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Abstract: Predicting car ownership patterns at high spatial resolution is key to understanding
pathways for decarbonisation—via electrification and demand reduction—of the private vehicle fleet.
As the factors widely understood to influence car ownership are highly interdependent, linearised
regression models, which dominate previous work on spatially explicit car ownership modelling in
the UK, have shortcomings in accurately predicting the relationship. This paper presents predictions
of spatially disaggregated car ownership—and change in car ownership over time—in Great Britain
(GB) using deep neural networks (NNs) with hyperparameter tuning. The inputs to the models are
demographic, socio-economic and geographic datasets compiled at the level of Census Lower Super
Output Areas (LSOAs)—areas covering between 300 and 600 households. It was found that when
optimal hyperparameters are selected, these neural networks can predict car ownership with a mean
absolute error of up to 29% lower than when formulating the same problem as a linear regression; the
results from NN regression are also shown to outperform three other artificial intelligence (AI)-based
methods: random forest, stochastic gradient descent and support vector regression. The methods
presented in this paper could enhance the capability of transport/energy modelling frameworks in
predicting the spatial distribution of vehicle fleets, particularly as demographics, socio-economics
and the built environment—such as public transport availability and the provision of local amenities—
evolve over time. A particularly relevant contribution of this method is that by coupling it with a
technology dissipation model, it could be used to explore the possible effects of changing policy,
behaviour and socio-economics on uptake pathways for electric vehicles —cited as a vital technology
for meeting Net Zero greenhouse gas emissions by 2050.

Keywords: artificial neural networks; car ownership; spatial modelling

1. Introduction

Surface transport is the largest contributing sector to UK greenhouse gas emissions,
of which private cars make up the dominant share [1]. In their legally-binding commitment
to reach Net Zero greenhouse gas emissions by 2050 [2], the UK Government must reduce
surface transport emissions by 98%, from 116 MtCO2e/year in 2019 to 2 MtCO2 in 2050,
according to the Climate Change Committee (CCC)’s Further Ambition scenario [3]. Much
of this abatement will come from banning the sale of pure internal combustion engine
vehicles from 2030—with the sale of plug-in hybrids banned from 2035 [4]. Given that
(as of June 2021) battery electric vehicle (EV) sales contribute just 7% of total car sales [5],
the rate of increase in EV adoption over the next fourteen years will need to accelerate
significantly, assuming that the current market dominance of battery EVs over other low-
emission-vehicle technologies (e.g., hydrogen fuel cell EVs) [6] will continue.
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Wider transport system decarbonisation, however, requires more than a switch
from internal combustion-powered vehicles to EVs. As part of the pathways released
in their 2020 Sixth Carbon Budget recommendation, the CCC states that car miles per
person must decrease by 17% from 2020 to 2050 [7] for the UK to meet Net Zero targets.
Likewise, all three Net Zero-compatible pathways in National Grid ESO’s 2020 Future
Energy Scenarios [8] show a decline in car ownership in the late-2030s to mid-2040s as
private car travel is curbed in favour of increased public transport and active travel—
which has been shown to be effective at replacing car-based trips and abating transport
emissions [9]. Therefore, the characterisation of the relationship between demographics,
socio-economics and the built environment (including public transport availability) to
the spatial distribution of car ownership is an urgent area of research. By establishing
which of these independent variables can be influenced by transport/energy policy, fu-
ture pathways for car ownership—and hence technology shifts in the vehicle fleet—can
be explored as a function of the changing policy, social and behavioural landscape. Fur-
thermore, while it has long been predicted that EVs will present problems to electricity
distribution networks with respect to their thermal and voltage limits [10–14], they also
have the potential to interact positively with the grid—by providing flexible demand to
utilise renewable generation when in surplus [15] and by charging bidirectionally to mit-
igate impacts on the network [16]. However, for these benefits to be realised, involved
parties need to know where the EVs are likely to be at a given point in the future.

While car ownership modelling is a well-established field of the academic literature
(Section 2), efforts to model the spatial distribution of car ownership have been few. Those
that have attempted to do so in a UK context have used linear regression models, which
are identified as problematic due to significant multicollinearity between the independent
variables considered. To address these shortcomings, this paper presents a method of
predicting the spatial variation in car ownership across Great Britain (GB) using an artificial
neural network (NN) trained on key variables pertaining to these factors. A dataset of
demographic, socio-economic and built environment variables is constructed from several
sources (Table 1) for each of the three countries within GB (England, Wales and Scotland).
NNs are designed and optimised using a hyperparameter tuning approach; once trained
on the datasets, the predictions of car ownership are compared to those produced by
an ordinary least squares (OLS) linear regression technique to highlight the benefit of
this approach. Results are given for the base year of 2011 and for the prediction of the
change in car ownership between 2001 and 2011. This approach can be used to predict
future changes in the spatial distribution of vehicle ownership in GB. The spatial units
of analysis in this paper are Lower Super Output Areas (LSOAs) for England & Wales,
and analogous Data Zones (DZs) for Scotland—areas containing, on average, 672 and
340 households respectively.

Table 1. Independent variables used for regression model.

