QQ-plot of the slope LSP closely follows a linear model, the coefficient of each linear
model was plotted to approximate the degree to which each method generalized the slope
distributions as a function of scale (Figure 5).

A goodness-of-fit analysis was conducted to determine the ability of the LQR paraboloid
function to predict the landscape used to parameterize it. Figure 6A shows the raster wide
average r2 value across scales, demonstrating a reasonably good fit at small scales (i.e.,
window sizes), which decreases as scale increases. Figure 6B–D shows that the gypsum
flat on the left edge retains large goodness-of-fit values across all scales, while the dunes
become almost entirely misrepresented by the model surface by 294 m.

The fGSS method produced a notable edge effect at the midpoint of the spatial fil-
ter. The effect is imperceptible in the elevation field, but becomes prominent when local
derivatives are calculated. The fGSS method achieves computational efficiency using the
integral image data structure, which was developed for images without consideration for
‘NoData’ values. Filling data holes during pre-processing and buffering the data edges is
recommended for best results when using fGSS. It should also be noted that 32-bit precision
was insufficient to store the fGSS output elevation data at large scales due to the high
degree of generalization and very flat site.
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Figure 6. The black line in subfigure (A) represents the raster-wide average goodness-of-fit (r2) of
the LQR paraboloid as a function of scale. The images show the spatial distribution of the LQR
paraboloid goodness-of-fit as scale increases from left to right (B = 30 m, C = 126 m, D = 294 m). Black
represents an r2 value of 0.0 and white represents a value of 1.0.

5. Discussion

The results demonstrate that all methods modify the distribution predictably and
to comparable degrees. All methods cause an exponential decay of information, with
stronger effects on the extrema of the distribution (Figures 4 and 5). While an in-depth
analysis of error was not performed, significant systemic errors were not observed in the
numerical distributions between methods and scaling frameworks. Despite the known
errors from aggregation [15], the MA-scaled distributions are almost indistinguishable
from those produced by RES and DI, aside from noticeably stronger generalization. The
RES and DI methods modify the original distribution almost identically (Figure 5) despite
being derived from raw LiDAR instead of the baseline raster. Grohmann [17] found that
interpolating from source data or from fine-resolution raster is superior to interpolating
from some intermediate data. The results support this statement insofar as it confirms that
the differences between a linear TIN-based interpolator and a cubic grid-based interpolator
are negligible. The similarities between resolution methods suggest that choice of predictive
function has a minimal impact relative to the large impact of scaling. This agrees with
previous findings that simple predictors are sufficient for DEM scaling [18].

The greatest weakness of resolution methods is the poor ability to interpret data values
for increasingly large grid cells. This is observed in Figure 2 clearly, where the DI method
begins with cells small enough to relate to the underlying topography and ends with a
spatial distribution too coarse to infer topographic meaning, or differentiate signal from
noise. This property hinders the utility of resolution methods for multiscale analysis and
compounds with known errors associated with resolution manipulation [20]. Therefore,
while resolution methods are competitive when deriving scaled global statistics, they
are unsuitable if the preservation of localization information is desired. Choice in initial
resolution is an important consideration when translating raw data into an elevation data
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product. Along with the increased detail captured by fine-resolution sampling come noise
and measurement error. Recent advances in feature-preserving DEM generalization have
addressed this weakness by selectively avoiding the generalization of topographic features
while generalizing other areas [59,60]. Feature-preserving generalization methods are a
promising option for pre-processing elevation data prior to analysis as they differentiate
the application of generalization for de-noising from a scaling operation.

The tested spatial filtering method, LQR, achieves scaling by parameterizing a model
paraboloid from elevation samples collected over larger areas [20]. As expected from
the theoretical properties, the empirical results demonstrate the preservation of spatial
resolution (Figure 2(B1–B3)) and non-linear processing time (Figure 3). LQR also altered
the scaled distributions less than all other methods λ < 174 m, where RES and DI had
less impact (Figure 5). However, the spatial distributions in Figure 2 demonstrate that
LQR tends to retain detail regardless of the scale selected. Based on the results of [10], a
stronger relationship between the window size and topographic structure was expected.
For example, the cprof output at a scale of 294 m (i.e., a 147 × 147 cell filter, Figure 2(B3))
was expected to contain little information from the dune structure because λ exceeds even
the largest dune wavelengths by a large margin. Yet many short wavelength dunes are
well defined along with large scale topographic features such as the transition from the
gypsum flat to the dune field (Figure 2(B3)). The unpredictable behavior from the filter size
scaling parameter demonstrates an inability to target scales at which topographic features
are known to exist, hindering utility as a method for scaling local derivative measurements.
While increasing the filter size does indeed influence the geometric properties of the
paraboloid, the relationship between filter size and the scale of the topography weakens as
scale increases. The goodness-of-fit analysis in Figure 6A suggests that this is in part caused
by an increasingly poor fit between the paraboloid and the underlying topography. The
poor surface representation occurring at large scales coincides with the dune field, where
the modeled surface lacks the flexibility to adopt the shape of the underlying terrain once
multiple dune structures are within the filter extent (Figure 6D). The goodness-of-fit of the
modelled surface effectively characterizes the mismatch between the scale of the analysis
and scale of the topography, suggesting that measurement accuracy is degraded at large
scale. Thus, while the spatial pattern appears to converge on a pattern representative of the
underlying topography, both the relationship between the scale parameter and topography,
and the accuracy of the measurement degrade rapidly as scale increases.

