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Abstract: Studies have shown that STK11 mutation plays a critical role in affecting the lung adeno-
carcinoma (LUAD) tumor immune environment. By training an Inception-Resnet-v2 deep convolu-
tional neural network model, we were able to classify STK11-mutated and wild-type LUAD tumor
histopathology images with a promising accuracy (per slide AUROC = 0.795). Dimensional reduction
of the activation maps before the output layer of the test set images revealed that fewer immune
cells were accumulated around cancer cells in STK11-mutation cases. Our study demonstrated that
deep convolutional network model can automatically identify STK11 mutations based on histopathol-
ogy slides and confirmed that the immune cell density was the main feature used by the model to
distinguish STK11-mutated cases.

Keywords: histopathology; deep learning; machine learning; cancer; lung adenocarcinoma; immune;
computational pathology

1. Introduction

Non-small cell lung cancer is the most common type of lung cancer accounting for
more than 80% of lung tumor malignancy cases, among which 50% are adenocarcinoma
(LUAD) [1]. STK11 is a critical cancer-related gene that provides instructions for making
a tumor suppressor, serine/threonine kinase 11 [2]. About 24% of all adenocarcinoma
cases are STK11-mutated, and molecular studies have shown that STK11-mutation plays an
important role in influencing the tumor immune environment including the intratumoral
immune cell densities [1]. As a result, many researchers have suggested that precision
immuno-therapy approaches should take STK11 status of individual tumors into consid-
eration [3–5]. In recent years, deep-learning-based methods have been proved to be able
to capture morphological features on tumor images that are associated with molecular
features such as mutations, subtypes, and immune infiltration. For example, a customized
multi-resolution CNN model showed its power in classifying molecular subtypes in en-
dometrial cancer [6]. An InceptionV3-based model was able to identify BRAF mutations in
malignant melanoma tissue [7]. A similar architected model was also capable of predicting
non-small-cell lung cancer subtypes with high accuracy [8]. In other cancer types that are
more heterogeneous such as glioblastoma and colon cancer, CNN-based imaging model
also showed its power in predicting critical morphological and molecular features such as
G-CIMP and MSI [9,10]. Here, we trained a deep-learning model that can determine LUAD
patients’ STK11 mutation status based on histopathology slides with high performance.
Visualization of the key features learned by the model confirmed that STK11 mutation is
associated with the density of immune cells near cancer cells. Practically, this model is
capable of providing guidance to immunotherapy in a faster, more convenient, and less
expensive way by examining histopathology images without doing sequencing analyses.

Biomedinformatics 2022, 2, 101–105. https://doi.org/10.3390/biomedinformatics2010006 https://www.mdpi.com/journal/biomedinformatics

https://doi.org/10.3390/biomedinformatics2010006
https://doi.org/10.3390/biomedinformatics2010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com
https://orcid.org/0000-0002-0941-351X
https://orcid.org/0000-0001-5049-3825
https://doi.org/10.3390/biomedinformatics2010006
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com/article/10.3390/biomedinformatics2010006?type=check_update&version=1


Biomedinformatics 2022, 2 102

2. Materials and Methods

Inception-Renet-v2, a modified version of Inception-v4 with residual connection
derived from the original InceptionNet, was used as the architecture of the deep-learning
model for this project [11–13]. Figure 1 and Figure S1 shows the general workflow. The
nature of digital histopathology images is quite different from the images from ImageNet
which these CNN architectures were designed for and pre-trained on. For example, the
digital histopathology images are often much larger in size than ImageNet’s. Also, the
features are quite different since features in histopathology are often textures rather than
objects in ImageNet. Therefore, we believe training end-to-end is a better strategy than
transfer learning for our task. The 541 scanned diagnostic histopathology slides from
478 patients with STK11 mutation status were downloaded from Genomic Data Commons
(GDC) of the National Cancer Institute (NCI). The data were then separated into training
(80%), validation (10%), and testing (10%) sets at per-patient level. Due to the large size
of the slides, they were cut into 299-by-299-pixel tiles at 20× magnification level and
background was omitted. The model was trained from scratch at per-tile level with batch
size of 64 and dropout keep rate of 0.3. The training process stopped when either training or
validation loss did not decrease for more than 10,000 iterations to avoid overfitting. When
training loss reached minimum at some point, a 100-iteration validation was performed.
The model was saved as the best performing one only when both training and validation
losses were at minimum. The training time took about 3 days while the testing for one
slide took less than 15 min. We used the NYU Langone Health BigPurple high performance
computing (HPC) platform with a NVIDIA Tesla V100 GPU and the model is also possible
to be trained and tested on other platforms such as Google Colab.
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Figure 1. The general workflow of data preprocessing, model training and evaluation, and feature
visualization.

3. Results

The model achieved per-slide level area under ROC curve of 0.795 (95% CI: 0.601–0.988)
and 0.696 (95% CI: 0.692–0.7) at per-tile level (Figure 2). The top-1 accuracy with cutoff at 0.5
was 0.855 (95% CI: 0.742–0.931) at per-slide level and 0.837 (95% CI: 0.835–0.839) at per-tile
level. In addition, we also tried an InceptionV3-based model, but the performance was lower
with a per-slide level area under ROC curve of 0.64. Considering this is a molecular feature
prediction task and the labels are at per-slide level only, we believe that these results are quite
decent and successful.

The activation maps before the last fully connected layer of 30,000 randomly selected
tiles in the test set were recorded. These activation maps were then projected onto a
tSNE plot (Figure 3). To have a more straightforward visualization of the features, we put
thresholds on prediction scores and randomly selected tiles to represent their corresponding
local binned areas on the tSNE space (Figure 4). An experienced pathologist with no
previous knowledge in machine learning interpreted patterns in Figure 4 that tiles in the
positively predicted clusters (STK11-mutated) were generally showing plenty of cancer cells
with very few immune cells, while a large number of immune cells were present around
the cancer cells in the negatively predicted areas (wild-type). In addition, most cancer cells
were observed in the areas with high positive or negative prediction scores, suggesting
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that cancer cells were the main focus of the model in making decisions. These findings
validated the molecular studies that STK11 mutation decreases the immune response in
LUAD patients.
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4. Discussion

The model we trained showed capability in predicting STK11 mutation in LUAD
patients based on histopathology images. It has great potential in providing guidance to
immunotherapies in a faster, cheaper, and more convenient way without any sequencing
analyses. Scientifically, it confirms the molecular level findings that STK11 mutation leads
to less immune response in LUAD tumor from histopathology perspective and links a
critical lung cancer molecular feature to a previously unknown morphological pattern.
Moving forward, we will continue working on building the connection between cancer
molecular features and morphological features using deep-learning techniques.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedinformatics2010006/s1, Figure S1: general workflow.
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