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Abstract: This paper presents a two-stage fuzzy-logic application based on the Mamdani inference
method to classify the observed road traffic conditions. It was tested using real data extracted from
the Padua–Venice motorway in Italy, which contains a dense monitoring network that provides
continuous measurements of flow, occupancy, and speed. The data collected indicate that the traffic
flow characteristics of the road network are highly perturbed in oversaturated conditions, suggesting
that a fuzzy approach might be more convenient than a deterministic one. Furthermore, since
drivers have a vague notion of the traffic state, the fuzzy method seems more appropriate than the
deterministic one for providing drivers with qualitative information about current traffic conditions.
In the proposed method, the traffic states are analysed for each road section by relating them to
average speed values modelled with fuzzy rules. An application using real data was carried out in
Simulink MATLAB. The empirical results show that the proposed study performs well in estimation
and classification.
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1. Introduction

Estimating traffic conditions has become one of the major problems in transportation
engineering. If reliable information on traffic congestion is available, adequate and effective
traffic control can be implemented to make traffic flow smoothly and improve the efficiency
of surface transportation systems. Furthermore, drivers can be informed of states of con-
gestion downstream, enabling them to change their route or simply drive more cautiously.
Nevertheless, traffic congestion is a vague concept and there is still no universally accepted
definition. It has either been defined as a state of traffic flow characterized by a high level of
density and a low level of speed, as in [1], or it is defined on the basis of time, for example,
as a function of delay [2], or, as in [3], as the additional time spent in the network when a
vehicle is unable to drive at the free-flow speed level. On the other hand, congestion has
been associated with insufficient road space, as an example of a situation occurring when
the demand exceeds the supply on a road [4], or when vehicles obstruct each other because
of an unbalanced speed–flow relation [5]. Finally, congestion has been defined in more
than 10 different ways that are related to the demand-to-capacity ratio, delay and cost [6].

In addition to the definition of the concept of congestion, the thresholds of congestion
states also vary between countries and societies. For example, according to the European
DATEX II standards [7], congestion is defined at certain percentages of the road’s free-flow
speed level. In Asia, if the average level of speed drops to 19 mph for more than 2 h in a
day and 10 days in a month, the Korea Highway Corporation accepts that congestion is
occurring. This level is 25 mph in Japan [8]. Additionally, in Japan speed thresholds are also
used to define the level of congestion [8]. According to the work of Skabardonis et al. [9]
and Kwon et al. [10], congestion occurs when the speed is at a level of 60 mph on urban
freeways, while the threshold is 45 mph in Minnesota [11]. In addition to these studies,
Polus [12] determined congested conditions based on an occupancy value of more than 30%.
Despite the existence of a huge literature on traffic congestion and great efforts to evaluate
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it with the use of artificial intelligence methods [13], there is still no unified approach that
is universally accepted [6]. This motivated us to continue studying this area and to propose
our own approach.

The previous paragraphs show the amount of effort that has been devoted to the
concept of congestion and its definition. Although there are technical specifications defining
different congestion states for transport planning [14] and traffic information systems [7],
several studies have demonstrated that drivers do not perceive congestion as a clear and
precise notion [15]. Thus, qualitative or lexical information on traffic congestion, such as
‘slow traffic’ or ‘queuing traffic’, is rather vague for motorists, despite being able to be
defined on the basis of a quantitative definition using precise intervals of a given traffic
variable. Concerning the abovementioned examples, the Datex II European standard
defines ‘slow traffic’ and ‘queuing traffic’ as conditions having an average speed between
25% and 75% and 10% and 25% of the free-flow level, respectively. This is a simple and
rational method, but it is difficult for it to correspond to drivers’ comprehension, because
drivers do not perceive traffic conditions as being static and deterministic and do not have
a unique and precise—quantitively defined—idea of them. Thus, the fuzzy approach,
which is based on a non-univocal range definition of traffic conditions, seems to be a more
appropriate approach to traffic congestion classification.

