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Abstract: Since December 2019, a novel coronavirus disease (COVID-19) has infected millions of
individuals. This paper conducts a thorough study of the use of deep learning (DL) and federated
learning (FL) approaches to COVID-19 screening. To begin, an evaluation of research articles pub-
lished between 1 January 2020 and 28 June 2023 is presented, considering the preferred reporting
items of systematic reviews and meta-analysis (PRISMA) guidelines. The review compares various
datasets on medical imaging, including X-ray, computed tomography (CT) scans, and ultrasound
images, in terms of the number of images, COVID-19 samples, and classes in the datasets. Following
that, a description of existing DL algorithms applied to various datasets is offered. Additionally, a
summary of recent work on FL for COVID-19 screening is provided. Efforts to improve the quality of
FL models are comprehensively reviewed and objectively evaluated.
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1. Introduction

The novel coronavirus disease (COVID-19) pandemic [1–3] began in December 2019,
killing millions of people [4–8]. Table 1 compares different pandemics in terms of death
cases. COVID-19 causes symptoms of fever, lung issues, dyspnea [9], etc. In severe cases,
patients need admission to intensive care units [10]. In many countries, COVID-19 has
created a massive burden on the healthcare system as the number of ICUs is limited.
Maintaining social distancing and wearing facial masks were suggested by the World
Health Organization (WHO). From late December 2020, vaccines were used for the mass
people. Since January 2023, the occurrence of COVID-19 has been steadily decreasing,
allowing most nations to resume their normal lives as they were before the pandemic.
However, new variants of COVID-19 may emerge in the near future, against which we
may not be fully protected by the existing vaccines. We will continue to face a public
health threat as a result of the evolution of the virus, global dissemination, and persisting
vulnerabilities within our communities. So, COVID-19 may remain a global health threat.
Hence, predicting COVID-19 spread is still important for planning medical facilities and
other issues.

Table 1. Comparison of fatalities of selected pandemics.

Pandemics Number of Deaths

Spanish Flu 40–50 million

Third Plague 12 million

AIDS 25–35 million

COVID-19 (28 June 2023) 6.90 million
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During the peak of the pandemic, there were long queues to conduct COVID-19 testing
for patients. There was also a limited number of medical personnel and kits. Therefore, it is
important to apply artificial intelligence (AI) to diagnose COVID-19 patients. There has
been significant research interest in studying the data of COVID-19. Some of these studies
only focus on data visualization [11–13], while others use data to predict the future trend
of the infection and automatically diagnose the disease. Because of the rapid spread of
this virus infection, it has been challenging to collect data in an organized way. In many
cases, the collected datasets are not balanced and are not large enough to contain bias
errors. Hence, a summary of these research works on data and algorithms will facilitate the
ongoing studies on COVID-19.

Machine learning (ML) as well as deep learning (DL) [10,14–19] algorithms, that
are the subsets of AI, are applied to different COVID-19 data samples. These works are
reported in a number of research papers. The transmission dynamics and the prevention
method of the virus are reported in one study [15,20]. The use of AI in managing the
effects of COVID-19 is also studied [21,22]. AI and its subsets, ML and DL, are used
in different contexts in order to identify patterns in data. DL can find patterns in large
datasets and can quickly improve automatically when new data samples are available.
On the other hand, ML can be used to predict the number of infected cases and the
number of death cases. This is useful for policy makers to plan for policies and strategies.
ML can also be used to classify suspected COVID-19 patients. DL can be applied to
the data-driven diagnosis of COVID-19 patients. Automated disease detection using
CT or X-ray images prevents the virus from spreading from patients to medical staff.
Some DL-based support schemes use customized networks, while others use pretrained
transfer learning-based networks. Along with some allied fields such as the Internet of
Things (IoT), computer vision, big data, and smartphones, AI can contribute to managing
COVID-19 [14–17,23–26]. A number of ML algorithms, such as support vector machine
(SVM), linear regression, logistic regression, and a number of DL algorithms, including
convolutional neural networks (CNNs), are studied in the literature [27–29]. DL methods
have gained much attention in the context of COVID-19 as these algorithms can deal with
complex problems after learning from training samples. DL learns in-depth by considering
multiple layers in a sequential manner [30,31]. DL has several stages: gathering and
preparing data samples, extracting important features, performing classification, and
finally evaluating the performance. Preparing the data includes several preprocessing tasks
such as removing unwanted noise elements and resizing and augmenting the data/images.
One form of DL is the transfer learning approach, where a pretrained model with its
weight and bias values from one context is used in a similar but different context for
retraining or testing. Deep transfer learning saves time as it enables quick convergence of
the learning [32,33]. In the literature, several deep transfer learning models are reported;
some of these are Visual Geometry Group (VGG), AlexNet, ResNet, Xception, Inception,
MobileNet, densely connected convolutional networks (DenseNet), etc. [34]. One major
issue in the use of data-driven diagnosis for COVID-19 is the challenge of ensuring patient
privacy while exchanging information across healthcare providers. Using data gathered
from many sources, federated learning (FL) creates a global DL model while still protecting
the privacy of individual entities. In other words, FL can be used to train DL models in a
distributed and private manner. It will be shown later in this paper that some recent works
have discussed the potential of the FL approach in the context of COVID-19 diagnosis.

The literature review of this paper was performed using the preferred reporting items
of systematic reviews and meta-analysis (PRISMA) guidelines [35]. Note that the PRISMA
guidelines are essential for carrying out a rigorous and transparent literature review. They
provide a structured framework for reporting and conducting systematic reviews and
ensure reproducibility of systematic reviews. They contribute to the systematic review
process, reduce bias, and improve reporting quality, and consequently, are popular in
medical and healthcare research. We considered the papers from 1 January 2020 to 28
June 2023. Only English language papers were considered, and other language papers
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were excluded. Two Boolean operators, “AND” and “OR” were used to identify necessary
keywords. We searched several keywords; these were coronavirus, COVID-19, artificial
intelligence, deep learning, transfer learning, federated learning, X-ray, ultrasound imaging
and computed tomography. We ignored the clinical, epidemiological, and basic science
aspects of COVID-19. We obtained a total of 11,700 papers on the application of DL and FL
to COVID-19 from various publishers and preprints. The search criteria that resulted in
11,700 papers are shown below.

