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Abstract: Mangroves grow in the tidal zone and have many benefits for the ecosystem and human life.
Mangrove loss monitoring is important information to know the condition and status of mangrove
forests. Along with the development of computer technology, machine learning and satellite imagery
has widely used for mangrove mapping. The goal of this study is to monitor two decades (2000–2020)
of mangrove loss using a random forest (RF) algorithm with Landsat-7 and Landsat-8 data in East
Luwu, Indonesia. East Luwu has a high mangrove deforestation rate based on the previous study.
More detailed mangrove loss monitoring in this area is needed to know the annual mangrove
deforestation rate in this area. This study used an RF model to produce mangrove maps in the whole
study area from 2000 to 2020. According to the large computing and storage capabilities of time-series
satellite data, this study used Google Earth Engine (GEE) platform as the cloud computing process.
A total of 2500 independent testing points were collected to calculate the evaluation assessment
of produced mangrove maps. Based on the evaluation assessment, the average overall score of
produced mangrove map is 0.966, while the average UA score of mangrove class is 0.936. In general,
this study revealed the total area of mangroves in East Luwu from 2000 to 2020 has a decreased trend.
The highest annual rate of mangrove loss happened from 2000 to 2005 with a loss rate of −14.11%
(2477.39 Ha). The main factor of mangrove loss in this area is caused by the aquaculture ponds. In
addition, we found an increase in mangrove areas from 2016 to 2020 by +1.04% (87.96 ha).

Keywords: mangroves; deforestation; random forest; Google Earth Engine; East Luwu; Landsat

1. Introduction

Mangroves are vegetation located in tidal zones in the tropical and sub-tropical areas
and have various roles in protecting coastal ecosystems [1]. Mangroves have a major impact
on climate change mitigation strategies based on the reducing emissions from deforestation
and forest degradation (REDD+) scheme [2]. This is because the mangroves have the
ability to absorb carbon, thereby reducing the concentration of greenhouse gases in the
atmosphere and preventing the impact of climate change [3]. Mangroves also have ability
as the coastal vegetation that can protect the coastline area [4], commercial vegetation [5],
and biodiversity conservation [6]. In addition, another important role of mangrove forests
is to reduce the CO2 emissions in the atmosphere according to their ability to store high
carbon stocks [7]. The majority of mangrove exosystem carbon storage is located in the
soil [8]. Sanderman et al. [9] revealed between 2000 to 2015 up to 122 million tons of
mangrove soil carbon were released associated with the mangrove forest loss.
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Mangrove quantitative analysis monitoring needs to be carried out effectively to
support policy-making related to mangrove conservation [3]. Monitoring used time-series
data to know the dynamic changes in an area [10]. Based on the previous research, the
global distribution of mangroves has lost about 35% from 1980 to 2000 [11], and the annual
mangrove loss rate from 2000 to 2012 is 0.26–0.66% [12]. The greatest diversity of mangroves
is located in Southeast Asia [13]. Whereas in Asia in the 1980s and 1990s, almost a third of
mangrove forests were lost [11]. In Southeast Asia, the main factor that caused mangrove
deforestation is the aquaculture industry [14]. The average rate of mangrove loss between
2000 and 2012 in Southeast Asia is 0.18% per year [15].

The most effective and efficient method of time, cost, and energy in monitoring the
condition of the mangrove ecosystem is by utilizing remote sensing data [16]. Remote
sensing satellite data provided time-series data that can be used for mangrove monitoring.
Recently, the development of computer technology provides convenience in automatic
land cover mapping using remote sensing imagery. The integration of machine learning
algorithms and satellite imagery has been widely used for mangrove mapping. Kamal
et al. [17] used a support vector machine (SVM) for mangrove mapping using Landsat
data, Diniz et al. [18] used random forest (RF) for mangrove mapping using Landsat data
for three decades of mangrove monitoring in Brazil, while Mondal et al. [19] compared
decision tree (DT) and RF for mangrove mapping using Sentinel-2 data. Those previous
research revealed convincing results of using machine learning and remote sensing imagery
for mangrove mapping.