Variable Category Source Region Years

Demographic and Socio-Economic Data

Economic activity UK Census GB 2001; 2011
NSSec social classification UK Census GB 2001; 2011
Household composition UK Census GB 2001; 2011
Tenure UK Census GB 2001; 2011
Means of travel to work UK Census GB 2001; 2011
Distance travelled to work UK Census GB 2001; 2011



Future Transp. 2021, 1 115

Table 1. Cont.

Variable Category Source Region Years

Accessibility Data

Bus service frequency indicator (1–100)
to nearest amenity s in set of amenities S DfT England 2007–2013

Travel time by mode t in set of modes T
to nearest s in S DfT England 2007–2013

Number of users within travel time m in
set of travel timesMs (in minutes) by t
in T to nearest s in S

DfT England 2007–2013

Experian Mosaic Public Sector Classification Data †

Number of individuals in Mosaic Public
Sector groups (‘A’–‘O’) Experian GB 2004–2005;

2008–2011

Gross Disposable Household Income ‡

Gross disposable household income per
Local Authority ONS GB 1997–2017

Geographic Data

English region (9 levels;
e.g., ‘North West’) ONS England -

Urban/rural classification (England &
Wales, 8 levels) ONS England &

Wales 2001; 2011

Urban/rural classification (Scotland,
6 levels)

Scottish
Government Scotland 2001; 2011

Population density (England & Wales) ONS England &
Wales 2001; 2011

Population density (Scotland) Scottish
Government Scotland 2001; 2011

† Used for prediction car ownership 2011; ‡ used for prediction of change in car ownership 2001–2011.

2. Previous Work on Car Ownership Modelling

Car ownership is a major determinant of the modal split of the distance travelled by
a population, and therefore car ownership forecasting is crucially important in transport
system modelling [17]. Factors that influence car ownership are widely accepted to relate to
household structure, socio-economic characteristics and the built environment (including
the so-called ‘six Ds’ of diversity, density, design, destination accessibility, distance to
transit, and demand management) [18–20].

Car ownership models can be broadly categorised into (i) longitudinal and (ii) cross-
sectional. In longitudinal models, the evolution of car ownership is modelled year on year
by considering the changing demand for cars. Such models generally follow a Sigmoid (S-
shaped) curve, typical of the evolution of any technology, in which an initially slow rate of
uptake increases to a steady linear rate of increase before plateauing at a quantity assumed
to represent the saturation of car ownership. This approach is used in the UK Department
for Transport’s National Car Ownership Model (NATCOP) [21] and the International
Transport Forum’s 2019 car fleet model for France [22]. Conversely, cross-sectional models
seek to predict car ownership at a point in time based on a snapshot of the explanatory
variables, or changes in car ownership between two points in time based on changes in
those variables between those points. Cross-sectional models have been employed as part
of ‘pseudo-panel’ car ownership model (see for example [23]), which combines multiple
cross-sectional datasets to predict the evolution in car ownership over time. Effectively,
the model presented in this paper is a pseudo-panel model, in that multiple points in time
are used to predict the change in car ownership over time. Whereas models in [21–23]
predict changes in national car ownership (millions of vehicles), this paper is concerned
with changes in car ownership per Census LSOA/DZ (hundreds of vehicles, scaled up
to millions).
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Prediction of car ownership given demographic, socio-economic and built environ-
ment variables are often based on forms of linear regression—either OLS, if the output of
the model is treated as a discrete variable (the number of cars in a given area or owned by
a given household), or logit, if the output is treated as a binary outcome (a household’s
decision to buy another car or not). Either way, the prediction involves producing a line or
curve of ‘best fit’ by iteratively estimating a set of coefficients in order to minimise the mean
squared error (MSE) (in the case of OLS regression) or maximise the likelihood function (in
the case of logit regression).

In [24], the authors present a study of the relationship between vehicle energy demand
in GB and demographic, socio-economic and built environment variables using OLS linear
regression, though clusters are first formed pertaining to the energy use of the households
being studied. In [25], OLS linear regression is employed to quantify the relationship
between CO2 emissions of private vehicle use with demographic, socio-economic and
built environment variables. In [26], an OLS linear regression model is built to predict car
ownership in China with a focus on geospatial built environment variables (e.g., the ratio of
road to pavement in a given area). In [27], an OLS linear regression model is used to predict
greenhouse gas emissions based on UK households’ socio-economic characteristics. In [28],
over 300 million records from UK road worthiness tests (known as ‘MOTs’) are analysed
to provide understanding of how vehicle characteristics (vehicle age & type, location),
household characteristics (income, energy consumption) and geographic characteristics
(population density) influence car ownership and use.

The variables explored and demonstrated to be important when modelling car own-
ership in all of these works [23–28] relate to: demographic variables of the household
(number of residents, household composition (e.g., 2 adults, 2 children)); socio-economic
variables (disposable income, social classification, tenure, employment status); and built
environment variables (means of and distance travelled to work, urbanity, population
density—which is used as an indicator of (i) access to local services within a walkable
distance or developed public transport and (ii) the prevalence of off-street parking). Aside
from including as input the same variables as listed above, this paper includes detailed
accessibility data detailing households’ level of access to public transport, services and jobs.
The hypothesised determinants of car ownership as used for this study are further detailed
in Section 3.1.

