Next Issue
Volume 2, June
Previous Issue
Volume 1, December
 
 

BioMedInformatics, Volume 2, Issue 1 (March 2022) – 13 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 925 KiB  
Review
Unobtrusive Monitoring of Sleep Cycles: A Technical Review
by Juwonlo Siyanbade, Bessam Abdulrazak and Ibrahim Sadek
BioMedInformatics 2022, 2(1), 204-216; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010013 - 09 Mar 2022
Cited by 5 | Viewed by 4993
Abstract
Polysomnography is the gold-standard method for measuring sleep but is inconvenient and limited to a laboratory or a hospital setting. As a result, the vast majority of patients do not receive a proper diagnosis. In an attempt to solve this issue, sleep experts [...] Read more.
Polysomnography is the gold-standard method for measuring sleep but is inconvenient and limited to a laboratory or a hospital setting. As a result, the vast majority of patients do not receive a proper diagnosis. In an attempt to solve this issue, sleep experts are continually looking for unobtrusive and affordable alternatives that can provide longitudinal sleep tracking. Collecting longitudinal data on sleep can accelerate epidemiological studies exploring the effect of sleep on health and disease. These alternatives can be in the form of wearables (e.g., actigraphs) or nonwearable (e.g., under-mattress sleep trackers). To this end, this paper aims to review the several attempts made by researchers toward unobtrusive sleep monitoring, specifically sleep cycle. We have performed a literature search between 2016 and 2021 and the following databases were used for retrieving related articles to unobtrusive sleep cycle monitoring: IEEE, Google Scholar, Journal of Clinical Sleep Medicine (JCSM), and PubMed Central (PMC). Following our survey, although existing devices showed promising results, most of the studies are restricted to a small sample of healthy individuals. Therefore, a broader scope of participants should be taken into consideration during future proposals and assessments of sleep cycle tracking systems. This is because factors such as gender, age, profession, and social class can largely affect sleep quality. Furthermore, a combination of sensors, e.g., smartwatches and under-mattress sleep trackers, are necessary to achieve reliable results. That is, wearables and nonwearable devices are complementary to each other, and so both are needed to boost the field of at-home sleep monitoring. Full article
Show Figures

Figure 1

20 pages, 2434 KiB  
Article
Predicting Childhood Obesity Using Machine Learning: Practical Considerations
by Erika R. Cheng, Rai Steinhardt and Zina Ben Miled
BioMedInformatics 2022, 2(1), 184-203; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010012 - 08 Mar 2022
Cited by 6 | Viewed by 4974
Abstract
Previous studies demonstrate the feasibility of predicting obesity using various machine learning techniques; however, these studies do not address the limitations of these methods in real-life settings where available data for children may vary. We investigated the medical history required for machine learning [...] Read more.
Previous studies demonstrate the feasibility of predicting obesity using various machine learning techniques; however, these studies do not address the limitations of these methods in real-life settings where available data for children may vary. We investigated the medical history required for machine learning models to accurately predict body mass index (BMI) during early childhood. Within a longitudinal dataset of children ages 0–4 years, we developed predictive models based on long short-term memory (LSTM), a recurrent neural network architecture, using history EHR data from 2 to 8 clinical encounters to estimate child BMI. We developed separate, sex-stratified models using 80% of the data for training and 20% for external validation. We evaluated model performance using K-fold cross-validation, mean average error (MAE), and Pearson’s correlation coefficient (R2). Two history encounters and a 4-month prediction yielded a high prediction error and low correlation between predicted and actual BMI (MAE of 1.60 for girls and 1.49 for boys). Model performance improved with additional history encounters; improvement was not significant beyond five history encounters. The combined model outperformed the sex-stratified models, with a MAE = 0.98 (SD 0.03) and R2 = 0.72. Our models show that five history encounters are sufficient to predict BMI prior to age 4 for both boys and girls. Moreover, starting from an initial dataset with more than 269 exposure variables, we were able to identify a limited set of 24 variables that can facilitate BMI prediction in early childhood. Nine of these final variables are collected once, and the remaining 15 need to be updated during each visit. Full article
(This article belongs to the Topic Machine Learning Techniques Driven Medicine Analysis)
Show Figures