((“COVID-19”) OR (“coronavirus”)) AND ((“deep learning”) OR (“transfer learn-
ing”) OR (“federated learning”)) AND ((“computed tomography”) OR (“X-ray”) OR
(“ultrasound imaging”)).

We manually excluded 11,260 articles from 11,700 articles as these were out of the
main research interest of this paper. We reviewed the remaining 440 articles. Next, the
most relevant 95 articles were cited in the paper and 72 were used for result synthesis.
The selection of these 72 papers was made because these papers reported a description
of COVID-19 datasets and performance results of the application of DL and FL to the
diagnosis of COVID-19 patients. Figure 1 illustrates the summary of the PRISMA technique
applied in this paper.
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The results of different algorithms are dependent on the datasets considered; hence,
the performance of different DL algorithms reported in the literature needs a careful
comparison. There are several survey or review papers [8,19–21,27–29,33,35] on COVID-19
that focus mainly on either ML/DL, or FL. Table 2 summarizes the aspects that these
existing papers cover and how our work differentiates from other works and contributes to
the survey on this topic. From Table 2, it can be seen that there is little work that reviews DL
models and FL techniques simultaneously in the context of COVID-19 detection. Because
of many recent studies in the application of DL and FL to combating COVID-19, there is
a need for an up-to-date survey of the available datasets and algorithms applied to these
datasets. This paper is motivated by the need to present a literature survey on the data-
driven diagnosis of COVID-19 using DL models and FL techniques. The main contributions
of this paper are as follows: A systematic detailed review is provided on different datasets
of COVID-19, and DL algorithms that are applied to the datasets. Moreover, the application
of FL when screening COVID-19 is also discussed. The review was performed for research
articles published from 1 January 2020 to 28 June 2023 using PRISMA guidelines.

Table 2. Summary of some of the existing survey/review works on COVID-19.

Ref. Year Main Focus Topics Not Covered

[8] 2022 Epidemiology, genomic sequence, and clinical
characteristics of COVID-19

No details on the application of DL, does not focus
on imaging datasets of COVID-19, no mention of FL

[19] 2021 Application of DL models to medical imaging and drug
discovery for managing COVID-19 No mention of FL

[20] 2020 The epidemiology, clinical features, diagnosis,
management, and prevention of COVID-19.

No details on the application of DL, does not focus
on imaging datasets of COVID-19, no mention of FL

[21] 2020 ML, DL, and big data No mention of FL

[27] 2020 Application of DL models, analyzing the impact of
clinical and online data for COVID research

Does not focus on imaging datasets of COVID-19, no
mention of FL

[28] 2020 Application of DL and edge computing No details on the application of FL

[29] 2020 DL for image analysis and generating radiology reports No details on the application of FL

[33] 2017 DL for medical image analysis Not focusing on COVID-19 or pandemics

[35] 2021 ML and DL for COVID-19 No mention of FL

This
work 2023

DL and FL for COVID-19 focusing on medical imaging,
including X-ray, computed tomography (CT) scans, and

ultrasound images

The remaining sections of this work are structured as follows: Section 2 discusses
the datasets that are widely used for COVID-19 detection. Section 3 discusses several
metrics for performance. Section 4 describes the comparative performance of various DL
algorithms in COVID-19 diagnosis. A survey is provided on FL for COVID-19 in Section 5.
The paper discusses the new hybrid dataset in Section 6, and then the existing challenges
and future work are described in Section 7. Finally, the paper provides concluding remarks
in Section 8.

2. Datasets for DL

This section briefly describes different datasets available for the use of DL methods in
COVID-19 diagnosis.

Table 3 shows some of the COVID-19 datasets that are reported in the literature [36–56].
In a dataset available on the Kaggle repository [36], there are 5863 chest X-ray images in
.jpg format collected from Guangzhou Women and Children’s Medical Centre, Guangzhou.
These images were collected from pediatric patients of ages ranging from one to five years.
After quality control of the images, two experts graded the images. This dataset had three
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folders for training, testing, and validation. Furthermore, the dataset had two subfolders,
one for pneumonia and the other for normal cases [36]. Another dataset of 319 radio-
graphic X-ray images created by the authors of [37] is available on GitHub [38]. These
images were a collection of COVID-19, MERS, SARS, and ARDS, where 250 belonged to
COVID-19-positive patients. A dataset termed as COVIDx containing 104,009 CT images of
1489 patients is available on GitHub [39]. Furthermore, a dataset called COVNet data con-
taining 4563 CT images of 3506 patients from six medical centres is available on GitHub [40].
A dataset of pneumonia chest X-ray images is available in [57]. A dataset of 306 X-ray
images is available in [42]. This dataset was organized in training and testing portions
and categorized into patients marked as normal, bacterial pneumonia, COVID-19, and
viral pneumonia. A dataset of 219 X-ray images of COVID-19 patients is available on the
Kaggle repository [44]. In a study [58], a dataset of 295 chest images was generated by
combining two individual datasets. This dataset is available in [43] and contains images of
normal as well as 53 viral and bacterial pneumonia patients. Another dataset contains X-ray
images of normal, COVID-19 patients, SARS patients, Streptococcus, and Acute Respiratory
Distress Syndrome (ARDS) [45]. The research work in [59] presents Twitter datasets [46,53]
containing tweet IDs on COVID-19. A database of SIRM COVID-19 [48] contains 94 chest
X-ray and 290 lung CT scan images of 71 COVID-19 patients as of 10 May 2020.

Table 3. Available datasets on COVID-19.