Furthermore, each traffic state has similar conditions at some level, resulting in there
being some degree of similarity with each other traffic state, and each associated property
has a level of uncertainty in real-world circumstances. On the other hand, to obtain
reliable state information, a highly accurate prediction of short-term traffic parameters
(i.e., occupancy, flow, speed) is a necessary step. In particular, the speed parameter is the
most beneficial, since it is measured directly and is directly related to drivers’ experiences.
Current studies on short-term traffic speed prediction generally provide a prediction level,
which is the average value of the parameter based on historical data [16]. However, there are
many unpredictable factors that can influence the performance and accuracy of traffic speed
level prediction. More importantly, the traffic stream corresponds to the multi-dimensional
status of all parameters that are formed by driver behaviours. Therefore, an estimate is
needed that can reflect the uncertainty and the noise effect on traffic parameters. Presently,
the fuzzy approach makes it possible to consider the value ranges of the data series and
to cultivate the integrity of the original data without the loss of any data information [17].
Thus, it has been argued that fuzzy qualitative definitions may better match drivers’
perceptions [18].

This paper is organized as follows. The next section provides a review of the related
works in the literature and highlights the original contribution of the method proposed.
Section 3 illustrates the scope of the present work through a real example and defines the
variables of the problem. Section 4 describes the proposed methodology for predicting and
classifying traffic states. Section 5 illustrates the application of the method to an extensive
set of traffic data collected on a stretch of motorway over an 8-month period. Section 6
provides a discussion of the results, while the conclusion is reported in Section 7.

2. Related Works

Fuzzy Logic (FL) is a qualitative approach based on approximation reasoning that
is close to human thinking. A fuzzy system (FS) is a structure that represents inputs into
the output universe of interest through fuzzy logic principles. In FSs, both subjective and
objective inputs, which can be both numerical and/or linguistic data, are in consideration. It
has been very popular for more than forty years in transport engineering applications such
as speed control on expressways [19], signalization for traffic control [20,21], seaport [22]
and transit [23] operations, lane-changing simulation models [24] and congestion-related
applications [25–28]. In [25], the authors measured the level of congestion by using the
same fuzzy approach with inputs such as speed reduction rate, the proportion of delay
time within total travel time, and traffic volume to road capacity. Patel and Mukherjee [26]
classified the traffic according to a fuzzified index of congestion and the average speed
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level on the urban road network. Here, the congestion index was calculated as an output
of the relationship between actual and free-flow travel time. The authors showed that the
fuzzy approach was better at showing the real congested situation than other traditional
congestion index values. Another fuzzy congestion evaluation study considering average
speed as the input variable was presented by Hamad and Kikuchi [27]. They used travel
speed, free-flow speed, and the proportion of very low speed in the total travel time
as input variables to determine the congestion situation. Additionally, in [28], Kikuchi
and Chakroborty studied a fuzzy approach for handling the uncertainty embedded in
the definition of the level of service (LOS). They criticized the current HCM procedure,
arguing that it does not accurately represent the notion of LOS as a user-perceived measure,
and questioned whether a single measure (e.g., density) could capture all of the factors
that affect LOS. Thus, they provided a framework that handles uncertainty under the
different paradigms: deterministic, probabilistic, or possibilistic. Further studies in this
field include [16,29–31]. On the basis of the described analyses, it is indicated that fuzzy-
based applications have a preferable performance. However, recent experiments have
generally been focused on detecting and testing abnormal events of traffic, and have rarely
addressed the real-time estimation of the traffic state of the network.

The idea of detecting traffic congestion using the Mamdani-based fuzzy approach
has already been studied and proven to be effective [32–34]. In [32], the authors used
three inputs—the length of the lanes, the number of lanes, and flow data—to obtain the
congestion level output. However, the experiment was only based on a one-week period of
data; Kalinic and Keler [33] worked on a fuzzy method that compares two input sets: flow–
density and occupancy–mean speed parameters for detecting traffic congestion; Kalinic
and Krisp [34] presented a model containing only two inputs (flow and density), as in most
classical traffic studies, which relate pairs of fundamental variables, with a few noticeable
exceptions, like the application of Catastrophe theory to a 3D traffic state space, introduced
in the 1980s [34], and which is still being studied and applied for the identification of traffic
congestion [35,36].