Time series monitoring using remote sensing satellite data requires large computing
and storage capacities [18]. The advent of cloud computing platforms such as Google Earth
Engine (GEE) provides analysis-ready data (ARD) of satellite imagery and machine learning
algorithm that are specially designed for land cover classification in cloud computing
servers [20]. The GEE cloud computing platform allows us to filter and sort satellite imagery
and make it easier for us to obtain time-series data. The spectral indices processing also
can be finished in the GEE cloud computing. With several advantages of the GEE platform,
mangrove monitoring using satellite imagery can be solved with the GEE platform.

The aim of this paper is to produce two decades of mangrove loss monitoring in East
Luwu, Indonesia between 2000 to 2020 using satellite imagery and an RF algorithm. The
time-series mangrove cover area in this paper has been produced by using the GEE platform.
To the best of our knowledge, our work is the first to use RF algorithm and satellite imagery
to produce and analyze two decades (2000 to 2020) mangrove loss monitoring in East Luwu,
Indonesia.

2. Materials and Methods
2.1. Study Area

This research was located in East Luwu (Luwu Timur), South Sulawesi, Indonesia. The
geographic coordinate of the study area is 02◦03′–03◦03′25′′ S and 120◦30′–121◦47′27′′ E,
with a total area of 694,500 Ha (Figure 1). East Luwu is located in the Gulf of Bone with a
large coastal zone in the tropical climate area and it has great potential for the growth of
mangrove forests [21]. The study area has a dry season and a rainy season in a year. The
coastal zone of this study area is mainly influenced by the fluvio-marine process. There
are many rivers along the coastal zone of the study area. The slope within the mangrove
areas in this study area tends to be gentle. The tide type in this study location is mixed
tide prevailing semidiurnal [22], which means there are two high tides and two low tides,
but the height and period of the tide are different in a day. Based on the worldtides data
(https://www.worldtides.info/, accessed on 13 July 2022), the highest tide height is around
2 m, when the acquisition time of Landsat-7 and Landsat-8 (around 10 a.m. local time),
the tidal height was at low tide (around 0.5 m). The mangrove ecosystem types in this
study area are dominated by estuarine and open coast mangroves [23]. While the dominant
mangrove species in South Sulawesi is composed of Sonneratia alba, Rhizophora apiculata,
and Rhizophora mucronata [24]. The standing volume of mangrove forest around the study

https://www.worldtides.info/


Geomatics 2022, 2 284

area based on the previous research was 245.93 m3/Ha [25]. A previous study revealed a
high rate of mangrove deforestation around the study area [15]. Therefore, East Luwu was
chosen as the study area according to the high rate of mangrove deforestation, so further
analysis of mangrove monitoring is needed to know the status and condition of mangrove
forest in this study area.
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Figure 1. Study area for this research located in the East Luwu (Luwu Timur), Indonesia.

2.2. Materials

The data used in this study are Landsat-7 ETM+ and Landsat-8 OLI satellite imagery.
The Landsat-7 and Landsat-8 used in this study are collections of ARD from GEE with
surface reflectance Tier 1 correction level. The surface reflectance level means that it has
been radiometrically corrected with the measured pixel spectral value on the object on the
earth’s surface. The Landsat-7 imagery has 8 spectral bands with a spatial resolution of
30 m and 15 m for the panchromatic band (Table 1). While Landsat-8 OLI imagery has a
spatial resolution of 15 m in the Panchromatic channel and 30 m in the other channel and a
total of 11 multispectral channels (Table 1). The Landsat-7 and Landsat-8 have a temporal
resolution of 16 days. Landsat-7 has a radiometric resolution of 8-bits, while Landsat-8 has
a radiometric resolution of 12-bits.
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Table 1. Characteristics of Landsat-7 ETM+ and Landsat-8 OLI and TIRS.

Landsat-7 Landsat-8 OLI

Bands Wavelength
(µm) Resolution (m) Bands Wavelength (µm) Resolution (m)

Band 1—Aerosol 0.43–0.45 30
Band 1—Blue 0.45–0.52 30 Band 2—Blue 0.45–0.51 30

Band 2—Green 0.52–0.60 30 Band 3—Green 0.53–0.59 30
Band 3—Red 0.63–0.69 30 Band 4—Red 0.64–0.67 30
Band 4—NIR 0.77–0.90 30 Band 5—NIR 0.85–0.88 30

Band 5—SWIR 1 1.55–1.75 30 Band 6—SWIR 1 1.57–1.65 30
Band 6—Thermal 10.40–12.50 60 (30) Band 7—SWIR 2 2.11–2.29 30
Band 7—SWIR 2 2.09–2.35 30 Band 8—Pan 0.50–0.68 15