Sl. No. Name of the Dataset Type of Dataset References

1. Chest X-ray images (pneumonia) X-ray [36]

2. COVID-19-image data X-ray [37,38]

3. COVIDx CT [39]

4. COVNet CT [40]

5. Google drive (Collected from Ref. [41]) X-ray [42]

6. Pneumonia sample X-ray X-ray [43]

7. COVID-19 Radiography Database X-ray [44]

8. CoronaHack:Chest X-Ray-Dataset X-ray [45]

9. TWITTER COVID-19 CXR X-ray [46]

10. COVID-19 Radiography Database X-ray [47]

11. COVID-19 Database X-ray [48]

12. Radiopedia X-ray [49]

13. Chest Imaging X-ray [50]

14. COVID-19 CT segmentation CT [51]

15. COVID-19-CT-Seg-Benchmark CT [52]

16. COVID-19-TweetIDs Text (Social media) [53]

17. Coronacases Initiative CT [54]

18. CO-IRv2 CT images [55]

19. X-ray images three levels X-ray [56]

A dataset comprises 32 chest X-ray images from Radiopedia [49]. A study presented
103 chest images of 50 cases in Spain [50]. In the Radiology Society of North America
(RSNA) database, X-ray images of patients having traditional pneumonia and people
without lung infection were available [60]. CT image samples of COVID-19 patients were
reported in another study [61]. The dataset contained images of lungs and noted the
type of infection. A research group in Norway created two datasets from more than
60 suspected patients; the two datasets had 100 and 829 CT scan slices [51]. The research
work in [61] showed that DL is effective in detecting COVID-19 in CT scan images using



BioMedInformatics 2023, 3 696

a dataset [52]. DL can be applied to heterogeneous datasets that include CT scan images
of COVID-19 and non-COVID-19 [51]. Table 4 provides a comparison of different X-ray
image datasets [62–74], while Table 5 compares the CT image datasets [75–89].

Table 4. Comparison of different X-ray datasets.

Datasets Number of
Images

No. of Positive
Patients Classes Class Levels Ref.

[36,37] 100 50 2 COVID-19, non-COVID-19 [62]

[39] 13,975 266 3 Normal, Pneumonia, COVID-19 [63]

[37,38] 5941 68 4 Bacterial Pneumonia, Normal, Viral
Pneumonia (non-COVID-19), COVID-19 [64]

[37,38,42] 307 69 4 Pneumonia Virus Normal, Pneumonia
Bacterial, and COVID-19 [41]

Collected from 6 institutes 213 106 2 COVID-19, Normal [65]

[37,38] 127 125 3 COVID, Pneumonia, and No-Findings [66]

[67] and Sylhet
Medical College 6161 305 4 Viral Pneumonia (non-COVID), Bacterial

Pneumonia, COVID-19, Normal [68]

[37,38,69] 1256 284 4 Pneumonia Viral, Pneumonia Bacterial,
COVID-19, Normal [70]

[38,43,44] 458 295 3 Normal, COVID-19, and Pneumonia [71]

Combination of [37,67] 5949 76 3 Normal, Pneumonia, and COVID-19 [72]

[36,38,48–50,73] 3487 423 3 Viral Pneumonia, Normal, COVID-19 [74]

Table 5. Comparison of different CT datasets.

Datasets Number of
Images

No. of Positive
Patients Classes Class Levels Ref.

Custom 499 - 2 COVID-19 positive and negative [75]

Dataset from Renmin Hospital of
Wuhan University 46,096 106 positive patients 2

51 patients having COVID-19
pneumonia, 55 control patients

having any other diseases
[76]

Collected from 5 different
hospitals in China 1136 723 positive cases 2 Positive cases and negative cases [77]

Dataset reported in [40] 4356 3322 3 COVID-19, pneumonia, and
non-pneumonic lung diseases [78]

Sun Yat-Sen Memorial Hospital
and Renmin Hospital of

Wuhan University
275 88 positive patients 3 COVID-19, bacterial pneumonia,

and healthy persons [79]

Dataset reported in [80,81] 1020 108 2 COVID-19 positive and negative [82]

[83,84] 2900 1232 2 COVID-19 and healthy images [85]

[38,47,49,86] 1124 403 2 Non-COVID-19, COVID-19 [87]

Custom 150 - 3 Community acquired pneumonia,
Non-pneumonia, COVID-19 [88]

The designated COVID-19
hospitals in Shandong Province 230 79 3 No pneumonia, common

pneumonia, and COVID-19 [89]

Apart from the X-ray and CT images, there are datasets of other samples as well. Data
from several medical imaging modalities can be combined to create multimodal imag-
ing datasets for COVID-19 detection. Multimodal datasets combine the benefits of many
imaging techniques and can provide a more comprehensive and accurate representation
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of the disease. For instance, a multi-modal dataset can improve the model’s robustness to
changes in data quality or missing information in a single modality of samples. In creating
multimodal datasets, preprocessing the photographs to ensure they are in a consistent
format, resolution, and orientation is a critical step. Table 6 briefly presents multimodal
datasets [90,91] that were used for COVID-19 diagnosis. In addition, a dataset of ultrasound
images is also shown. Table 7 shows a comparative summary of different preprocessing
methods applied to different datasets of X-ray and CT scan images. The number of posi-
tive and negative samples in the dataset, and different data preprocessing techniques, for
example, data segmentation, augmentation, rescaling, normalization, etc., are discussed.
There are some clinical datasets, and there are also hybrid datasets created by the fusion
of individual datasets. Classifications are performed into different classes: binary, tertiary,
and quaternary. For example, studies [62,64,65,91–96] report datasets of X-ray images,
while studies [97–99] focus on CT images. Some works [97,98] consider segmentation as
data preprocessing, and perform binary classification of COVID-19 and non-COVID-19
cases. A recent work [99] performs data augmentation and normalization as preprocess-
ing, and then computes a binary classification of COVID-19 cases and conventional lung
disease cases.

Table 6. Comparison of different ultrasound and multimodal datasets.