Figure 1

15 pages, 4165 KiB  
Article
BDP1 Expression Correlates with Clinical Outcomes in Activated B-Cell Diffuse Large B-Cell Lymphoma
by Stephanie Cabarcas-Petroski and Laura Schramm
BioMedInformatics 2022, 2(1), 169-183; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010011 - 12 Feb 2022
Cited by 3 | Viewed by 2649
Abstract
The RNA polymerase III–specific TFIIIB complex is targeted by oncogenes and tumor suppressors, specifically the TFIIIB subunits BRF1, BRF2, and TBP. Currently, it is unclear if the TFIIIB subunit BDP1 is universally deregulated in human cancers. We performed a meta-analysis of patient data [...] Read more.
The RNA polymerase III–specific TFIIIB complex is targeted by oncogenes and tumor suppressors, specifically the TFIIIB subunits BRF1, BRF2, and TBP. Currently, it is unclear if the TFIIIB subunit BDP1 is universally deregulated in human cancers. We performed a meta-analysis of patient data in the Oncomine database to analyze BDP1 alterations in human cancers. Herein, we report a possible role for BDP1 in non-Hodgkin’s lymphoma (NHL) for the first time. To the best of our knowledge, this is the first study to report a statistically significant decrease in BDP1 expression in patients with anaplastic lymphoma kinase–positive (ALK+) anaplastic large-cell lymphoma (ALCL) (p = 1.67 × 10−6) and Burkitt’s lymphoma (BL) (p = 1.54 × 10−11). Analysis of the BDP1 promoter identified putative binding sites for MYC, BCL6, E2F4, and KLF4 transcription factors, which were previously demonstrated to be deregulated in lymphomas. MYC and BDP1 expression were inversely correlated in ALK+ ALCL, suggesting a possible mechanism for the significant and specific decrease in BDP1 expression. In activated B-cell (ABC) diffuse large B-cell lymphoma (DLBCL), decreased BDP1 expression correlated with clinical outcomes, including recurrence at 1 year (p = 0.021) and 3 years (p = 0.005). Mortality at 1 (p = 0.030) and 3 (p = 0.012) years correlated with decreased BDP1 expression in ABC DLBCL. Together, these data suggest that BDP1 alterations may be of clinical significance in specific NHL subtypes and warrant further investigation. Full article
Show Figures

Figure 1

10 pages, 994 KiB  
Review
Deep Learning and Its Applications in Computational Pathology
by Runyu Hong and David Fenyö
BioMedInformatics 2022, 2(1), 159-168; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010010 - 03 Feb 2022
Cited by 6 | Viewed by 3615
Abstract
Deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial networks (GANs), and graph neural networks (GNNs) have, over the past decade, changed the accuracy of prediction in many diverse fields. In recent years, the application of deep learning techniques in computer [...] Read more.
Deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial networks (GANs), and graph neural networks (GNNs) have, over the past decade, changed the accuracy of prediction in many diverse fields. In recent years, the application of deep learning techniques in computer vision tasks in pathology has demonstrated extraordinary potential in assisting clinicians, automating diagnoses, and reducing costs for patients. Formerly unknown pathological evidence, such as morphological features related to specific biomarkers, copy number variations, and other molecular features, could also be captured by deep learning models. In this paper, we review popular deep learning methods and some recent publications about their applications in pathology. Full article
Show Figures