With respect to the contributions of those reference works, we believe that traffic
congestion should be evaluated in terms of speed, since it is a function of speed reduction
in time. There are many studies considering speed as a parameter with or without others
to determine the level of congestion on expressways and urban roads [8,25–27,29,31].
Specifically, in [8], the authors stated that a speed-based threshold has a greater impact
on congestion than a threshold based on capacity does. From this point of view, we
focused on the speed values. In this paper, we relate the classification of traffic states to
the average speed variable instead of the density in order to obtain a perspective more
compliant with the DATEX II European standard, which focuses on providing information
to drivers, rather than being directed towards planning purposes. However, we also
acknowledge that the extent of congestion is multi-dimensional, and the use of a single
variable cannot give a decent assessment [37]. It is difficult to assume that there is a single
value determining the entire traffic situation [38]. Furthermore, congestion is a state of
traffic flow characterized by the fundamental variables together, which must be considered
as a whole in the classification operation. Therefore, we developed a two-stage traffic
congestion detector that is able to predict speed values by considering flow and density
values, and which then provides a qualitative estimate of congestion that drivers will find
more trustworthy, according to this reasoning.

With the aim of suggesting that a fuzzy approach might be more convenient than a
deterministic one for catching the inherent uncertainty in the drivers’ perception of traffic
congestion when the flow characteristics are highly perturbed in oversaturated conditions,
we tested our approach using data collected from the network on a motorway in Italy over
a period of more than 8 months. The two-stage detector was able to predict the short-term
speed values according to fuzzy rules and then classify the corresponding traffic states
based on the EU DATEX II standard ranges.
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3. Scope of the Work
3.1. Observations of Traffic Variables

In this paper, we introduce a two-stage fuzzy method for traffic state identification and
apply it to identify the traffic condition ranges on the Padua–Venice motorway network,
which is composed of four branches of three-lane roads with separate carriageways, having
a total length of about 74 km and including 16 intersections. Real traffic data were collected
between 31 December 2018 and 30 August 2019, consisting of the following information:
local unit code, code section counting, day type, road (section) ID, date, flow, density, and
harmonic speed; these data were aggregated every 15 min. Figure 1 shows the monitoring
sections of the relevant segments of the study network. The whole data set was examined
statistically section by section; on the other hand, it is worth acknowledging that, due
to temporary failures of some detectors, some of the data are missing. In this study, we
studied the congestion for the time interval between 6:30 a.m. and 9 a.m., from Monday
to Saturday, for 8 months. The application was run using MATLAB fuzzy logic toolbox
R2020b and SIMULINK.
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Figure 1. Identification codes of the sections.

Figure 2a–c illustrate the 15 min aggregated traffic observations collected at one
of the road sections (section 41) over eight months. It is evident from the figures that
the continuous collection of traffic data for such a long period introduces a huge noise
component. The scope of the proposed model encompasses the simulation of the traffic
states on the road and the derivation of the general relationship between the fundamental
variables by applying the fuzzy Mamdani inference approach, regardless of their values [33].
Since different sections of road could have different traffic states, they have been modelled
and simulated separately. The network contains two main branches, the North (Motorway)
and the South (Tangential Highway). In this paper, we focus only on the Northern branch.
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Figure 2. (a) Density–flow relationship; (b) density–speed relationship; (c) flow–speed relationship.
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3.2. System Variables and Traffic State Classification

In traffic theory, three parameters are usually used to describe traffic flow charac-
teristics: flow (f = vehicle/h), density (k = vehicles/km), and speed (v = km/h). The
well-known relationship among the three parameters in a stationary state is expressed
formally as Equation (1):

f = v·k (1)

Flow (f) refers to the number of vehicles passing a certain cross-section per time
unit in a given time interval. Density (k) is the parameter most relevant to the congestion
phenomenon, because it characterizes the quality of traffic operations, and it is more directly
related to the manoeuvrability of vehicles in the traffic stream. It represents the number
of cars on a unitary long road segment at a given instant in time. Speed (v) is another
common congestion indicator, as it shows the degree of vehicle mobility on the road. It is
worth remembering that congestion is a function of changes in speed. In this study, density
is derived from the occupancy of the loop detectors, and flow and speed values are taken
from the sensors.