Modalities Datasets Number of
Diagnoses Images

No. of
Positive Patients Classes Class Levels Ref.

Ultrasound Custom 58,924 35 3 COVID-19, suspected
and symptomless [90]

Multimodalities
(Combination of X-ray

and CT or others)
[37,38,69] 20 CT images and 117

chest X-ray images 137 1 COVID-19 pneumonia [91]

Table 7. Comparative summary of the datasets and DL algorithms reported in the literature.

Reference
Modalities

Dataset
Number of Cases Used

in Experiment Data Preprocessing Techniques
X-ray CT

[65]
√

8 Fusion of several datasets COVID-19: 70
Pneumonia: 1008 Augmentation, Rescaling

[92]
√

8 Fusion of several datasets
COVID-19: 70

Pneumonia: 1008
SARS: 11

Augmentation, PCA, Feature
Extraction by AlexNet architecture

[93]
√

8
Pneumonia (chest X-ray

image) dataset 624 (Normal and Pneumonia) Generative adversarial network

[100] 8
√

Clinical dataset COVID-19: 219
Non-COVID-19: 399

Hounsfield Unit-based
preprocessing

[101]
√

8 COVIDx

Bacterial Pneumonia: 931
Viral Pneumonia: 660

COVID-19: 45
Normal: 1203

Augmentation, Rescaling,
Normalization

[62]
√

8 Fusion of several datasets COVID-19: 50
Normal: 50 Rescaling

[102] 8
√

Clinical dataset COVID-19: 368
Pneumonia: 127 Rescaling, Segmentation
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Table 7. Cont.

Reference
Modalities

Dataset
Number of Cases Used

in Experiment Data Preprocessing Techniques
X-ray CT

[64]
√

8 Fusion of several datasets

Bacterial Pneumonia: 2786
Viral Pneumonia: 1504

COVID-19: 68
Normal: 1583

Augmentation, Resizing

[82] 8
√

Clinical dataset COVID-19: 108
Non-COVID-19: 86 -

[94]
√

8 Fusion of several datasets
COVID-19: 180
Normal: 8851

Pneumonia: 6054
-

[95]
√ √

Fusion of several datasets

COVID-19: 200
Normal: 200

Bacterial Pneumonia: 200
Viral Pneumonia: 200

-

[96]
√

8 COVIDx COVID-19: 99
Non-COVID-19: 18,529 Augmentation

[103] 8
√

Clinical dataset COVID-19: 3389
Non-COVID-19: 1593

VB-Net model for Segmentation
and Lung Mask Generation

[104]
√

8 Fusion of several datasets COVID-19: 158
Non-COVID-19: 158 -

[105]
√ √

Fusion of several datasets

COVID-19: 231
Normal: 1583

Bacterial Pneumonia: 2780
Viral Pneumonia: 1493

Augmentation, Normalization of
Intensity,

CLAHE Method

[106]
√

8 Fusion of several datasets COVID-19: 135, Bacterial and
Viral Pneumonia: 320 Augmentation

[107] 8
√

COVID-CT dataset COVID-19: 345
Non-COVID-19: 397

Augmentation (GAN based),
Resizing, Normalization

[108]
√

8 Fusion of several datasets COVID-19: 180, Pneumonia:
6054, Normal: 8851 Augmentation

[109]
√

8 Kaggle datasets COVID-19: 70, Normal: 80 Augmentation, Resizing

[91]
√ √

Fusion of several datasets
COVID-19: 117 (X-ray),

20 (CT), Normal: 117 (X-ray),
20 (CT)

Resizing, Data Normalization

[110]
√

8 Fusion of several datasets COVID-19: 181, Normal: 364 Resizing, Data Normalization

[111] 8
√

Fusion of several datasets
COVID-19: 1684,
Pneumonia: 1055,

Normal: 914
Resizing

[112]
√

8 Fusion of several datasets COVID-19: 142, Normal: 142 Augmentation, Resizing

[113]
√

8 Fusion of several datasets
COVID-19: 250, Other

Pulmonary Diseases: 2753,
Healthy Images: 3520

Augmentation, Resizing

[114] 8
√ UCSD-AI4H

datasets
COVID-19: 349, Healthy

Images: 397 Resizing, Data Normalization

[115]
√

8 Fusion of several datasets COVID-19: 219, Normal: 1341,
Viral Pneumonia: 1345

Augmentation, Resizing, Data
Normalization

[116]
√

8 Fusion of several datasets COVID-19: 536, Viral
Pneumonia: 619, Normal: 668

CLAHE, Normalizing, White
Balance Algorithm, Resizing
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Table 7. Cont.

Reference
Modalities

Dataset
Number of Cases Used

in Experiment Data Preprocessing Techniques
X-ray CT

[97] 8
√

Fusion of several datasets COVID-19: 349,
Non-COVID-19: 397 Segmentation, Augmentation

[98] 8
√

Data from ten hospitals COVID-19: 656, Normal: 423 Segmentation and Classification

[99] 8
√

Fusion of two datasets SARS-CoV-2: 1252, Other
Lung Diseases: 1230

Data augmentation, Data
Normalization

[55]
√ √

Fusion of two datasets Normal: 1229 and COVID-19:
1252

Resizing, Data Normalization, Data
Augmentation and Detection

[117]
√

8 Fusion of two datasets Normal: 1583, Pneumonia:
4273, and COVID-19: 79

Resizing, Data Normalization, Data
Augmentation and Detection

[118]
√

8
Data collected from 8 online

sources
Healthy: 10,192, COVID-19:

3615 Fine-Tuning and Detection

[119]
√

8
Collected from various

online sources
Normal: 4223, Pneumonia:
3674, and COVID-19: 2143 Segmentation and Detection

[120] 8
√

GitHub repository COVID-19 positive: 1726 and
negative cases: 1685

Resizing, Data Normalization, Data
Augmentation and Detection

The majority of the datasets described above consist of CT or X-ray images, however,
some are multimodal. The datasets include tertiary and quaternary classes in addition to
binary data. The quality and diversity of the data, together with appropriate validation,
are crucial components in creating trustworthy DL models for the datasets indicated above.
These datasets are used by researchers to develop and improve DL algorithms that can
diagnose COVID-19 effectively and accurately.