Figure 1

20 pages, 950 KiB  
Article
State-of-the-Art Explainability Methods with Focus on Visual Analytics Showcased by Glioma Classification
by Milot Gashi, Matej Vuković, Nikolina Jekic, Stefan Thalmann, Andreas Holzinger, Claire Jean-Quartier and Fleur Jeanquartier
BioMedInformatics 2022, 2(1), 139-158; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010009 - 19 Jan 2022
Cited by 12 | Viewed by 3724
Abstract
This study aims to reflect on a list of libraries providing decision support to AI models. The goal is to assist in finding suitable libraries that support visual explainability and interpretability of the output of their AI model. Especially in sensitive application areas, [...] Read more.
This study aims to reflect on a list of libraries providing decision support to AI models. The goal is to assist in finding suitable libraries that support visual explainability and interpretability of the output of their AI model. Especially in sensitive application areas, such as medicine, this is crucial for understanding the decision-making process and for a safe application. Therefore, we use a glioma classification model’s reasoning as an underlying case. We present a comparison of 11 identified Python libraries that provide an addition to the better known SHAP and LIME libraries for visualizing explainability. The libraries are selected based on certain attributes, such as being implemented in Python, supporting visual analysis, thorough documentation, and active maintenance. We showcase and compare four libraries for global interpretations (ELI5, Dalex, InterpretML, and SHAP) and three libraries for local interpretations (Lime, Dalex, and InterpretML). As use case, we process a combination of openly available data sets on glioma for the task of studying feature importance when classifying the grade II, III, and IV brain tumor subtypes glioblastoma multiforme (GBM), anaplastic astrocytoma (AASTR), and oligodendroglioma (ODG), out of 1276 samples and 252 attributes. The exemplified model confirms known variations and studying local explainability contributes to revealing less known variations as putative biomarkers. The full comparison spreadsheet and implementation examples can be found in the appendix. Full article
Show Figures

Figure 1

15 pages, 1007 KiB  
Article
Quantified Explainability: Convolutional Neural Network Focus Assessment in Arrhythmia Detection
by Rui Varandas, Bernardo Gonçalves, Hugo Gamboa and Pedro Vieira
BioMedInformatics 2022, 2(1), 124-138; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010008 - 17 Jan 2022
Cited by 3 | Viewed by 2730
Abstract
In clinical practice, every decision should be reliable and explained to the stakeholders. The high accuracy of deep learning (DL) models pose a great advantage, but the fact that they function as black-boxes hinders their clinical applications. Hence, explainability methods became important as [...] Read more.
In clinical practice, every decision should be reliable and explained to the stakeholders. The high accuracy of deep learning (DL) models pose a great advantage, but the fact that they function as black-boxes hinders their clinical applications. Hence, explainability methods became important as they provide explanation to DL models. In this study, two datasets with electrocardiogram (ECG) image representations of six heartbeats were built, one given the label of the last heartbeat and the other given the label of the first heartbeat. Each dataset was used to train one neural network. Finally, we applied well-known explainability methods to the resulting networks to explain their classifications. Explainability methods produced attribution maps where pixels intensities are proportional to their importance to the classification task. Then, we developed a metric to quantify the focus of the models in the heartbeat of interest. The classification models achieved testing accuracy scores of around 93.66% and 91.72%. The models focused around the heartbeat of interest, with values of the focus metric ranging between 8.8% and 32.4%. Future work will investigate the importance of regions outside the region of interest, besides the contribution of specific ECG waves to the classification. Full article
Show Figures

Figure 1

18 pages, 2225 KiB  
Article
Prediction of Recovery from Traumatic Brain Injury with EEG Power Spectrum in Combination of Independent Component Analysis and RUSBoost Model
by Nor Safira Elaina Mohd Noor, Haidi Ibrahim, Muhammad Hanif Che Lah and Jafri Malin Abdullah
BioMedInformatics 2022, 2(1), 106-123; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010007 - 06 Jan 2022
Cited by 4 | Viewed by 3148
Abstract
The computational electroencephalogram (EEG) is recently garnering significant attention in examining whether the quantitative EEG (qEEG) features can be used as new predictors for the prediction of recovery in moderate traumatic brain injury (TBI). However, the brain’s recorded electrical activity has always been [...] Read more.
The computational electroencephalogram (EEG) is recently garnering significant attention in examining whether the quantitative EEG (qEEG) features can be used as new predictors for the prediction of recovery in moderate traumatic brain injury (TBI). However, the brain’s recorded electrical activity has always been contaminated with artifacts, which in turn further impede the subsequent processing steps. As a result, it is crucial to devise a strategy for meticulously flagging and extracting clean EEG data to retrieve high-quality discriminative features for successful model development. This work proposed the use of multiple artifact rejection algorithms (MARA), which is an independent component analysis (ICA)-based algorithm, to eliminate artifacts automatically, and explored their effects on the predictive performance of the random undersampling boosting (RUSBoost) model. Continuous EEG were acquired using 64 electrodes from 27 moderate TBI patients at four weeks to one-year post-accident. The MARA incorporates an artifact removal stage based on ICA prior to RUSBoost, SVM, DT, and k-NN classification. The area under the curve (AUC) of RUSBoost was higher in absolute power spectral density (PSD) in AUCδ = 0.75, AUC α = 0.73 and AUCθ = 0.71 bands than SVM, DT, and k-NN. The MARA has provided a good generalization performance of the RUSBoost prediction model. Full article
Show Figures