While a traffic state is defined as a given tuple of values of fundamental variables,
the definition of road congestion is ambiguous and not easy to define. A huge mass
of traffic observations exist. Nevertheless, an example is presented here, the only aim
of which is to provide an illustrative explanation of the concepts underlying the fuzzy
approach introduced in this paper. As is well known, in the flow–density plane, direct
traffic measurements illustrate two different patterns (Figure 2a): where the flow is almost
linear with density, this represents limited deviations from the average speed in the low-
density range; in the high-density range, a very noisy and sparse pattern occurs with an
average decreasing trend of the flow with increasing density. It is well known that the
high-density regime is characterized by unstable flow conditions, as determined by the
microscopic mechanism underlying the traffic flow, where even slightly irregular driving
manoeuvres lead to a stop-and-go regime. The observation of speed–density measures
highlights in a clear way the decreasing trend of speed with density (Figure 2b) and explains
the decrease in flow in the high-density regime by virtue of Equation (1). While the speed–
density relationship is suitable for model calibration because of its monotone trend, the
fundamental diagram can be more conveniently used to determine traffic states and classify
their congestion levels.

In general, by conceiving of the flow–density relationship as a bell-shaped curve, traffic
conditions can be divided into different states that describe the change from free-flow to
congested conditions, with particular attention being paid to the critical point at which the
curve’s trend becomes inverted, and the flow reaches its capacity. Many studies have faced
this problem using different approaches and for different purposes. While applications
devoted to planning, like the US Highway Capacity Manual [14], and management, like
the EU DATEX [7], consider five traffic states corresponding to many levels of services,
incident detection algorithms focus on the simplest distinction between congested flow
and non-congested flow. Theoretical studies have considered different numbers of traffic
classes, ranging from two [39], through three [40], and four [41], to five [42]. In our view,
evaluating the states according to the EU DATEX standard, we divided the range of traffic
conditions into five features. Table 1 summarizes qualitative parameter definitions with
respect to the traffic fundamental diagram.

The first state is the smooth state, in which condition the average speed is very high
(more than 90% of the free-flow level), and the flow and density are very low. In this
condition, drivers are hardly influenced by the vehicles ahead of and behind them, and
they are able to freely drive the way they want. The second state is the intense state. In this
state, the average speed is still high (between 75 and 90% of the free-flow level), and flow
is low, but density is medium. When the density increases further, and the flow increases
to the traffic capacity, the state would be classified as the slow state. Under this condition,
the road can be fully used, and drivers are still able to drive with high variability of speed
(average speed between 25 and 75% of the free-flow level), but with a reduced level of
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freedom. The fourth state is the queuing state. This state is characterized by low values of
speed (between 10 and 25% of the free-flow level), and high values of density and flow;
this may lead to unstable traffic conditions. The fifth state is the stationary state. The
density is very high, and speed is very low (average speed < 10% of the free-flow level). It
is characterized by stop-and-go conditions, which cause traffic jams. Table 1 summarizes
the qualitative parameter definitions related to the fundamental traffic diagram.

Table 1. Traffic state classification summary.

State f k v

Smooth Very low Very low Very High

Intense Low Medium High

Slow Medium Medium-High Low

Queuing High High Low

Stationary Low Very high Very low

4. Methodology: Two-Stage Fuzzy Traffic Congestion Detector

In this paper, we present a two-stage fuzzy-based approach integrating a short-term
predictor (first step) and a classifier (second step). The general framework of the method
is given in Figure 3. We believe that a method that assesses speed values can improve
the effectiveness of detection because it is better able to characterize unstable conditions
when fundamental variables are affected by rapid changes that violate the relationships
that hold under stationary conditions. However, in order to do so, we acknowledge that the
method used must be able to successfully reflect the relationships between the fundamental
variables. Because these fundamental variables are essential for traffic engineers in several
stages of a project, such as planning, design and implementation [43]. Therefore, we wanted
to investigate the performance of the Mamdani-based fuzzy logic approach at modelling
the relationships between fundamental variables. The best way to test this is by estimating
the value of the third variable using the other two. Following this idea, we developed a
method—the two-stage traffic congestion detector—that takes as input the real traffic data
for each road section and identifies the relationships between the fundamental variables (f-
k-v), before estimating the speed values and determining the level of congestion according
to the speeds. We focused on the speed variable instead of density in general, because
speed can be measured directly, and is directly related to drivers’ experiences and to the
total time spent on the network, which is a frequently used performance indicator for road
traffic [8,24–26,28,30].
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Figure 3. General framework of the method.