3. Performance Metrics Used for DL

Several performance metrics were considered while classifying and diagnosing
COVID-19 [121–124]. These metrics depend on some true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) terms. Correctly detected positive patients
are represented as TP. The term FP shows the negative or normal patients that are incor-
rectly recognized as positive. TN signifies that normal patients are correctly recognized as
negative, while FN represents positive patients incorrectly recognized as normal patients.
Classification accuracy indicates the correctness of classifying normal samples as normal
and abnormal samples as abnormal.

The ratio of accurately classified COVID-19-positive patients to the total number of
suspected patients is referred to as recall, and also known as sensitivity. The accuracy of
predicting negative or normal cases is referred to as specificity. Precision, also known as
positive predictive value (PPV), is the proportion of correctly identified positive instances
to the total projected positive cases. The ratio of successfully identified negative samples to
the total expected negative samples is the negative predictive value (NPV). The harmonic
method of precision and recall is the F-measure. The area under the receiver operating
characteristics curve (AUC) measures how accurately positive and negative instances are
classified. The average of the absolute difference between the predictive and actual sample
values is used to calculate the mean absolute error (MAE).

The performance metrics mentioned above offer a quantifiable technique to assess the
efficacy of DL models when used to analyze imaging datasets in order to detect COVID-19.
It is shown in the next section that these measures are used to assess the DL models and
decide which one to deploy in practical situations.
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4. Comparative Performance of Existing DL Algorithms

Recent research publications on AI for the management or detection of COVID-19
are available [125–165]. Some of these papers concentrate on FL approaches [133–145],
some on survey work on DL [146–154], and yet others on original research works on
DL [125–132,155–165].

Although many research papers have reported the use of DL for COVID-19, in the
following, only the very recent studies [155–165] are described, while others are only
summarized in Table 8. A framework for detecting COVID-19 from X-ray images consists
of a modified version of DenseNet-121, an image data loader for batch separation, a loss
function, and a weighted random sampler for balanced training [155]. The framework [155]
achieves a decent diagnosis performance with an accuracy of 99.81%. Another study [156]
creates an automated system for categorizing COVID-19 cases into two groups, while
addressing concerns such as the limited and unbalanced dataset and model overfitting.
The proposed VGG-16 based DL technique [156] obtains a remarkable 99.86% accuracy
and 99.9% recall. One stacking ensemble model is created by combining the outputs of
the multiple pretrained models, multi-layer perceptron (MLP), recurrent neural network
(RNN), long short-term memory (LSTM), and gated recurrent unit (GRU) [157], in the
case of two datasets of COVID-19 symptoms [157]. The COVID-CheXNet system [158]
uses contrast-limited adaptive histogram equalization to improve the contrast of the X-ray
images and Butterworth bandpass filters to decrease the noise level. Using the weighted
sum rule at the score level, the COVID-CheXNet scheme correctly and accurately diagnoses
COVID-19 patients with a detection accuracy rate of 99.99%, sensitivity of 99.98%, and
specificity of 100% [158]. In one study [159], a CNN is employed to screen for COVID-19
using chest CT images and Resnet50, VGG16, VGG19, Densenet121, InceptionV3, and
Xception. Comparing the VGG16 model against other models, it is found to be 98% correct
for the cases considered [159]. The detection of COVID-19 and other pneumonia cases is
proposed using a new DL-based model, COVIDWNet-GB [160] that is based on depth-wise
dilated CNNs as well as feature reuse residual blocks. The proposed COVIDWNet-GB
achieves a 96.81% accuracy in multi-class (COVID-19, Lung Opacity, Normal, and Viral
Pneumonia) X-ray images [160]. An essential weights-only transfer learning method
is reported for devices with low runtime resources [161] by reducing the model’s less
important weight parameters. The empirical results show that the pruned ResNet34 model
can achieve 95.47% accuracy, 0.9216 sensitivity, 0.9567 F1-score, and 0.9942 specificity on
the CT-scan dataset with 20.64% fewer weight parameters [161]. One study [162] considers
DL models of ResNet50, ResNet101, DenseNet121, DenseNet169, and InceptionV3. These
models are reported to perform satisfactorily, with ResNet101 outperforming the others,
achieving 96% accuracy [162]. DL models VGG-19, ResNet-50, Inception v3, and Xception
are optimized and compared after preprocessing the data [163]. The VGG-19 model, with
fine-tuning, can detect COVID-19 with excellent accuracy—up to 94.17% for chest X-rays
and 93% for CT scans [163]. A DL model termed SCovNet classifies COVID-19 when
applied to 17,599 images with an accuracy of nearly 99% and 98% on chest CT images
and X-ray images, respectively [164]. Explainable AI is gaining interest in the field of DL.
According to one recent study on explainable AI, an encoder–decoder–encoder architecture-
based DL framework is reported to provide a thorough, high-resolution, visual explanation
of the classification outcomes for a dataset with four classes [165].

Table 8. Performance results of different DL algorithms.

Ref. DNN Model Accuracy (%) Recall (%) Precision (%) F1-Score (%) AUC (%) Specificity (%)

[65] ResNet 18 - 96 - - 95.18 70.65

[92] ResNet 18 95.12 97.97 - - - 91.87

[93] ResNet 18 99 - 98.97 98.97 - -

[127] ResNet 18 86.7 81.5 80.8 81.1 - -
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Table 8. Cont.