Band 8—Pan 0.52–0.90 15 Band—9 Cirrus 1.36–1.38 30
Band 10—THERMAL 1 10.6–11.19 100 (30)

Band 11—Thermal 2 11.50–12.51 100 (30)

In addition to the original band of Landsat-8, we also used some spectral indices
for the input data based on the previous research [26]. The previous research revealed
that adding these spectral indices increased the accuracy of mangrove mapping. There
are four spectral indices, namely the normalized difference vegetation index (NDVI) [27],
combined mangrove recognition index (CMRI) [28], normalized difference mangrove index
(NDMI) [29], and modular mangrove recognition index (MMRI) [18] (Table 2). The NDVI
transformation is the result of the substitution process between the reflected value in
the red channel and the near-infrared channel with the pixel values resulting from this
process range from −1 to 1. The CMRI vegetation index is the result of the difference
between the NDVI vegetation index and the Normalized Difference Water Index (NDWI) to
highlight mangrove vegetation that has high water content characteristics. The NDMI uses
a SWIR channel and a green channel. The use of these two channels is due to differences
in mangrove forests in the SWIR channel, which is lower than in land forests. Meanwhile,
the spectral reflection curve of mangroves in the green channel tends to be more than that
of land forests. The MMRI uses a combination of two indices, namely an index related
to vegetation and an index related to water or wetness, therefrom increasing the contrast
against mangrove cover. In total, 10 input bands were used in this study (Blue, Green,
Red, NIR, SWIR-1, SWIR-2, NDVI, CMRI, NDMI, and MMRI). The Landsat-7 and 8 images
were used to produce mangrove maps for two decades shown in Table 3. The year 2000
until 2013 were used Landsat-7 as the input images, while Landsat-8 images were used
from the year 2014 until 2020. The Landsat-7 and Landsat-8 images are in the same level of
atmospheric correction which is surface reflectance level.

Table 2. Spectral indices formula.

Spectral Indices Formula References

NDVI (NIR−RED)
(NIR+RED)

[27]

CMRI (NDVI−NDWI) [28]
NDMI (SWIR2−Green)

(SWIR2+Green)
[29]

MMRI (|MNDWI|−|NDVI|)
(|MNDWI|+|NDVI|) [18]
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Table 3. Input Landsat images for two decades analysis.

Year Images Year Images

2000 Landsat-7 2011 Landsat-7
2001 Landsat-7 2012 Landsat-7
2002 Landsat-7 2013 Landsat-7
2003 Landsat-7 2014 Landsat-8
2004 Landsat-7 2015 Landsat-8
2005 Landsat-7 2016 Landsat-8
2006 Landsat-7 2017 Landsat-8
2007 Landsat-7 2018 Landsat-8
2008 Landsat-7 2019 Landsat-8
2009 Landsat-7 2020 Landsat-8
2010 Landsat-7

2.3. Methods

The work stages in this study are divide into data pre-processing, RF training, man-
grove mapping, accuracy assessment, and mangrove loss analysis. The research workflow
for this study is shown in Figure 2. The pre-processing step completed on GEE and in-
cluded Landsat-7 and 8 SR collection tier 1, cloud free composites processing by using
band pixel quality (BQA) and median reducer, spectral indices processing, input data
selection, and coastal zone mask by using Shuttle Radar Topography Mission (SRTM) and
modified normalized difference water index (MNDWI) (Section 2.3.1). The RF training
process included training sample area collection and mangrove mapping in two decades
explained in Section 2.3.2. The accuracy assessment calculation uses independent testing
reference samples in 2000, 2005, 2010, 2015 and 2020 to calculate the produced map accuracy
(Section 2.3.3). While the mangrove loss analysis using the loss rate calculation to know the
mangrove loss rate in two decades in the East Luwu coastal zone.
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2.3.1. Data Pre-Processing

Data pre-processing have been carried out on the GEE platform. The first pre-
processing step is the Landsat-7 and 8 collection surface reflectance tier 1 data by using
filter date for 20 years. Starting from 2003, Landsat-7 has scanline error problem which can
affect the classification results. Each year in the Landsat collection process is from the first
of January to the end of December for every year. The second step of data pre-processing
is cloud-free composites. We used the BQA algorithm from GEE to obtain the free-cloud
Landsat images and used the median function to obtain the median pixel value from the
date range every year. The output from the second step is the final cloud-free Landsat
images from 2000 until 2020. The next step is to calculate the spectral indices and combine
with the original bands from Landsat (Section 2.2).