In the first step, fuzzy average speed values are computed using both flow and density
inputs. After calculating the average speed values, in the second step, the traffic conditions
related to them are classified. The whole model is simulated in Simulink MATLAB. In a
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different view from [32,34,37], the average speed is applied to detect the traffic states. This is
the output parameter of the first part and the input parameter of the second part. Moreover,
unlike the above-mentioned papers [32,34,37], the fuzzy model is applied here to predict
traffic conditions in the next time interval. Indeed, it has been demonstrated that traffic
prediction models can be improved when matching them with a preliminary classification
of the traffic state [44]. The explicit speed prediction during the first step makes it possible
to assess the quality of the predictions according to standard statistical methods; the final
qualitative output supplies simple information that can be communicated to drivers and
traffic operators. Additionally, it is expected that giving estimations resulting in a logical
process between variables could enhance the quality of congestion assessment, since many
works [25–27] have used compound measured values as inputs to determine the level
of congestion.

4.1. First Step: Short-Term Average Speed Prediction

The first step of the general method was built in MATLAB and run using SIMULINK,
as shown in Figure 4. The fuzzy model named ‘Fuzzy Average Speed’, presented in the
middle of the figure, calculates the average speed values for the next time interval by using
flow and density information.
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Figure 4. First step: the fuzzy predictor.

In the ‘Fuzzy Average Speed’ model, we define two input parameters (flow and
density) and one output parameter (average speed), as shown in Figure 5. We set nxi (i:
variable) linguistic terms for each of them.
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Figure 5. The fuzzy average speed model.

To represent the wide range of data, we set nx1 = nx2 = nx3 = 5 linguistic terms as:
F = {FF, RFF, AF, CF, VCF} and K ={VLD, LD, MD, HD, VHD}

The output variable is also classified as: V = {VS, S, A, F, VF}
Explanation of variables:

FF: Free Flow, RFF: Reasonably Free Flow, AF: Average Flow, CF: Congested Flow and VCF:
Very Congested Flow
VLD: Very Low Density, LD: Low Density, MD: Medium Density, HD: High Density and
VHD: Very High Density
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VS: Very Slow, S: Slow, A: Average, F: Fast and VF: Very Fast

After defining the input and output, the ‘fuzzification’ stage should be carried out.
During this stage, all variables are fuzzified by transferring the crisp numerical values into
membership degrees of the fuzzy set. This is done using membership functions, which give
the quantity of the degree of belongingness of a numerical value to the related fuzzy set in
a closed interval [0;1]. Here, 1 expresses full membership, and 0 denotes non-membership.
Among the many possible functions, the most common ones are triangular [32], trape-
zoidal [33,34,37], Gaussian, generalized bell, and sigmoidal. In this paper, triangular
membership functions are used (Figure 6a–c), since they are one of the most widely used
examples, and they can effectively reflect the characteristics of the fuzzy sets used here.
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The boundary sets of the membership functions are relevant in this regard, since they
can affect the degree of belongingness of the value to the fuzzy set. Here, they are set
mostly with reference to Table 1 in [37]. For example, the density variable is classified as
‘Low Density’ in the range between 7 and 30 vehicles/km, as in [37], with the subjective
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addition of the middle value being equal to 18 vehicles/km, which is associated with LOS
B, C, D.

As an example of the mathematical form, the membership function of the Low-density
variable is provided in Equation (2):

µLD(k) =


k−7

18−7 , 7 ≤ k < 18
30−k

30−18 , 18 ≤ k < 30
0, k < 7 or k ≥ 30

(2)

For the output variable fuzzy sets, ref [7] was examined.
As the core of the method, the input–output relationship should be modelled to build

the inference and a nonlinear surface model with specific rules, which demonstrates how
input variables are reflected in the output universe. In the literature, two types of fuzzy
inference system have been described: Mamdani and Sugeno types. The prime difference
between them is how the outputs are determined. Currently, Mamdani’s fuzzy inference
method is popular for use in complex problems, while Sugeno-type systems are effective
only in cases that have either linear or constant output membership functions. In this study,
Mamdani-based inference is used. The rules for section ID 740700 are given below, and
they can be stated mathematically as:

(F•F( f ))Θmin(K•K(k))→ (A•A( f , k)), (3)

where the symbol • states the linguistic term IS, the symbol Θmin states the logic
operator AND.