Figure 1

5 pages, 1866 KiB  
Brief Report
Predicting and Visualizing STK11 Mutation in Lung Adenocarcinoma Histopathology Slides Using Deep Learning
by Runyu Hong, Wenke Liu and David Fenyö
BioMedInformatics 2022, 2(1), 101-105; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010006 - 30 Dec 2021
Cited by 3 | Viewed by 3164
Abstract
Studies have shown that STK11 mutation plays a critical role in affecting the lung adenocarcinoma (LUAD) tumor immune environment. By training an Inception-Resnet-v2 deep convolutional neural network model, we were able to classify STK11-mutated and wild-type LUAD tumor histopathology images with a promising [...] Read more.
Studies have shown that STK11 mutation plays a critical role in affecting the lung adenocarcinoma (LUAD) tumor immune environment. By training an Inception-Resnet-v2 deep convolutional neural network model, we were able to classify STK11-mutated and wild-type LUAD tumor histopathology images with a promising accuracy (per slide AUROC = 0.795). Dimensional reduction of the activation maps before the output layer of the test set images revealed that fewer immune cells were accumulated around cancer cells in STK11-mutation cases. Our study demonstrated that deep convolutional network model can automatically identify STK11 mutations based on histopathology slides and confirmed that the immune cell density was the main feature used by the model to distinguish STK11-mutated cases. Full article
Show Figures

Figure 1

24 pages, 10380 KiB  
Article
Curcumin Analogues as a Potential Drug against Antibiotic Resistant Protein, β-Lactamases and L, D-Transpeptidases Involved in Toxin Secretion in Salmonella typhi: A Computational Approach
by Tanzina Akter, Mahim Chakma, Afsana Yeasmin Tanzina, Meheadi Hasan Rumi, Mst. Sharmin Sultana Shimu, Md. Abu Saleh, Shafi Mahmud, Saad Ahmed Sami and Talha Bin Emran
BioMedInformatics 2022, 2(1), 77-100; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010005 - 27 Dec 2021
Cited by 3 | Viewed by 3140
Abstract
Typhoid fever caused by the bacteria Salmonella typhi gained resistance through multidrug-resistant S. typhi strains. One of the reasons behind β-lactam antibiotic resistance is -lactamase. L, D-Transpeptidases is responsible for typhoid fever as it is involved in toxin release that results in [...] Read more.
Typhoid fever caused by the bacteria Salmonella typhi gained resistance through multidrug-resistant S. typhi strains. One of the reasons behind β-lactam antibiotic resistance is -lactamase. L, D-Transpeptidases is responsible for typhoid fever as it is involved in toxin release that results in typhoid fever in humans. A molecular modeling study of these targeted proteins was carried out by various methods, such as homology modeling, active site prediction, prediction of disease-causing regions, and by analyzing the potential inhibitory activities of curcumin analogs by targeting these proteins to overcome the antibiotic resistance. The five potent drug candidate compounds were identified to be natural ligands that can inhibit those enzymes compared to controls in our research. The binding affinity of both the Go-Y032 and NSC-43319 were found against β-lactamase was −7.8 Kcal/mol in AutoDock, whereas, in SwissDock, the binding energy was −8.15 and −8.04 Kcal/mol, respectively. On the other hand, the Cyclovalone and NSC-43319 had an equal energy of −7.60 Kcal/mol in AutoDock, whereas −7.90 and −8.01 Kcal/mol in SwissDock against L, D-Transpeptidases. After the identification of proteins, the determination of primary and secondary structures, as well as the gene producing area and homology modeling, was accomplished. The screened drug candidates were further evaluated in ADMET, and pharmacological properties along with positive drug-likeness properties were observed for these ligand molecules. However, further in vitro and in vivo experiments are required to validate these in silico data to develop novel therapeutics against antibiotic resistance. Full article
Show Figures