Ref. DNN Model Accuracy (%) Recall (%) Precision (%) F1-Score (%) AUC (%) Specificity (%)

[101] ResNet 50 96.23 100 100 100 - -

[65] ResNet 50 98 96 - - - 100

[62] ResNet 50 76 81.1 - - - 61.5

[64] ResNet 50V2 - - - - - -

[82] ResNet 101 99.02 98.04 - - - 100

[94] Xception and
ResNet 50V2 99.56 - - - - -

[126] ResNet 101 98.75 100 96.43 - - 97.50

[96] CoroNet 93.50 90 93.63 93.51 - -

[103] ResNet 34 87.5 86.9 - 82 94.4 90.1

[104] ResNet 50 95.38 97.29 - - - 93.47

[105] Inception ResNet V2 92.18 92.11 92.38 92.07 - 96.06

[106] ResNet 50, VGG 16 91.24 - - - 94 --

[107] ResNet 50 82.91 80.45 - - 91.43

[108] Xception and
ResNet 50V2 91.4 - - - - -

[109] VGG 16, VGG 19 97 100 - - - 94

[91] DenseNet 121 99 - 96 96 - -

[110] VGG 19 96.3 - - - - -

[111] Inception V1 95.78 - - - 99.4 -

[112] VGG 16 97.62 97.62 - - - 78.57

[113] VGG 16 97 87 - - - 94

[114] DenseNet 121 90.61 90.8 89.76 90.13 - -

[115] DenseNet 201 99.4 - 99.5 99.4 - -

[116]
COVID-Lite

(2-level
Classification)

99.58 99.58 100 99.79 99.34 100

[116]
COVID-Lite

(3-level
Classification)

96.43 96 97 96 99 97.89

[128] Modified Inception 79.3 83 55 63 81 67

[98] DCN 96.74 97.91 - - 98.64 96.00

[99] ResNet101 99.4 - 99.6 99.4 - 99.6

[125] EDL-COVID 99.05 99.05 - 98.59 - 99.6

[129] MKs-ELM-DNN 98.36 98.28 98.22 98.25 98.36 98.44

[130]
DenseNet201 + MLP 95.64 - - 95.63 - -

MobileNet +
SVM (Linear) 98.62 - - 98.46% - -

[131] CoroDet for 4 class
Classification 91.2 91.9 92.04 90.04 - 93.48

[97] CheXNet 87 - - 86 75 -

[55] CO-IRv2 96.18 97.23 95.35 96.28 95 95.08



BioMedInformatics 2023, 3 702

Table 8. Cont.

Ref. DNN Model Accuracy (%) Recall (%) Precision (%) F1-Score (%) AUC (%) Specificity (%)

[117] CO-ResNet 90.90 - 90.20 - - -

[118] Pretrained CNN 98.6 98.6 98.6 98.6 - -

[119]
ResNet18 with

Multiclass
Classification Layers

96.43 93.68 - 93.0 - 99.0

[132] VGG-19, BRISK, and
RF 96.60 95.0 - - - 97.4

[120] Optimized NASNet 82.42 78.16 - - 91.00 -

Table 8 presents the comparative performance of different DL methods reported in
the literature. The methods are compared in terms of a number of metrics: classification
accuracy, sensitivity, precision, F1-score, AUC, and specificity. It can be seen that an
excellent classification accuracy of 99.58% is obtained by the COVID-Lite algorithm. The
recall value of COVID-Lite is also 99.58% [116]. The precision, F1-score, AUC, and specificity
values of COVID-Lite are reported to be 100%, 99.79%, 99.34%, and 100%, respectively. The
second-highest classification accuracy of 99.56% is reported for the Xception and ResNet
50V2 schemes [94]. In one study [125], the EDL-COVID algorithm is shown to have an
accuracy of 99.05% with a recall value of 99.05%. The reported EDL-COVID scheme has an
F1-score of 98.59% and a specificity of 99.60%. However, ResNet 50 [101], ResNet 101 [126],
VGG 16, and VGG 19 [108] have recall values of 100%. Furthermore, ResNet 101 has an
accuracy value of 98.75%, which is better than ResNet 50, VGG 16, and VGG 19. Among all
the systems considered, the best AUC value of 99.40% is found for Inception V1 which has
an accuracy of 95.78% [111]. On the other hand, the highest F1-score of 100% is achieved by
ResNet 50 [101]. Hence, from Table 8, it can be seen that there is no single algorithm that
has the best value for every metric.

As shown above, there are several stand-alone DL models and hybrid ones that are
applied to different imaging datasets for COVID-19 detection. Researchers combine the
concepts of individual DL algorithms and create new frameworks. Some of these hybrid
architectures are called CoroNet, CoroDet, EDL-COVID, MKs-ELM-DNN, COVIDWNet-
GB, etc., in the literature. The main DL models that are applied for the data-driven diagnosis
of COVID-19 are illustrated in Figure 2.
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5. Survey on FL for COVID-19

This section explores the literature on the application of FL in the context of COVID-19.
Existing studies [133–138] indicate that DL models can be trained using FL in a distributed,
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private manner. This is crucial in situations where data collection and centralization
are neither possible or desirable because of privacy concerns, transmission bandwidth
restrictions, or legal restrictions. FL is used to safeguard organizations’ data privacy by
using less accurate local models to build a global DL model [133–138]. Clients train their
own models locally, while the server employs an incentive mechanism and aggregates
them until convergence occurs.

The FL frameworks described in [133] are reported to collect data, train an intelligent
model, and then distribute this model throughout the public network in a decentralized
fashion. By utilizing FL, hospitals are able to keep their patient data private and sim-
ply share weights and gradients, while the data are distributed around the facilities via
blockchain [133]. The authors of [133] propose the use of blockchain to authenticate data
and FL to train the model worldwide while still protecting the organization’s confidentiality.
In particular, COVID-19 patients are identified using a capsule network segmentation and
classification algorithm [133] that deals with the heterogeneity of data first. The proposed
federated capsule network is compared with DL models of VGG, ResNet, MobileNet, and
DenseNet. The proposed federated blockchain-based capsule network achieves an accuracy
value of 98.68% when applied to CT images [133].