1. If density is ‘Very Low’ then average speed is ‘Average’.
2. If density is ‘Very Low’ then average speed is ‘Fast’.
3. If density is ‘Very Low’ then average speed is ‘Very Fast’.
4. If density is ‘High’ then average speed is ‘Slow’.
5. If density is ‘Very High’ then average speed is ‘Very Slow’.
6. If flow is ‘Free’ then average speed is ‘Average’.
7. If flow is ‘Free’ then average speed is ‘Fast’.
8. If flow is ‘Free’ then average speed is ‘Very Fast’.
9. If flow is ‘Reasonably Free’ then average speed is ‘Average’.
10. If flow is ‘Reasonably Free’ then average speed is ‘Fast’.
11. If flow is ‘Congested’ then average speed is ‘Fast’.
12. If flow is ‘Congested’ then average speed is ‘Average’.
13. If flow is ‘Congested’ then average speed is ‘Slow’.
14. If flow is ‘Very Congested’ then average speed is ‘Average’.
15. If density is ‘Very High’ then average speed is ‘Slow’.
16. If density is ‘Very High’ then average speed is ‘Average’.
17. If density is ‘High’ then average speed is ‘Very Slow’.
18. If density is ‘High’ then average speed is ‘Average’.
19. If flow is ‘Average’ then average speed is ‘Very Fast’.
20. If flow is ‘Average’ then average speed is ‘Fast’.
21. If flow is ‘Reasonably Free’ and density is ‘Very Low’ then average speed is

‘Very Fast’.
22. If flow is ‘Reasonably Free’ and density is ‘Low’ then average speed is ‘Fast’.
23. If flow is ‘Average’ and density is ‘Low’ then average speed is ‘Fast’.
24. If density is ‘Average’ and density is ‘Very Low’ then average speed is ‘Very Fast’.

When the inputs are defined with more than one fuzzy set, as in rules 21 to 24, the
membership values must be associated with obtaining a unique result. This is done by
including the AND operator between linguistic information. Here, the operator provides a
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minimum condition that must be met in the conditional IF statement to be fulfilled. It can
be formalized as:

µF∩K = MIN (µ(F), µ(K)) (4)

At this point, each IF–THEN rule refers to a fuzzy set with the corresponding belonging
membership values, which must be accumulated into a single fuzzy set. The MAX operator
is one of the most widely used operators for this process. After this aggregation operation,
the fuzzy set must be de-fuzzified. In this study, we used the centroid method, since it is
the most widely applied.

4.2. The Second Step: Classification

For the second step, traffic congestion states were identified using the second fuzzy
model based on the speed value provided as output by the first fuzzy step (Figure 7). The
same traffic classes were defined by assigning the rules below according to the DATEX II
standard [7] to express the states:

If average speed < 10% of free-flow level, then the traffic is stationary;
If 10% ≤ average speed < 25% of free-flow level, then the traffic is queuing;
If 25% ≤ average speed < 75% of free-flow level, then the traffic is slow;
If 75% ≤ average speed < 90% of free-flow level, then the traffic is intense;
If average speed ≥ 90% of free-flow level, then the traffic is smooth.
In this study, the free-flow speed level is 140 km/h.
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The membership functions of the speed variables are the same as in the first step. The
universe discourse of the traffic congestion state variable is normalized to the scale [0;1],
and the membership functions of the states are given in Figure 8.
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Figure 8. Membership function µ of traffic congestion state in the range [0;1].
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Finally, the two steps were combined, and the whole system was created as shown in
Figure 3. This system estimates the traffic congestion state on the basis of the speed values
that have been predicted by the flow and density information that has been fed, while
considering the qualitative description of traffic.

5. Application Results

The first step of the application consisted of computing speed predictions for 15 min
time intervals between 6:30 and 9:00 for the six workdays of every week from Monday to
Saturday for 8 months for all sections along the highway. The reason for this computation
was to test the performance of the speed predictor and compare its results to the observed
values. Table 2 shows average flow, average density, observed average speed, and fuzzy
predicted average speed values, respectively, for section ID 740700 as an example. As
mentioned previously, the average speed that a traffic flow can have for 15 min is related to
the cumulative flow and density values on the road. Hence, the predictor considers the
average values of flow and density belonging to the previous 15 min time interval (denoted
as the input timeline in Table 2), and then predicts the average speed value for the next
15 min interval (output timeline). For example, when predicting the average speed for
the time interval 6:30–6:45, the average flow and average density information of the time
interval 6:15–6:30 is used.