A key problem of formulating these predictors as OLS or logit regression problems
is that strong multicollinearity exists between demographic, socio-economic and built
environment variables of individuals and households. For example, if an individual is
employed, then the probability that they drive to work would be greater than it would
for an individual who is not employed (for whom the probability is zero). This presents a
problem, as a fundamental assumption of linear regression is that little or no collinearity
exists in the predictors [29]. As could be expected, significant multicollinearity between
the variables used in this study was found (Section 3.2).

Techniques designed to overcome multicollinearity in these problems have been
deployed in the literature. Studies in [20,30] demonstrate the use of multi-level Bayesian
prediction techniques to enable prediction of car ownership and usage patterns given built
environment variables. In [31], a negative binomial regression performed on input features
ranging from population density and demographics to public transport & car sharing
availability is used to investigate the extent to which the availability of public transport &
car sharing can reduce demand for car parking in Melbourne. In [32], a Poisson regression
formulation is used to examine the statistical relationship between demographic data
and gasoline pump prices and car ownership among a cohort of ‘millennial’ dwellings in
Washington D.C. There has also been considerable recent interest in using more advanced,
non-linear prediction approaches for regression outside of car ownership prediction (as
further discussed in Section 4.1). In [33], the authors compare the performance of separate
non-linear machine learning approaches—random forest, support vector regression and
‘gradient boosting machines’—to predict household energy use from real-time sensor
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data (e.g., ambient weather conditions). In [34], the authors propose a convolutional
neural network (CNN): a deep learning technique commonly used for image recognition,
which flattens multidimensional arrays (such as digital images) before being input into
the nodes of the neural network (see Section 4.3). Such an approach is used in [34] to
predict residential energy consumption based on the time of day/week/year and output
from sensors on the power grid (current and voltage readings). In [35], the authors
propose an ensemble method—ensembling the results of separate NN regressors—to
predict household electricity consumption based on a set of household characteristics
including the number of rooms, the total floor space and the number of residents. In [36],
car ownership in Thailand is predicted from independent variables relating to household
socio-economic factors, activities and accessibility using both NNs and decision trees.
By defining the problem as a classification, in which the number of cars per household
is classified as either 0, 1 or 2+, it is shown that neural networks statistically outperform
decision trees.

The gaps identified in the literature are two-fold: (i) there is a lack of spatial resolution
in car ownership modelling, and (ii) the statistical problems posed by multicollinearity be-
tween the independent variables call for the use of advanced statistical models. To address
these gaps, this paper presents predictions of car ownership in small (300–600 household)
chunks of GB (i.e., LSOAs and DZs) using NNs, a form of non-linear statistical model.
The NN hyperparameters are optimised, to demonstrate their effectiveness in this context
versus other regression techniques.

3. Data
3.1. Hypothesised Predictors of Car Ownership

Data used to form the independent variables for this study were taken from the UK
Census, the Department for Transport (DfT), Experian, the Office for National Statistics
(ONS) and the Scottish Government.

The categories of independent variables used to predict car ownership in this study
are summarised in Table 1. Within each variable category are several distinct variables,
each of which is described in this section (below the table). In total, there are up to 169
independent variables in this study. As shown, data sources were often different for the
separate constituent countries within GB—England, Wales and Scotland. This meant that
individual NNs had to be formed for each country.

All the data in Table 1 are on a level of LSOA (England & Wales) [37] or DZ (Scot-
land) [38].

2011 is used as the base year, as it is the year of the latest Census in the UK and the
most recent year from which all datasets in Table 1 are available. In predicting the change
in car ownership over a period of time, the period 2001–2011 is used, as 2001 is the year of
the UK Census before that.

Demographic data were taken from the UK Census [39]. The variable categories
shown in Table 1 comprise of responses to that Census question. For example, the economic
activity variable category contains five distinct variables: economically active—full-time
employee; economically active—part-time employee; economically active—self-employed;
economically active—unemployed; economically inactive. Each variable is the number of
individuals within that LSOA with that response.

Accessibility data were taken from [40]. In Table 1, S , indexed by s, is the set of
amenities: employment centres, primary schools; secondary schools; further education
institutions; doctors’ surgeries; hospitals; supermarkets; town centres. T , indexed by t, is
the set of transport modes: cycle; car; public transport (including walking to/from transit
stops); composite mode. Ms, indexed by m, is the set of journey durations (minutes)
applicable for amenity s. This is equal to {15, 30} for primary schools, doctors’ surgeries,
supermarkets and town centres; {20, 40} for employment centres and secondary schools;
{30, 60} for further education institutions and hospitals. It should be noted that it would
also be desirable to have journey time via other modes of public transport besides bus;
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rail in particular provides a major mode of transit in many major population centres in
GB. Therefore, having access to data on rail services would lead to the production of more
valuable research in this area.