The final step of the data pre-processing is coastal zone mask processing. The man-
grove area is located in the tidal zone, so the coastal zone masking is important to minimize
the error results. The SRTM and MNDWI data were used here to perform the coastal zone
masking for each year. Each image with SRTM value less than 40 m will be including as the
input data. Furthermore, the MNDWI data was used here to remove the water body area.
We used the MNDWI threshold value of 0 for Landsat-7 and 0.7 for Landsat-8 to remove
the water body area based on the previous research [30]. The final input images for this
study are the images after SRTM and MNDWI processing.

2.3.2. Random Forest

The random forest (RF) training process was carried out on the GEE platform. The
RF is tree-based classifier algorithm with more than one total number of trees and uses
major voting to predict the final predicted class [31]. Even though GEE provides more than
15 different classifiers, nearly 15,000 papers used the RF algorithm for land use/land cover
classification including mangrove mapping in the last 5 years [18]. That’s what made us
choose RF as the classifier algorithm for this study. The RF is a tree-based algorithm with
more than one decision tree. The RF algorithm for this study and the training process of
the RF algorithm is shown in Figure 3. We use a total of 500 trees with two classes (non-
mangrove and mangrove) as the predicted output. RF used majority voting to determine
the final predicted result from each tree.

In general, the RF training process in this study is divided into two models: (1) the RF
model for Landsat-7 and (2) the RF model for Landsat-8 to minimize the effects of difference
radiometric resolution of Landsat-7 and Landsat-8. RF is a supervised learning algorithm,
so the training data is needed to train the RF algorithm. We collected the training area
for the RF algorithm on the GEE platform. We used stratified random sampling around
the coastal zone to obtain the training area. We divided the training area for Landsat-7
by using an image in 2000 and the training area for Landsat-8 by using images in 2014
(Figure 4). Then all training areas were converted to the pixel size to obtain the balanced
training data. The total training pixels for the Landsat-7 and Landsat-8 are shown in Table 4.
For the Landsat-7, the total of training pixels is 8174 with 4152 non-mangrove class and
4022 mangrove class. While the total training pixels for Landsat-8 is 3142 pixels with
1306 non-mangrove class and 1836 pixels for mangrove class. The total training pixel of
Landsat-8 is less than Landsat-7 because in 2014 some mangrove areas were already lost.
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Table 4. Total training pixels for Landsat-7 and Landsat-8.

Images Year Non-Mangrove Mangrove Total Pixels

Landsat-7 2000 4152 4022 8174
Landsat-8 2014 1306 1836 3142

The RF training process is shown in the top part of Figure 3. The training area from
image 2000 was used as the training samples to train the RF model Landsat-7, then the
training RF model Landsat-7 was used to predict all Landsat-7 images (2000–2013) and
finally the connected pixels filtering was used here to remove non-connected mangrove
pixel. The process for the RF model Landsat-8 is the same but uses the training area from
image 2014 and predicts all Landsat-8 images (2014–2020). The final result from the RF
algorithm is mangrove maps from 2000 to 2020 after the connected pixels filtering process.

2.3.3. Evaluation Assessment

The produced maps from the RF algorithm will be evaluated by using evaluation
assessment. The independent testing dataset was collected here to evaluate the produced
mangrove maps in the years 2000, 2005, 2010, 2015 and 2020 or every 5 years. The testing
dataset was collected based on a new round of stratified random sampling over the same
reference images in the years 2000, 2005, 2010, 2015 and 2020 [15]. We collected 250 testing
points for the non-mangrove class and 250 testing points for the mangrove class every
5 years. In total, 2500 testing points were collected.

The confusion matrix was used here for the evaluation assessment (Table 5). We
calculated 5 confusion matrices for the years 2000, 2005, 2010, 2015 and 2020. The confusion
matrix was used here to calculate the user’s accuracy (UA) and producer’s accuracy (PA)
for the non-mangrove and mangrove classes. The overall accuracy (OA) is also used here
to know the quality of produced maps. Equations (1)–(3) shows the formula to calculate
UA, PA, and OA score.