Table 2. Fuzzy average speed predictions for section ID 740700 with the subset of data for time
intervals between 6:30 a.m. and 9:00 a.m.

No Input
Timeline Flow Density Observed

Speed
Output

Timeline
Fuzzy

Predicted Speed

1 6:15–6:30 1150.94 13.94 105.7 6:30–6:45 105.8
2 6:30–6:45 1150.12 13.92 105.8 6:45–7:00 105.8
3 6:45–7:00 1148.94 13.89 105.9 7:00–7:15 105.9
4 7:00–7:15 1147.52 13.85 106.0 7:15–7:30 106
5 7:15–7:30 1145.85 13.83 106.0 7:30–7:45 106
6 7:30–7:45 1144.02 13.80 106.1 7:45–8:00 106
7 7:45–8:00 1141.99 13.77 106.1 8:00–8:15 106
8 8:00–8:15 1139.65 13.73 106.2 8:15–8:30 106
9 8:15–8:30 1137.32 13.70 106.2 8:30–8:45 106.1
10 8:30–8:45 1135.07 13.67 106.3 8:45–9:00 106.1

average (~1145) (~14) 106 105.97 (~106)

The application of the prediction method was repeated for all sections. The corre-
sponding predicted values were computed and compared with the observed ones. The
differences between these values are reported in Figure 9, which also illustrates the stan-
dard deviation of the measures, making it possible to compare the prediction errors to the
variability extents of the variables. Along the highway, the observed average speed values
ranged between 93 and 108 km/h, while the predictions ranged from 92 to 107 km/h. In
all sections, the errors were within the range of the standard deviations. The prediction
results were very close to the observed speed values. It is important to specify that the
focus of this study was on classifying traffic using a qualitative method, rather than on the
application of a prediction method. The predicted short-term rates are the intermediate
outputs of this study, and they are given here only to highlight that a qualitative approach
can be used effectively in unclear and vague environments.

After obtaining the predicted speed values, the traffic states were identified sec-
tion by section. With reference to road section ID 740700 as an example, when flow
f = 1145 vehicles/hour and density k = 14 vehicles/km, the predicted speed was 106 km/h.
Under these circumstances, traffic can be considered to be in an intense situation. Table 3
and Figure 10 show the traffic conditions for all sections of the highway.
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Table 3. Identified traffic states for each section with the subset of data with time intervals between
6:30 a.m. and 9:00 a.m.

Section
Number

Road
Section Average of the Observed Intervals Traffic State

ID ID Flow
(veh/Hour/Lane)

Density
(veh/km/Lane)

Observed
Speed
(km/h)

Predicted
Speed
(km/h)

41-1 741467 1531 17 97 96 Slow
42-2 740855 1480 15 107 106 Intense
42-1 741527 1475 15 108 107 Intense
43-1 741555 1453 17 93 92 Slow
44-2 740700 1145 14 106 106 Intense
44-1 741682 1042 13 105 102 Intense
45-1 741708 1432 15 99 99 Intense
46-1 741741 973 11 98 97 Intense

The observations of traffic states along the entire highway show a similar pattern, with
intense or slow state levels. There is a smooth transition to a slow traffic state in section 43
and an opposite one to an intense state in sections 44 and 42. The threshold for passing
into the slow state from the intense condition is set at flows higher than 1400 vehicles/h
and densities higher than 17 vehicles/km. In this case, the average speed decreases by
around 15% compared to its previous level. This means that drivers are able to drive at
around 67% of the free-flow speed level of the road. In such a traffic state, flow and density
rates decrease to around 1150 vehicles/h and 14 vehicles/km, respectively. This allows
the speed level to increase to around 106.0 km/h, which is more than 75% of the free-flow
level, giving drivers more freedom to manoeuvre.