Using FL for COVID-19 data training and deployment is suggested in another
work [134]. Well-known DL models, MobileNet, ResNet, ResNeXt, and COVIDNet, are
reported [134] to be tested with and without the FL framework to see which performed
better. Training using the FL framework and training without the FL framework are com-
pared in trials. ResNet performs well in training both with FL and without FL according
to the results. With COVID-19 labels, ResNeXt performs the best. The smallest number
of parameters can be found in MoblieNet. As a result, the research shows that ResNeXt
and ResNet are the best models for identifying COVID-19 for the datasets considered in
the study [134]. Communication efficiency and model correctness are not considered in
the works in [133,134]. Model performance cannot be guaranteed with FL’s default option,
which involves a high connection overhead for sending model updates. Medical diagnostic
image analysis for COVID-19 detection is the subject of another research work [135], which
presents a unique dynamic fusion-based FL approach with an emphasis on enhancing
model performance and communication efficiency. An architecture for medical diagnostic
image analysis based on dynamic fusion-based FL systems is first designed. According to
their local model’s performance, the participating clients are dynamically selected, and the
model fusion is scheduled as per participating clients’ training time. It has been determined
that this strategy is viable and has superior model performance, communication efficiency,
and fault tolerance compared with FL’s default option [135].

The non-independent and identically distributed (non-IID) and imbalanced data
distributions that naturally occur in the FL environment are investigated in one study [136].
The work [136] proposes VGG16 and ResNet50, two distinct FL model designs, and the
studies show that the proposed models outperform centralized models. When applied to
other medical imaging applications with massive, distributed, and privacy-sensitive data, it
is possible that the FL approach in [136] could be more broadly applicable than the COVID-
19 screening used in other studies. Using an FL technique to detect COVID-19-related CT
anomalies in patients from a global study has been shown to be feasible [137]. Three Hong
Kong hospitals were used as training and testing facilities, while four more independent
datasets were sourced from mainland China or Germany to ensure model generalizability.
Longitudinal scans of COVID-19 patients in the hospital are being used to test automated
lesion burden estimation. In order to construct a privacy-preserving AI model for COVID-
19 medical image diagnostics, FL algorithms are examined. In the study, a CNN-based
DL model is taken into account for training the decentralized multicentre CT imaging
data [137]. To deal with the unpredictability of the data and annotations, one paper [138]
suggests a new federated semi-supervised learning technique. The performance disparity
between training a model with one dataset and applying it to another is being studied
using a multi-national database made up of 1704 scans from three different countries. A
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total of 945 COVID-19 results are manually defined by radiologists. It is possible that
semi-supervised learning can lessen the burden of annotations in a distributed situation by
avoiding the requirement for sensitive data sharing. The suggested framework in [138] is
shown to be more effective than a fully supervised scenario with traditional data sharing
rather than model weight sharing [138]. FL has attracted the attention of researchers who
work on topics such as training data clustering [139], multistage local training [140], and
multitask learning [141]. Additionally, certain studies [142,143] are concerned with the
design of incentive mechanisms to encourage clients to participate in FL tasks.

One study trains an FL model named electronic medical record chest X-ray AI model
(EXAM) using data from 20 different institutions around the world utilizing vital signs,
laboratory results, and X-rays from symptomatic COVID-19 patients [144]. Using data from
all participating sites, EXAM is reported to achieve an AUC greater than 0.92 in terms of
predicting outcomes 24 and 72 h after the patient first presented to the emergency room,
and it improves the average AUC by 16% while increasing generalizability by 38% on
average when compared to models trained using only data from a single site. At the largest
independent test site, EXAM is shown to have a sensitivity of 0.950 and a specificity of 0.882
for predicting the need for mechanical ventilation or death within 24 h. The FL in [144]
ensures faster data science collaboration and the creation of a model capable of predicting
clinical outcomes in patients with COVID-19. Based on 231 major papers, one study [145]
examines FL systems from a software engineering standpoint. The full lifetime of FL system
development is covered in the data synthesis stage, which includes background under-
standing, requirement analysis, architectural design implementation, and assessment. It is
reported that benchmarking approaches are necessary to evaluate FL system development
in real-world COVID-19 situations with rich datasets and representative workloads [145].
In a recent study, an FL framework is introduced for the interpretation of medical diagnostic
images to separate COVID-19 from four different chest illnesses [166]. The proposed FL
framework in the DenseNet-169 DL model [166] successfully safeguards client privacy
while accurately separating COVID-19 from four chest diseases with an accuracy of 98.45%.
The main aspects and the main outcome of some of these prominent studies on FL-based
COVID-19 detection are presented in Table 9.

Table 9. Summary of different FL methods for COVID-19 diagnosis.

Ref Year The Main Aspect of the Work Findings

[133] 2021 Considering Blockchain to authenticate data, and
capsule network for classification of CT images

The federated blockchain and capsule network achieves
an accuracy value of 98.68%

[134] 2020 Evaluating MobileNet, ResNet, ResNeXt, and
COVIDNet with and without FL

FL with ResNet and RestNeXt perform better
than others

[135] 2021 Introducing a new dynamic fusion-based FL The fusion-based FL approach achieves better model
performance and communication efficiency

[136] 2021 Imbalanced data distributions that naturally occur in the
FL environment are investigated

The proposed FL techniques with VGG16 and ResNet50
perform well

[137] 2021
CT images of three Hong Kong hospitals, and four in
mainland China/Germany are used to ensure model

generalizability.
FL with a CNN-based DL model works well

[138] 2021 A new federated semi-supervised learning technique is
introduced and applied to 1704 samples of 3 countries.

The proposed method is more effective than a fully
supervised scenario with traditional data sharing

[144] 2021 FL applied to X-ray images from 20 institutions FL achieves an AUC of 0.92% which is better than DL
models on single site

[166] 2023 FL with DenseNet-169 DL is investigated The proposed FL with DenseNet-169 achieves an
accuracy value of 98.45%.
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The findings mentioned in the above papers would encourage researchers to use FL to
build a powerful model for COVID-19 screening. While several works have applied FL to
COVID-19, the field of FL application is still in its infancy, and numerous related challenges
remain unresolved. Enhancing the quality of FL models is a current research focus and a
difficult task.