User′s Accuracy (UA) =
TN

TN + FP
(1)

Producer′s Accuracy (PA) =
TP

TP + FN
(2)

Overall Accuracy (OA) =
TP + TN

TP + TN + FP + FN
(3)

Table 5. Confusion matrix for evaluation assessment.

Reference Data

Predicted Result

Mangrove Non-Mangrove

Mangrove True Positive (TP) False Positive (FP)
Non-Mangrove False Negative (FN) True Negative (TN)

3. Results

This section presents the RF classification results in the years 2000, 2010 and 2015
(Section 3.1). The confusion matrices for the years 2000, 2005, 2010, 2015 and 2020 are also
shown in Section 3.1. Based on the evaluation assessment results, the produced maps show
good OA scores larger than 0.95. The two decades mangrove loss analysis is explained in
Section 3.2.

3.1. Classification Results

After the RF training process for Landsat-7 and Landsat-8, the trained models were
used to predict non-mangrove and mangrove areas in the whole study area for the years
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2000 to 2020. The trained Landsat-7 RF model was used to predict non-mangrove and
mangrove areas from the years 2000 to 2013, while the trained Landsat-8 RF model was
used for the years 2014 to 2020. The visualization result of the mangrove area and Landsat
composite (NIR, SWIR 1, Red) every 10 years (2000, 2010 and 2020) are shown in Figure 5.
Visually, mangrove objects in Landsat composite (NIR, SWIR 1, Red) will look reddish-
orange if we compare them with the other vegetation type.
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Figure 5. Visualization results in year 2000, 2010 and 2020. The left column is Landsat composite
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(green color).

Based on the visualization classification result, in 2000 almost all of the tidal zone is
covered by the mangrove forest and just some areas are already covered by the aquaculture
pond. 10 years later in 2010, there is a lot of mangrove forest deforestation, especially in
the red box, all of the mangrove forests become non-mangrove (aquaculture pond). While
based on the classification visualization result in 2020, the distribution of mangroves is
similar to the year 2010, only slight changes occurred in some areas. The comparison
analysis based on the visualization results from 2000, 2010 and 2020 shows the highest rate
of mangrove deforestation happened between the years 2000 to 2010, while only slight
changes happened ten years later (2010 to 2020). There were a lot of mangroves in 2000 and
then deforested in 2010 according to the classification result.

The second result of this study is the evaluation assessment to know the quality of
classified mangrove and non-mangrove areas. The independent testing samples were
collected to perform the evaluation assessment by calculating the OA score, UA score,
and PA score. A total of 2500 testing samples were used here from the years 2000, 2005,
2010, 2015 and 2020 to calculate the confusion matrix as shown in Figure 6. In general, the
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classified maps achieved OA score of more than 0.95 in all 5 years results. The highest OA
score is from the year 2000 (0.982), while the lowest OA score is from the year 2005 (0.954).
The reason why the 2000 classified result has the highest OA score is the trained model
using the training data from the year 2000.
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Figure 6. Confusion matrix result from independent reference testing points in 2000, 2005, 2010, 2015
and 2020. N-Mg, Mg, UA, and PA stand for non-mangrove class, mangrove class, user’s accuracy,
and producer’s accuracy, respectively. The blue color in the confusion matrix tables is true positive
and true negative, while the orange box is overall accuracy.

Based on all confusion matrices the UA score and PA score of the non-mangrove
class is higher than the mangrove class. These results indicate the mangrove class is more
difficult to identify than the non-mangrove class. The lowest UA score for the mangrove
class is in the year 2005 (0.908), while the highest UA score for the mangrove class is in
the year 2000 (0.982). In general, the classified maps from the trained RF model produced
acceptable non-mangrove and mangrove maps based on the evaluation assessments.