The Mosaic Public Sector classification data were taken from Experian [41]. These
are household counts within each of the 15 Mosaic Public Sector consumer segmentation
groups (labelled ‘A’ to ‘O’). The classification takes into account income, credit behaviour,
property value and consumption [42], all of which are deemed to be important indicators
for individuals’ propensity for car ownership [43,44].

Gross disposable household income (GDHI) data were taken from [45]. These data
cover the period 1997–2017 inclusive for the whole of GB, though are only available at a
Local Authority (LA) level. Their lack of spatial resolution meant that Mosaic classifications
were preferable to predict base year car ownership; however, as the latter dataset is not avail-
able for 2001, the GDHI data were used to predict the change in car ownership 2001–2011.
To match LSOAs/DZs with GDHI, shapefiles of LA boundaries were matched up to shape-
files of LSOA/DZ boundaries, and the corresponding values were assigned. Geographic
data were taken from the UK and Scottish governments. English regions were assigned
to each LSOA by matching up LSOA boundaries to region boundaries [46]. As these data
are categorical, they are transformed into dummy variables in order to be used as inputs
to the regression models. These were then transformed to 9 dummy variables (1 or 0) for
each regional classification. Urban/rural classifications were taken from [47] for England &
Wales and [48] for Scotland. Both sets of urban/rural classifications were transformed from
their 8 (England & Wales) or 6 (Scotland) level categorical form to dummy variables (1 or 0)
for each category. Population density was calculated from 2011 and 2001 population data
for England & Wales [49] and Scotland [50] and the area of each LSOA/DZ boundary.

It should be noted that the LSOA geographies were different for 2001 and 2011.
In this work, all datasets were aligned to 2011 geographies to allow comparison. This was
performed using the lookup tables provided [51]. As the geographies are changed due
to population changes, this led to discrepancies in population in given LSOAs between
2001 and 2011, which in turn leads to extreme ‘increases’ in car ownership. This is further
discussed in Section 5.

After collation of all predictors and transformation from categorical to dummy vari-
ables where applicable, England had 169 independent variables, Wales had 69, and Scotland
had 67.

To form a dataset of the change in the variables in Table 1 for the period 2001–2011,
only the variables common to both years could be used. Therefore, the accessibility statistics
and, as discussed, Mosaic data were switched for GDHI. A new dataset was created by
computing the difference between all values in 2011 and all values in 2001. The assigned
region and urban/rural classification was assumed to be constant between the two years.

3.2. Multicollinearity

Figure 1 shows a correlation matrix between 169 variables for the England dataset to
demonstrate the significant level of multicollinearity in this problem.

Figure 1, which is symmetrical about the line y = −x, shows that many of the
independent variables are strongly correlated with one another. The appearance of Figure 1
resembles four distinct quadrants.

The bottom-right quadrant highlights how there is a significant correlation between
the levels of accessibility to each amenity. This could be expected; for example, the number
of households within a 15 min drive of a primary school would be expected to influence
the number of households within a 30 min drive. There is also shown to be a correlation
between access to different amenities, particularly between access to employment centres
and other amenities.
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Figure 1. Correlation matrix showing collinearity of independent variables.

The bottom-left and top-right quadrants show some localised strong correlations
between the accessibility statistics and other data. This is particularly apparent between
household composition and propensity to live within close access to GP surgeries, hospitals,
supermarkets and town centres.

The top-left quadrant shows strong correlations between many of the datasets used
in this study. In particular, tenure and NS-SEC are heavily correlated with distance and
means of travel to work, economic activity.

The strong level of multicollinearity highlighted in Figure 1 calls for non-linear statis-
tical modelling. In Section 4, the methods used for this study are explained.

3.3. Dependent Variable

The dependent variable in this study was the number of cars & vans per LSOA/Data
Zone, taken from [39]. It is important to note that this does not distinguish between
different types of car ownership (e.g., leasing or owning outright). Furthermore, the only
vans included in this dataset are smaller, privately-owned vans rather than delivery vans
used for business and commerce. In the rest of this paper, ‘cars’ is used synonymously
with ‘cars & vans’.

4. Method
4.1. Advanced Regression Models and Artificial Intelligence

Modelling the relationship between independent and dependent data (regression) is
well practised in fields including (but not limited to) medicine [52–54], cyber security [55],
finance [56], scheduling [57,58], vehicle routing [59], data classification [60] and multi-
objective optimisation [61,62]. The task of regression—the prediction of this relationship—
can be performed via any one of a variety of methods, including heuristics [55,59], nature-
inspired algorithms [52,56,57,60–62] and non-linear statistical models [53,54,58].
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In this study, the potential for NNs—a non-linear statistical model—to estimate the
relationship between car ownership and the independent variables in Table 1 is investigated.
In selection of the regression method used, four advanced regression methods were chosen:
NNs, random forest (RF), stochastic gradient descent (SGD) and support vector regression
(SVR). Due to their significantly higher accuracy compared to the other three advanced
regression methods and OLS regression (as shown in Table 2), NNs have been used to
present results from this study. In the interest of conciseness, RF, SGD and SVR are not
described in detail in this paper.