Figure 1

15 pages, 2944 KiB  
Article
Projection of High-Dimensional Genome-Wide Expression on SOM Transcriptome Landscapes
by Maria Nikoghosyan, Henry Loeffler-Wirth, Suren Davidavyan, Hans Binder and Arsen Arakelyan
BioMedInformatics 2022, 2(1), 62-76; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010004 - 27 Dec 2021
Cited by 1 | Viewed by 3119
Abstract
The self-organizing maps portraying has been proven to be a powerful approach for analysis of transcriptomic, genomic, epigenetic, single-cell, and pathway-level data as well as for “multi-omic” integrative analyses. However, the SOM method has a major disadvantage: it requires the retraining of the [...] Read more.
The self-organizing maps portraying has been proven to be a powerful approach for analysis of transcriptomic, genomic, epigenetic, single-cell, and pathway-level data as well as for “multi-omic” integrative analyses. However, the SOM method has a major disadvantage: it requires the retraining of the entire dataset once a new sample is added, which can be resource- and time-demanding. It also shifts the gene landscape, thus complicating the interpretation and comparison of results. To overcome this issue, we have developed two approaches of transfer learning that allow for extending SOM space with new samples, meanwhile preserving its intrinsic structure. The extension SOM (exSOM) approach is based on adding secondary data to the existing SOM space by “meta-gene adaptation”, while supervised SOM portrayal (supSOM) adds support vector machine regression model on top of the original SOM algorithm to “predict” the portrait of a new sample. Both methods have been shown to accurately combine existing and new data. With simulated data, exSOM outperforms supSOM for accuracy, while supSOM significantly reduces the computing time and outperforms exSOM for this parameter. Analysis of real datasets demonstrated the validity of the projection methods with independent datasets mapped on existing SOM space. Moreover, both methods well handle the projection of samples with new characteristics that were not present in training datasets. Full article
Show Figures

Figure 1

19 pages, 1270 KiB  
Article
Analysis of Single-Cell RNA-Sequencing Data: A Step-by-Step Guide
by Aanchal Malhotra, Samarendra Das and Shesh N. Rai
BioMedInformatics 2022, 2(1), 43-61; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010003 - 26 Dec 2021
Cited by 2 | Viewed by 9413
Abstract
Single-cell RNA-sequencing (scRNA-seq) technology provides an excellent platform for measuring the expression profiles of genes in heterogeneous cell populations. Multiple tools for the analysis of scRNA-seq data have been developed over the years. The tools require complicated commands and steps to analyze the [...] Read more.
Single-cell RNA-sequencing (scRNA-seq) technology provides an excellent platform for measuring the expression profiles of genes in heterogeneous cell populations. Multiple tools for the analysis of scRNA-seq data have been developed over the years. The tools require complicated commands and steps to analyze the underlying data, which are not easy to follow by genome researchers and experimental biologists. Therefore, we describe a step-by-step workflow for processing and analyzing the scRNA-seq unique molecular identifier (UMI) data from Human Lung Adenocarcinoma cell lines. We demonstrate the basic analyses including quality check, mapping and quantification of transcript abundance through suitable real data example to obtain UMI count data. Further, we performed basic statistical analyses, such as zero-inflation, differential expression and clustering analyses on the obtained count data. We studied the effects of excess zero-inflation present in scRNA-seq data on the downstream analyses. Our findings indicate that the zero-inflation associated with UMI data had no or minimal role in clustering, while it had significant effect on identifying differentially expressed genes. We also provide an insight into the comparative analysis for differential expression analysis tools based on zero-inflated negative binomial and negative binomial models on scRNA-seq data. The sensitivity analysis enhanced our findings in that the negative binomial model-based tool did not provide an accurate and efficient way to analyze the scRNA-seq data. This study provides a set of guidelines for the users to handle and analyze real scRNA-seq data more easily. Full article
Show Figures