3.2. Mangroves Loss Monitoring

The two decades (2000 to 2020) mangrove loss monitoring in this study is based on
produced mangrove maps using an RF algorithm. The results of observations were carried
out by looking at changes in the mangrove areas every year. The spatial distribution of
the mangrove area shows a change in the location of the mangrove area from 2000 to 2020.
Based on the produced mangrove maps every year, the total area of mangroves in two
decades is shown in Figure 7. The largest total mangrove area in East Luwu was found in
the year 2000 with a total mangrove area of 4895.26 Ha. While the lowest total mangrove
area was found in the year 2015 with a total mangrove area of 1730.24 Ha. Based on the
linear trendline (red line), the total area of mangroves in East Luwu from 2000 to 2020 has
a decreased trend. The most significant decrease occurred in the years 2000–2005. After
2005, there was a narrowing of the fluctuating mangrove areas. The moving average line
shows the high deforested mangrove area from 2000 to 2005, then after 2005 become more
stable. In 2020 we can find a slight increase in mangrove area compared with the previous
year. Based on the linear trendline and moving average line, the status and condition of
mangrove forest in East Luwu from 2000 to 2020 tends to decrease.

The result of the intact and loss mangrove area in 2000 to 2020 is shown in Figure 8.
The highest mangrove deforestation area can be seen in the orange zoom box. Based on
observations of the spatial distribution of the front area is dominated by intact mangrove
areas and changes in the mangrove area in 2000 and 2020 are behind it. The shrinkage of
mangrove area based on the distribution in 2000 was influenced by changes in land use
in the East Luwu area to become a pond area. Intact mangroves in the foreground are
used to protect coastlines and aquaculture areas. The addition of mangrove areas in 2020 is
outside the mangrove area in 2000 and has a narrow distribution. Based on the results of
the distribution on the map, it is known that the narrowing of the mangrove area is behind
intact mangroves and is influenced by changes in land use into pond areas.
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Figure 8. Intact and loss mangrove map from 2000 until 2020. Intact mangrove is the mangrove area
in 2000 and still intact in 2020, Mangroves in 2020 is the mangrove area that just existed in 2020, and
Mangroves in 2000 is the mangrove areas that existed in 2000 then deforested in 2020.

4. Discussion

The study area of this research is located in the East Luwu, Indonesia with high
rate of mangrove deforestation around the study area [12]. Time-series Landsat-7 and
Landsat-8 images were used here to produce mangrove map in two decades (2000 to 2020).
While RF algorithm was used here as the classifier function in the GEE platform. The
trained RF model from the year 2000 (Landsat-7) was used to produce mangrove maps
from 2000 to 2013, while the trained RF model from the year 2014 (Landsat-8) was used
to produce mangrove maps from 2014 to 2020. The OA score, UA score, and PA score
from the evaluation assessment using the independent testing dataset are shown in Table 6.
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The average OA score from the produced maps (2000, 2005, 2010, 2015 and 2020) is 0.966,
while the UA score for the mangrove class is lower than the non-mangrove class but still
acceptable. The produced mangrove map using RF trained model achieved good results in
terms of accuracy matrices. Based on these results, we assumed all the produced mangrove
maps every year can be used for mangrove monitoring analysis.

Table 6. The average of evaluation assessment in the year of 2000, 2005, 2010, 2015 and 2020.

Testing Data OA Score UA N-Mg UA Mg PA N-Mg PA Mg

2000 0.982 0.984 0.980 0.980 0.984
2005 0.954 1.000 0.908 0.916 1.000
2010 0.970 0.996 0.944 0.947 0.996
2015 0.956 0.996 0.916 0.922 0.996
2020 0.966 1.000 0.932 0.936 1.000

Average Score 0.966 0.995 0.936 0.940 0.995

We calculated the mangrove loss rate percentage per year for every 5 years for further
analysis (Table 7). The calculation of mangrove loss rate in this study is based on previous
research with following equations [32]:

r =
(

1
t2 − t1

)
× ln

(
A2

A1

)
(4)

where A1 and A2 are the forest cover at time t1 and t1, respectively. The unit for the annual
rate is per year or percentage per year.The first-half first decade (2000 to 2005) has the
greatest annual mangrove loss rate among others. The mangrove loss rate in the first-half
first decade is −14.11% with the total loss of mangrove area of 2477.39 Ha. This result
revealed massive mangrove deforestation in East Luwu from 2000 to 2005. The main factor
is the conversion from mangrove areas to aquaculture ponds which happened a lot from
2000 to 2005.

Table 7. Mangrove loss rate percentage per year every 5 years. The “↓” symbol represents the loss
trend, while the “↑” symbol represents the gain trend.