Table 2. Comparative results for mean absolute error (MAE) and MAE as a percentage of the mean number of cars per
LSOA/DZ—ordinary least squares (OLS) regression; random forest (RF); stochastic gradient descent (SGD); support vector
regression (SVR); artificial neural networks (NN) with optimal hyperparameters

Regression OLS RF SGD SVR NN

Cars per LSOA, England 24.66 (3.18%) 30.17 (3.89%) 48.89 (6.30%) 72.83 (9.39%) 17.55 (2.23%)
Cars per LSOA, Wales 21.06 (2.54%) 33.62 (4.05%) 22.39 (2.70%) 154.21 (18.59%) 17.03 (2.05%)
Cars per LSOA, Scotland 13.27 (3.76%) 16.71 (4.73%) 13.43 (3.81%) 34.07 (9.65%) 10.38 (2.94%)
Change in cars per LSOA, England & Wales 21.54 (25.08%) 23.37 (27.21%) 21.78 (25.36%) 36.38 (42.36%) 19.62 (22.85%)

4.2. Comparison to Other Regression Techniques

RF, SGD, SVR and NN regression models were designed and optimised using grid
search techniques on key hyperparameters given the same dataset to return the min-
imum possible mean absolute error (MAE); each model was tested with an 80%:20%
training:testing split. (The hyperparameters optimised for the NNs are described in detail
in Section 4.5. For the RF regression model, the number of trees and the size of trees
(depth; nodes per tree) were altered. For the SGD regression model, the loss function
and penalty parameters were altered. For the SVR regression model, the kernel functions,
and parameters C, γ—the decision surface ‘smoothness’ and significance of each training
sample respectively—were altered. More detail on hyperparameter optimisation for RF,
SGD and SVR regressors can be found at [63].)

Table 2 shows a comparison of the performance (given by the MAE of prediction) of
the RF, SGD, SVR and NN regression models compared to that of an OLS linear regression
model (Backwards elimination was used to avoid overfitting with a cut-off p-value of 0.05)
on the same dataset with the same training:testing split. In Table 2, the values in brackets
are the MAE values as a percentage of the average number of cars per LSOA/DZ, or the
average change in cars per LSOA/DZ. As previously stated, there were 776 cars per LSOA
in England, 830 cars per LSOA in Wales and 353 cars per DZ in Scotland on average.
The average change in cars per LSOA/DZ between 2001 and 2011 was a positive gain of
86 cars.

As shown, significant improvements of up to 28.8% versus the OLS baseline are
realised by using the NN method presented in this paper. The improvement, in percentage
terms, is shown to be lower for the prediction of change in cars than for the prediction of
the number of cars.

The clear out performance of NNs versus other techniques resounds with results
found in a review of machine learning studies applied to problems in the energy sector
in [64].

4.3. Artificial Neural Network

NNs are non-linear statistical models that can be used both in regression and classifi-
cation tasks in machine learning applications. A linear combination of the inputs x1 . . . xD
(Equation (1)) creates features, and a target variable is modelled as a function of linear
combinations of the features.

aj =
D

∑
i=1

w(1)
ji xi + w(1)

j0 (1)
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Equation (1) shows the first layer of the network (as indicated by superscript 1) where
j = 1, . . . , M, with M being the number of linear combinations. The parameters are wji
and the parameters wj0 are biases. The quantities aj are known as activations. Each of
them is then transformed using a differentiable, non-linear activation function h to yield
the hidden units z as shown in Equation (2).

zj = h(aj) (2)

h functions vary by network design. Two of the most popular are Sigmoid and rectified
linear units (ReLU) [65,66], which are both trialled in this study (Section 4.5).

ak =
M

∑
j=1

w(2)
kj zj + w(2)

k0 (3)

A linear combination in the next layer gives output unit activations, as shown in
Equation (3), where j = 1, . . . , K, with K being the total number of outputs. Finally, as-
suming that the network has one hidden layer for simplicity reasons but without loss
of generality, the output unit activations are transformed through an activation function,
giving a set of network outputs yk. The neural network is, therefore, a non-linear function,
mapping the input variables xj to the output variables yk, which depend on the inputs,
and a vector w that is composed by the weights and biases. A simple neural network
for regression with one hidden layer can be shown in Figure 2. This configuration can
be generalised by considering additional layers—‘deep’ networks are defined as those
with more than one hidden layer. Each layer consists of a weighted linear combination
as in Equation (3) followed by an element-wise transformation using a non-linear activa-
tion function.

x1

x2

x3

z1

z2

z3

y

ZM

.

.

.

xD

.

.

.

Figure 2. Neural network diagram. The input, hidden, and output variables are represented by
nodes. Arrows show the direction of information during forward propagation. Each hidden and
output unit has an associated bias parameter (omitted for clarity).