6. Hybrid Dataset

In Section 2, several COVID-19 datasets are reviewed, where most of the datasets
consist of either X-ray or CT scan images from a single source. In order to increase the
number of samples in the dataset, samples of different datasets can be combined to form a
hybrid dataset. There are several ways to form hybrid datasets, for instance, the formation
of a new hybrid dataset is shown below.

The new hybrid dataset is formed by the fusion of two individual datasets found
at [51,146]. One of the datasets [51] consists of 929 images where 473 are COVID-19-positive
samples and 456 are of normal patients. In [51], image segmentation is already done, and
the images and their associated masks are separately available. On the other hand, the
other dataset [146] has 2482 images where 1252 are for COVID-19 patients and 1230 are for
patients that are non-infected with the virus. The dataset in [146] has been collected from
hospitals in Sao Paulo, Brazil, and these data samples do not have the masks separated.
In order to combine the two datasets, the images of [146] are first segmented and then
separated into the actual images and their masks. Next, the images and their associated
masks for the two datasets are combined to form the hybrid dataset. There are a total of
3411 CT scans included in this dataset. There are 1726 CT scans that are positive for COVID-
19. In contrast, there are 1685 normal CT scans, all of which test negative for SARS-CoV-2.
The resultant dataset is available at [167].

In this research, the images are processed in two steps. In the first step, all the original
images are examined, and the minimum dimensions of the images are found to be 224 by
224 pixels. After that, all the images are converted to the size of the minimum dimensions.
Considering RGB images, the input dimension to CO-DenseNet is set as 224 × 224 × 3. In
the second step, the images are preprocessed according to the ImageNet dataset containing
thousands of image classes and millions of image samples. The CO-DenseNet is trained
using a pretrained network that is already trained on the ImageNet dataset. All the
images are preprocessed by dividing each pixel intensity value by 255 followed by the
ImageNet mean, and the result is divided by the standard deviation of ImageNet. After
that, data augmentation is applied to increase the number of image samples and prevent
the overfitting of the model. As part of augmentation, rotation, horizontal flipping, vertical
flipping, and zoom range selection are performed where the zoom range is 0.2 which means
zoom-in and zoom-out by 20%.

Given the scarcity of large COVID-19 datasets, hybrid datasets can aid in the generation
of large samples and the appropriate evaluation of DL models.

7. Research Implications and Future Work

This section discusses the implications of this research work, existing challenges, and
future scopes of work. This paper follows PRISMA guidelines to provide a systematic re-
view of the application of DL methods in the data-driven diagnosis of COVID-19. PRISMA
guidelines are followed in preparing this review. There are several review papers [150–154]
in the literature that focus on DL-based COVID-19 management; however, this paper con-
siders the latest research work on DL and FL, followed by the introduction of a proposed
new DL method to manage COVID-19. Since the study and research outcomes of COVID-19
are changing rapidly, the findings of our review work need to be adjusted in the future.
Issues related to the epidemiology, clinical aspects, treatment, and vaccine of COVID-19
are out of the scope of this review. The effectiveness of any classification algorithm varies
depending on the dataset considered. Some datasets may have erroneous or incomplete
labels that may lead to misleading results of the DL algorithm. Moreover, there is a lack of
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benchmark datasets of COVID-19 patients. The algorithms should be applied to a number
of large and correct datasets of COVID-19.

Many countries apply social distancing, lockdown, and similar approaches to mitigate
the spread of the virus. There are also some challenges regarding the data privacy of the
public. In the future, governments may create formal regulations when providing guide-
lines on applying social distancing and ensuring data privacy. AI, IoT, and wireless sensor
networks can be used together to examine the presence of the virus in the environment. AI
can be used to trace the spread of the virus, identify susceptible patients, and control the
infection to some extent.

Moreover, AI can also predict the possibility of death cases based on the data of
previous cases. DL methods can contribute to devising treatment plans and vaccines for
COVID-19. DL can be used along with image processing techniques in recording the
severity of chest and lung lesions and measuring the shape, length, and comparative
changes in the lesions. The examination of the lesions may assist medical practitioners
to make an efficient and quick decision regarding the stage of the disease. For effective
data-driven diagnosis using DL, large and reliable datasets on COVID-19 should be formed
from different hospitals. In order to provide a more thorough understanding of the disease,
multimodal approaches and techniques should combine various modalities, such as various
medical images (for example, X-rays and CT scans as multimodal datasets), clinical data
(for example, symptoms, patient history), and laboratory tests (for example, PCR results).
AI, along with other emerging technologies such as blockchain and the Internet of Drone
Things [168], may be able to contribute to the management of pandemics.

In the future, there should be strong collaboration among experts in different disci-
plines such as medical, biological, image processing, and computer science. This collabora-
tion will greatly help in devising new ways to fight against COVID-19.

8. Conclusions

This research examines the use of DL approaches in the fight against COVID-19.
To begin, several X-ray, CT scans, and ultrasound image collections are described. The
overall number of images, the number of positive COVID-19 samples, and the classes
contained within the dataset are all listed in the description. Following that, a comparative
description of several preprocessing methods applied to various datasets is presented,
where the preprocessing techniques include data normalization, segmentation, rescaling,
and augmentation. This review work also shows that DL approaches such as CNN,
VGG-16, ResNet, VGG-19, COVIDNet, and hybrid neural networks may successfully
diagnose COVID-19 when employed on X-ray and CT scan images. The review also covers
the most recent advances in FL research and application, as well as a comparison of the
effects of FL and non-FL products, with a particular emphasis on the use of FL in the
diagnosis of COVID-19. In the future, studies should be carried out to collect high-quality
X-ray and CT images for a significant number of suspected patients. To increase COVID-19
identification in a realistic scenario, new DL algorithms should be developed.
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