There is no severe congestion or occurrence of a stationary state along the highway,
because an average flow with a low density allows fast speed with high membership
and average–very fast speed with low memberships, a situation that generally occurs in
intense states.
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6. Discussion
6.1. Comparison with the Levels of Service Definitions of the US Highway Capacity Manual

The contribution of our method is further discussed on the basis of a comparison
of our results with the corresponding estimates of LOSs obtained according to the HCM
method [13], where the levels of service traffic are defined based on the diagram presented
in Figure 11. Since the HCM speed–flow curves are derived from observations conducted
in the USA, they should be applied to an Italian motorway with great caution, and should
be considered only as a comparison between methodologies. In fact, the motorway under
study has a speed limit of 130 km/h, which is a value that exceeds the ranges considered
by the HCM. However, if an extrapolation of the trend sketched by the HCM curves is
considered admissible, then an LOS can be attributed to the observed traffic states. However,
this exercise reveals that the theoretical model based on a univariate relation between speed
and flow and the state Equation (1) is inconsistent with the joint observations of the three
state variables reported in Table 2. In fact, if we consider density as being the indicator for
LOS identification, the observed traffic states, which range from 11 veh/km/lane (that is,
18 veh/mi/lane) to 17 veh/km/lane (that is, 27 veh/mi/lane), would be assigned to LOS
C or LOS D. However, if we consider the values of flow, which range from 973 veh/h/lane
to 1531 veh/h/lane, the corresponding LOS will vary from LOS B to LOS C. The fuzzy
method classified these traffic conditions as either intense or slow. Since the fuzzy method
considers the three state variables together, it encompasses the unavoidable uncertainty
in traffic state identification and eliminates classification ambiguity due to the inherent
errors introduced by the steady-state assumptions underlying the HCM methodology.
Additionally, the qualitative definition is more intuitive than a scale classification, since it
uses common adjectives, making it more suitable for providing information to drivers.
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It is worth remembering that, in this study, we claim that fuzzy logic can be used
even in ambiguous environments. This is an added value of the two-stage method, be-
cause it allows the speed value to be predicted, but then provides a qualitative estimate
of congestion, which will be seen as more trustworthy by the drivers, according to this
reasoning. Hence, we believe that in the case of highly noisy and stochastic environ-
ments, a qualitative fuzzy estimate approach would be more suitable and wiser than a
point estimate.

6.2. Limitations

While we believe that the proposed study provides effective approaches to traffic
management due to advantages such as ease of application, being close to human thinking,
and flexible design in uncertain and subjective cases, the two-stage fuzzy traffic congestion
detector has certain limitations, as follows:

• The current results are limited to showing severe or temporal congestion correspond-
ing to the static situation of the case study, and lack of information on relevant aspects
that can affect the level of congestion, such as accidents, road quality, maintenance
works, etc.

• The whole system is built on a fuzzy logic approach that can show the best performance
on the basis of well-defined rules, proper membership functions, and clear input–
output relations. However, each process requires a long learning period, as well as
experience in the field.

• The two-stage fuzzy traffic congestion detector has a non-linear and complex
behaviour.

• In this study, we worked on data collected every 15 min. This timeframe can be
criticized in terms of its effectiveness for characterizing the trend of rate changes. This
is a fair criticism. In future studies, the present method will be tested using shorter
time intervals, provided that reliable data are available.

7. Conclusions and Remarks for Future Works

In this paper, we addressed the traffic state identification problem and proposed a
fuzzy logic-based method that was then applied to a much larger real dataset. We related
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the states’ output to the average speed values, which constituted a pre-output of a fuzzy
model. Because of the necessity of performing a multi-dimensional assessment, and because
we had all three traffic-flow variables, we evaluated the ability of fuzzy logic to model
the variables and to perform driving behaviour modelling. To test this, we presented
a two-stage traffic congestion detector, which was capable of modelling different traffic
states. With a proper rule-based design, the two-stage traffic congestion detector can be
employed in practice as a support tool for formulating control actions on expressways
under boisterous conditions. This level of support could lead the way in studying traffic
breakdown-related alerts and intelligent early warning systems, with potential benefits
in dealing with congestion-related traffic problems. In contrast to traditional methods
used for the detection of traffic congestion, the two-stage detector enables the prediction
of the speed value, and then provides a qualitative estimate of congestion, which drivers
find more trustworthy. Therefore, a different perspective was given for the motorway
traffic control and traffic induction literature that is based on the speed variable, and it was
shown that the fuzzy approach can be used for short-term prediction as well. However,
this study was limited to showing severe and/or temporal congestion, because of the static
situation of the case study. In future works, the model will be extended in consideration of
its limited static situation. Additionally, to make it more convenient for designing control
actions on motorways, unexpected situations such as accidents, weather changes, etc., will
be addressed.
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