While training the network, given a set of input vectors and a corresponding set of
target variables, the aim is to minimise an error function E(w). This requires an iterative
optimisation process; a weight vector w which minimises the chosen error function must
be found. This involves choosing some initial value w0 for the weight vector and then
moving through weight space in a succession of steps, as in Equation (4), where τ is the
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iteration step. The process by which w0 is chosen varies by what distribution the values
are selected from. In this study, normal and uniform distributions are trialled.

w(τ+1) = wτ + ∆w(τ) (4)

The choice of the vector update ∆w(τ) depends on the algorithm. Many algorithms
make use of gradient information and therefore require that, after each update, the value
of ∇E(w) is evaluated at the new weight vector w(τ+1). (The algorithm used in this paper
was the Adam optimiser [67], based on stochastic gradient descent.) The learning rate α
determines the step size at each iteration while moving towards a minimum of the error
loss function, as shown in Equation (5).

w(τ+1) = wτ − α∇E(wτ) (5)

For computational reasons, it is common practice to divide the data into smaller
datasets and update the weights of the neural networks at the end of every step to fit it to
the data given. The batch size is the total number of training examples present in a single
batch; this is further discussed in Section 4.5.

Model parameters are internal to the neural network—for example, neuron weights w.
They are estimated from the training samples and specify how to transform the input data
into the desired output. On the other hand, a hyperparameter is one whose value is set
before the learning process begins. Hyperparameters are not updated during the learning
and are used to configure either the model (e.g., number of neurons) or the algorithm used
to find the minimum error solution (e.g., the learning rate).

Hyperparameter tuning is choosing a set of optimal hyperparameters for a learning
algorithm. This is carried out in this study via a grid search approach, in which a specified
subset of hyperparameters is searched exhaustively to produce the best (i.e., the one that
returns the lowest MSE) configuration. This is further discussed in Section 4.5.

4.4. Preprocessing—Normalisation

Before being put into the networks, the data were normalised as per a Gaussian
distribution (Equation (6)).

X̂ =
X− µX

σX
(6)

where each X ∈ X is one of the set of independent variables, with corresponding mean µX
and standard deviation σX .

4.5. Hyperparameter Tuning

As discussed in Section 4.3, hyperparameter tuning is undertaken to find the NN con-
figuration that returns the smallest error of prediction. In this study, the hyperparameters
tuned were the number of hidden layers, the number of neurons in each layer, the acti-
vation function used for each layer, the batch size, the learning rate and the parameter
initialisation functions.

4.5.1. Network Depth and Number of Neurons per Layer

The number of neurons in the input layer was fixed by the number of independent
variables. This was 169 for England, 69 for Wales and 67 for Scotland. The difference is
due to the presence of the accessibility statistics for England (see Table 1) and the 6-level
urban/rural classification for Scotland (compared to an 8-level classification for England
& Wales).

As this is a regression problem, the number of neurons in the output layer was fixed
to 1.

The number of hidden layers (i.e., not including the input and output layers) trialled
was 1 to 4 inclusive. The number of neurons Nn in the nth hidden layer was trialled
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exhaustively from the set Nn (Equation (7)), where 10Z represents the set of integer
multiples of 10.

Nn = {ν ∈ 10Z , 0 < ν ≤ Nn−1} (7)

4.5.2. Learning Rate, Weightings Estimator, Batch Size, Activation Function

Learning rates trialled were 0.01 and 0.001. Batch sizes trialled were 1% and 10%
of the training dataset (see Section 4.5.3). ReLU and Sigmoid activation functions are
trialled for all layers. Weighting estimators for all layers trialled were of normal and
uniform distributions.

4.5.3. Training

The dataset was split into training, a set of data for fitting the model, validation, a set
of data with which to continually evaluate the model’s performance as hyperparameter
tuning was undertaken, and testing, a set of data that the model had never seen before to
evaluate the performance once the hyperparameters had been fixed. The proportions of
these sets were 64%, 16% and 20% respectively.

For each combination, the network was trained for up to 10,000 epochs (this was cut
short if the reported MSE did not reduce substantially over 50 epochs).

The building and training of NNs in this paper was performed using the Keras library
in Python [68].

4.5.4. Optimal Configurations

The sets of optimal hyperparameters out of those trialled for each regression problem
are shown in Table 3.

Table 3. Optimal configurations for artificial neural networks used to predict number of cars per LSOA and change in cars
per LSOA.

Regression Hidden
Layers

Hidden
Layer

Dimensions

Weightings
Estimator

Activation
Function

Batch Size
(% of Input

Data)

Learning
Rate

Cars per LSOA—England 2 [100,60] Normal ReLU 1 0.001
Cars per LSOA—Wales 2 [40,30] Normal ReLU 10 0.001
Cars per LSOA—Scotland 2 [50,50] Normal ReLU 10 0.001
Change in cars per LSOA—England & Wales 2 [40,40] Normal ReLU 1 0.001

Table 3 shows that certain hyperparameter values were consistently found to be the
best performing: a learning rate of 0.001, Normal weightings estimators and ReLU activa-
tion functions were consistently better performing than their alternatives. The minimum
MSE values were reported for networks with 2 hidden layers for all regression problems,
though the number of neurons in each layer differed. The batch size differed depend-
ing on the input dataset. For regressions involving the England dataset (32,802 LSOAs),
the optimum batch size was 1%. For the considerably smaller Wales and Scotland datasets
(1909 LSOAs and 6976 DZs respectively), a 10% batch size produced a lower MSE.

5. Results and Discussion

This section presents the results of car ownership prediction in the base year (2011) and
change in car ownership between 2001 and 2011 by LSOA/DZ. For background, the mean
number of cars per LSOA/DZ was 776 for England, 830 for Wales and 353 for Scotland
(this is lower due to the smaller number of households per Scottish DZ than English or
Welsh LSOA). The average change in cars per LSOA/DZ between 2001 and 2011 was a
positive gain of 86 cars.
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5.1. Base Year (2011)

Figure 3 shows predicted and actual cars per LSOA in England & Wales; Figure 4
shows the same result per DZ for Scotland.

Figure 3. Predicted (left) and actual (right) cars per LSOA (2011), England & Wales—detail shown of
Greater London region.

Figures 3 and 4 exhibit a good prediction of the number of cars per LSOA in England
& Wales and per DZ in Scotland. It is shown that generally, car ownership is higher in rural
areas than urban areas (recall that LSOAs/DZs are sized on number of households)—this
is a trend that has been generally observed, including in the UK [69]. While the error
in prediction is difficult to make out by eye in Figures 3 and 4, the error in prediction is
quantified, first as a histogram and density plot in Figure 5, then displayed per LSOA/DZ
for the whole of GB in Figures 6 and 7.

Figure 5 displays a broad goodness of fit between the actual number of cars and the
predicted number of cars across GB. Half of the LSOAs/DZs are predicted within −0.7% and
+3.2%, corresponding to an absolute error of−5 to +20 cars per LSOA/DZ—compared to a
weighted mean of 709 cars per LSOA/DZ—across GB. The positive skew of the histogram
shows that the model tends to over-predict than under-predict. This is found to be in
common with the Department for Transport’s NATCOP model [21].
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Figure 4. Predicted (left) and actual (right) cars per DZ (2011), Scotland—detail shown of Greater
Glasgow region.

Figure 5. Error of prediction of cars per LSOA/DZ shown through (left) histogram of percentage error
by LSOA/DZ (2011) across GB and (right) density plot of predicted vs. actual cars per LSOA/DZ
(2011) across GB.
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Figure 6. Error of prediction of number of cars (2011) by LSOA/DZ across GB—detail shown of
Greater London and Greater Glasgow regions.

Figure 7. Percentage error of prediction of number of cars (2011) by LSOA/DZ across GB—detail
shown of Greater London and Greater Glasgow regions.

Figures 6 and 7 show the limited correlation between prediction error and location.
Though there are clearly under- and over-predictions throughout GB, it is apparent that in
Greater London car ownership is generally over-predicted. This trend is also evident in
other UK fleet models; for example, the aforementioned NATCOP model [21], in which it
is discussed how the distinctive travel behaviours of the Greater London region lead to
difficulty in predicting car ownership there. However, to this model’s credit, the errors
appear to be small: whereas [21] gives an over-prediction of the total number of cars in
London to be 12% (compared to over-predictions of metropolitan and non-metropolitan
districts in the rest of GB to be 2% and 3% respectively), the average percentage error for
this model was found to be 3.04% in London, versus a GB-wide rate of 1.35%. The mean
percentage error is given for all nine English regions and the other non-English constituent
countries of GB in Table 4.
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Table 4. Mean percentage error for prediction in number of cars (2011), English regions, Scotland
and Wales.

Region/Country Mean Error (%)

London +3.05
North West +1.99
Yorkshire & The Humber +1.39
North East +1.96
West Midlands +2.22
South East +1.03
East of England +0.97
East Midlands +0.98
South West +1.37
Scotland +0.11
Wales +0.02

5.2. Change in Car Ownership from 2001 to 2011

Figure 8 shows predicted and actual change in cars per LSOA in England & Wales.

Figure 8. Predicted (left) and actual (right) change in cars (2001–2011) per LSOA, England & Wales.

Figure 8 shows a generally good match between the predicted and actual change in
number of cars per LSOA between 2001 and 2011 in England & Wales. Extreme values
in excess of +/−1000 are shown on the axis; these are due to the boundary changes in
Census geography between 2001 and 2011. As discussed in Section 3.1, 2011 boundaries
were used for both datasets to allow comparison; however, for a small proportion (<0.5%)
of boundaries, the change in boundaries lead to drastic changes in population—and hence
vehicle ownership. In general, the error appears to be small; it is difficult to see the
difference between the predicted and actual plots in Figure 8. It is shown that generally, car
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ownership has reduced in Greater London in the period 2001–2011 and increased virtually
everywhere else. This is in agreement with UK Department for Transport statistics [69].

The error in prediction of the change in cars is quantified, first as a histogram and
density plot in Figure 9, then displayed per LSOA for England & Wales in Figures 10 and 11
(for the error in number of cars and in percentage terms respectively).

Figure 9. Error of prediction of change in cars (2001–2011) shown through (left) histogram of
percentage error by LSOA in England & Wales and (right) density plot of predicted vs. actual cars
per LSOA in England & Wales—detail shown of Greater London region

Figure 10. Absolute error of prediction of change in cars (2001–2011) by LSOA across England &
Wales—detail shown of Greater London, Northwest England and Mid-Wales regions.
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Figure 11. Percentage error of prediction of change in cars (2001–2011) by LSOA across England &
Wales—detail shown of Greater London, Northwest England and Mid-Wales regions.

Though Figure 9 shows a steep-sided Gaussian distribution—as was the case in
Figure 5—the percentage errors are notably larger: this time, 50% of the predictions are
between −22.4% and 15.9% of the actual values, corresponding to an absolute error of −19
to +14 cars per LSOA (compared to, as already mentioned, an average increase in cars per
LSOA/DZ between 2001 and 2011 of 86). Whereas the Gaussian distribution in Figure 5
was positively skewed, the distribution in Figure 9 is negatively skewed, meaning that the
model tends to under-predict the (positive) change in cars. This is heavily impacted by
the ‘special case’ presented by Greater London (see Table 5). The right-hand-side plot in
Figure 9 shows the significant range of changes in cars by LSOA in 10 years. By comparison
to the dashed green line (showing the line y = x), a generally strong prediction of change
in cars is shown.

Figure 10 and Table 5 show less correlation between prediction and geographical
location than was shown in Figures 6 and 7. Figure 11 especially highlights the extremity of
the under-predictions within Greater London (shown by the dark blue). This is reflected in
Table 5, which shows the mean percentage error for the predicted change in cars (2001–2011)
per LSOA for England & Wales, by English region and non-English GB constituent country
(in this case, Wales). It is shown that whereas non-London English regions have a mean
percentage error between −2.29% and +3.95%, Greater London’s corresponding value is
−15.29%.

Table 5. Mean percentage error for prediction in change in cars (2001–2011), English regions
and Wales.

Region/Country Mean Error (%)

London −15.29
North West −0.12
Yorkshire & The Humber +1.26
North East +3.95
West Midlands −1.10
South East −2.15
East of England −2.29
East Midlands +1.50
South West +2.26
Wales +5.12

As detailed in Section 3, the set of predictors used for the change in car ownership
is less comprehensive than the set used for base year car ownership (due to lack of data
collection in 2001). This is likely to be a key reason for the greater errors in the change in
car ownership model compared with the base year car ownership model.



Future Transp. 2021, 1 130

Clearly, predicting car ownership patterns in Greater London is more difficult than
doing so for the rest of GB (as previously mentioned in [21]). This may be due to the relative
scarcity of off-street parking, advanced public transport networks and high-quality cycling
infrastructure in the capital when compared to the rest of GB. Further work is recommended
to investigate methods of improving prediction of car ownership in this region.

6. Conclusions and Future Work

This paper has presented predictions of car ownership based on demographic, socio-
economic and built environment variables in a base year (2011), and over the course of
10 years (2001–2011), by using and tuning a set of deep NNs. It was shown that this method
offers significant improvements in prediction accuracy (up to a 29% reduction in MAE)
versus an OLS regression technique and further improvements compared to other ad-
vanced regression techniques using the same dataset, and that the model offers significant
improvements in accuracy predicting car ownership in Greater London compared to the
UK Department for Transport’s NATCOP model [21].

The method presented in this paper can be used to improve the accuracy of car
ownership models and hence allow for enhanced modelling of the spatial distribution
of car ownership. As previously mentioned, while the model does offer improvements
in prediction of car ownership in London, the region still suffers worse predictions than
the rest of GB. It is proposed that further work be performed to investigate methods of
improving predictions within London using NN methods.

The approach demonstrated could be relevant to transport and electricity system
planners. Exploring the effect of changing demographics, socio-economics and the built
environment on the number of cars per LSOA is useful for transport planners as it indicates
the pressure cars will put on local transport infrastructure; furthermore, by using these
methods to explore credible futures for the dissipation of electric vehicles, the results could
be invaluable to electricity network operators—who will be given an impression of the
electrical demand they can expect at the relevant pieces of infrastructure. The method
allows for scenario-based modelling of how the car ownership predicting variables may
change in the future, and analysis of how this could affect car ownership. Several of the
predictors used—most readily the accessibility statistics, but to a certain extent economic
activity, means of travel to work, distance travelled to work and disposable household
income—could be influenced by policy and planning decisions.

This paper lays the foundation for more detailed technology-aware fleet modelling,
which would form a crucial part of analysis available to decision makers as the transport
sector strives to meet Net Zero targets as part of Paris Agreement goals. Though this paper
has focused on car ownership in GB, methods presented in this paper could readily be
applied to other nations. To enhance the method’s applicability to potential disruptive
patterns in the transport sector, further work is recommended to include distinction of cars
by ownership type: while private owned cars dominate the UK car fleet, this may change
with new business models, car clubs and other technologies—including autonomous
vehicles—that may facilitate shared mobility. Of particular relevance in the future of
mobility is the effect of the COVID-19 recovery on society’s willingness to use public
transport [70] and the potential for the continuation of remote working [71], both of which
have the potential to disrupt the future pathway of the transport-energy system.
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