Empirical testing of the fGSS method confirms the maintenance of spatial resolution
and constant processing time. The parameter w was set to e9/2 to ensure all frequencies
above three standard deviations in the frequency domain were weighted near 0.0. However,
this resulted in more aggressive smoothing of the distribution relative to the other scaling
methods (Figure 4). This suggests that a smaller value such as the more conventional value
of 2, meaning full width at half maximum in the frequency domain [43], would better
calibrate the loss of detail relative to the other scaling methods. Despite the aggressive
smoothing, the spatial distributions performed as expected, with information from small
dunes being progressively removed as scale increased, leaving larger scale structures
to dominate the spatial distribution (Figure 2(A1–A3)). The predictable control of the
size of topographic structures being measured was not observed with the other methods,
demonstrating strong potential for generalizing topography to represent scale-specific
structure, which is an ideal property for multiscale topographic analysis.

While the fGSS method was developed to provide the flexibility to fully sample
the scale dimension, this experimental design did not capitalize on the continuous scale
parameter of fGSS beyond calibrating g to the other scaling parameters via λ. Similar scale-
space implementations such as the recursive counterpart to fGSS, the Gaussian pyramid,
are better optimized to provide increased efficiency at the expense of a far coarser ability
to sample scales. Behrens et al. [50] proposed a modified Gaussian pyramid for terrain
analysis using multiple starting points for improved scale discretization, which they termed
extended Gaussian Pyramid (eGP). They examined the performance of different scaling
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methods, comparing spatial filtering with three other methods of deriving LSPs from
the extended pyramid: ‘terrain scaling’ where LSP are calculated and then subjected to
the pyramiding, ‘DEM scaling’ where the DEM is subjected to pyramiding, followed by
the LSP calculation at the end, and ‘Mixed scaling’ where the LSP is calculated on the
down-sampled DEM followed by up-sampling of the LSP. They found that mixed scaling
provided the most accurate soil property predictions, and was improved by the use of
intermediate scales. Progress made to improve the efficiency of Gaussian convolution, and
to improve the scale discretization of Gaussian pyramids, has made the choice in Gaussian
scale-space implementation for terrain analysis less vital. The results presented above
together with [50] demonstrate the applicability of both implementations for multiscale
geomorphometric analyses, where fGSS is advantageous when continuous scale sampling
is desirable and time restrictions are relaxed.

6. Conclusions

This research sought to evaluate the merits of several scaling frameworks for general-
purpose multiscale geomorphometric analyses. Resolution methods, spatial filtering, and
spectral methods were compared in a multiscale analysis using local derivatives. Resolution
methods, while ubiquitous and intuitive, share several undesirable properties, such as
the modification of the spatial resolution resulting in the loss of spatial information. The
tested resolution methods were fast and had a relatively small impact on the statistical
distribution, and therefore may be useful for statistical analyses.

LQR is a spatial filtering method that maintains spatial resolution and has an intuitive
scale parameter. However, the results exposed a weak relationship with the underlying
topography where information is often retained across several scales. This relationship
becomes weaker at larger scales, which when coupled with large processing time require-
ments, hinders utility as a multiscale framework.

Spectral methods have formed the theoretical basis for scaling image data. The fGSS
method maintains spatial resolution, has a continuous scale-parameter, and is relatively
efficient to compute; these are all desirable properties for multiscale analyses. While it
aggressively modifies the distribution compared to the other tested methods, it produced a
strong, predictable relationship between the scale parameter and landscape structure. Thus,
the fGSS method proposed above addresses many shortcomings of spectral scaling and has
many desirable properties for multiscale geomorphometric analysis. Gaussian scale-space,
including fGSS, represents a general solution to topographic scaling.
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