Years Total Changes Area (Ha) Loss Rate (% per Year)

2000–2005 ↓ 2477.39 −14.11% ↓
2006–2010 ↓ 201.51 −2.24% ↓
2011–2015 ↓ 362.40 −4.75% ↓
2016–2020 ↑ 87.96 +1.04% ↑

The second-half first decade (2006 to 2010), revealed mangrove loss rate of −2.24%
per year with a total loss of mangrove area of 201.51 Ha. The mangrove loss rate in the
second-half first decade is not really high as in the first-half decade. While the mangrove
loss rate in the first-half second decade (2011 to 2015) increased from the second-half first
decade. The mangrove loss rate from the first-half second decade is −4.75% with the
total mangrove deforestation area of 362.40 ha, which differs from the previous 5 years by
160.88 Ha. From 2006 to 2015 we found fewer mangrove areas were deforested compared
with the first-half first decade (2000 to 2005). The trendline analysis in Figure 7 also
shows the narrowing of the fluctuating mangrove areas after 2005. Based on our visual
analysis, the decreasing mangrove areas from 2006 to 2015 are still mainly influenced by
the aquaculture ponds. After 2005, the loss of mangrove areas is not very high, it is related
with the regional government regulation (Peraturan Daerah Luwu Timur No. 2 Year 2005:
Rencana Pembangunan Jangka Panjang (RPJP) 2005–2025). This regulation mentioned
about environmental issues related to aquaculture ponds and land clearing. In addition to
that factor, the procurement of new aquaculture pond has also decreased after 2005 based
on visual analysis.
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While in the last second decade (2016 to 2020), we found a positive loss rate (+1.04%)
percentage which means there is an increase in the total mangrove area in the study area.
The total increased mangrove areas from 2016 to 2020 is 87.96 Ha, which does not increase
too much. We used Landsat-8 (2016 and 2020) and Sentinel-2 data (2020) as a finer spatial
resolution for the visual observations. Based on our observations, the slight increase of
total mangrove area in the last second decade was mainly caused by the natural restoration
of mangrove areas that happened in mangrove areas directly adjacent to water areas (ocean
and river). We also found small abandonment aquaculture ponds in 2016 turned back
into mangrove areas in 2020. In fact, there is still conversion of mangrove forests into
aquaculture ponds from 2016 to 2020.

The limitation from the produced mangrove maps in this study is divided into two
types. The first type is cloud cover effects in the study area, even though we already
used the cloud masking function in the GEE platform, some area still has cloud cover
effects. The second type is about scanline error in the Landsat-7 imagery. The scanline
errors happened in the Landsat-7 image starting from 2003. We used a median filter from
January to December for each year to minimize the scanline error in the Landsat-7 images.
Almost all Landsat-7 data from 2003 to 2013 have small scanline errors so it doesn’t affect
the classification results much, just the year 2008 has very huge scanline errors (Figure 9).
Therefore, the produced mangrove maps from 2003 to 2013 are still acceptable since they
had a small scanline error and achieved a good OA score from the evaluation assessment.
We only used Landsat-7 images for the year 2000 to 2013 even though they have scanline
errors because we cannot find the Landsat-5 data in our study area after the year 2003.
To the best of our knowledge, much Landsat-5 data in the specific region and year is still
decentralized and not available in the global database. The scanline errors and cloud
cover effects affected the produced mangrove cover maps in the whole study area. Future
research needs to pay more attention to the scanline errors of Landsat-7 or uses other
satellite imagery.
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5. Conclusions

Mangrove monitoring is important information to know the status and condition
of mangrove forest. This study used Landsat-7 and Landsat-8 satellite imagery with RF
algorithm to produce two decades mangrove loss monitoring in East Luwu, Indonesia
from 2000 to 2020. Based on the independent testing points, the average OA score from
the produced mangrove map is about 0.966, while the average UA score of mangrove class
is 0.936. The total mangrove area from 2000 to 2020 has decreased trend with the highest
mangrove deforestation happened from 2000 to 2005 with mangrove loss rate −14.11% per
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year. This study revealed the mangrove deforestation in East Luwu was mainly caused by
the aquaculture pond. In the last 5 years (2016 to 2020), this study found a slight increase
in total mangrove area by 1.04% (87.96 Ha). The slight increased mangrove area mainly
caused by natural recovery and small abandonment aquaculture ponds in 2016 turned back
into mangrove areas.
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