Figure 1

25 pages, 4380 KiB  
Review
Medical Decision Making for Cardiac MRI with CFD “Detection of Severe Stenosis Using a 5D Model of the Descending Aorta”
by Houneida Sakly, Mourad Said and Moncef Tagina
BioMedInformatics 2022, 2(1), 18-42; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010002 - 24 Dec 2021
Viewed by 2425
Abstract
The aim of this study is to develop a reliable 5D (x, y, z, time, flow dimension) model for medical decision making. Sophisticated techniques for the assessment of serious stenosis were developed using time-dependent instantaneous pressure gradients through the aorta (flow rate, Reynolds [...] Read more.
The aim of this study is to develop a reliable 5D (x, y, z, time, flow dimension) model for medical decision making. Sophisticated techniques for the assessment of serious stenosis were developed using time-dependent instantaneous pressure gradients through the aorta (flow rate, Reynolds number, velocity, etc.). A 74 cardiac MRI scan and 3057 scans were performed on a 10-year-old patient with congenital valve and valvular aortic stenosis on sensitive MRI and coarctation (operated and then dilated) in the sense of shone syndrome. The occlusion rate was estimated to be 80.5%. The stenosis area was approximately 15 mm long and 10 mm high. The fluid solver (NS) exhibited a significant shear stress of −3.735 × 10−5 Pa within the first 10 iterations. There was a significant drop in the flux mass of −0.0050 (kg/s), as well as high blood turbulence in vortex field lines and low geometry Reynolds cells. The fifth dimension was used for negative velocity prediction (−81.4 cm/s). The discoveries of the 5D aortic simulation are convincing based on the evaluation of its physical and biomedical features. Full article
Show Figures

Figure 1

17 pages, 1586 KiB  
Article
Explainable Artificial Intelligence (XAI) in Biomedicine: Making AI Decisions Trustworthy for Physicians and Patients
by Jörn Lötsch, Dario Kringel and Alfred Ultsch
BioMedInformatics 2022, 2(1), 1-17; https://0-doi-org.brum.beds.ac.uk/10.3390/biomedinformatics2010001 - 22 Dec 2021
Cited by 35 | Viewed by 8254
Abstract
The use of artificial intelligence (AI) systems in biomedical and clinical settings can disrupt the traditional doctor–patient relationship, which is based on trust and transparency in medical advice and therapeutic decisions. When the diagnosis or selection of a therapy is no longer made [...] Read more.
The use of artificial intelligence (AI) systems in biomedical and clinical settings can disrupt the traditional doctor–patient relationship, which is based on trust and transparency in medical advice and therapeutic decisions. When the diagnosis or selection of a therapy is no longer made solely by the physician, but to a significant extent by a machine using algorithms, decisions become nontransparent. Skill learning is the most common application of machine learning algorithms in clinical decision making. These are a class of very general algorithms (artificial neural networks, classifiers, etc.), which are tuned based on examples to optimize the classification of new, unseen cases. It is pointless to ask for an explanation for a decision. A detailed understanding of the mathematical details of an AI algorithm may be possible for experts in statistics or computer science. However, when it comes to the fate of human beings, this “developer’s explanation” is not sufficient. The concept of explainable AI (XAI) as a solution to this problem is attracting increasing scientific and regulatory interest. This review focuses on the requirement that XAIs must be able to explain in detail the decisions made by the AI to the experts in the field. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop