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Abstract: Proper transcriptional regulation depends on the collaboration of multiple layers of con-

trol simultaneously. Cells tightly balance cellular resources and integrate various signaling inputs 

to maintain homeostasis during growth, development and stressors, among other signals. Many 

eukaryotes, including the budding yeast Saccharomyces cerevisiae, exhibit a non-random distribution 

of functionally related genes throughout their genomes. This arrangement coordinates the transcrip-

tion of genes that are found in clusters, and can occur over long distances. In this work, we review 

the current literature pertaining to gene regulation at a distance in budding yeast. 
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1. Overview and Background 

Transcription is the production of an RNA intermediary that links the genetic infor-

mation stored in the nucleus to a specific phenotype, as outlined in the ‘Central Dogma of 

Molecular Biology’ [1,2]. In all cells, transcriptional regulation is essential for the mainte-

nance of homeostasis and adaptation to a changing environment, allowing the cell to 

maintain an equilibrium within the niche that it occupies. In the case of single celled or-

ganisms, transcription is balanced with the intracellular and extracellular signaling cues 

received, allowing coordination of growth with adaptation to stressors [3–5]. Proper gene 

expression is required for health, survival, adaptation, and development [6,7]. 

In all organisms, myriad layers of transcriptional regulation collaborate to modulate 

the transcriptome. The loss or dysfunction of regulation in even a single layer of this bal-

ance can result in quite severe cellular disorders, disease states, or even death. Canonical 

mechanisms that collaborate to regulate gene expression include regulatory nucleotide 

sequences as well as regulatory DNA binding proteins [8–10]. Overlaid with that are epi-

genetic mechanisms, one example of which is lysine acetylation, which is required for 

normal development in evolutionary divergent eukaryotes (and is the subject of several 

excellent reviews) [11–14]. Abnormal lysine acetylation has long been recognized as a 

characteristic of diseases, including cancers [15–17]. In addition to these mechanisms, 

there are additional layers of regulation in many species, including modification of DNA 

nucleotides, regulation of transcription by microRNAs, and RNA turnover and degrada-

tion that collaborate to coordinate mRNA abundance, spatial positioning in both two-di-

mensions and three-dimensions (within the nucleoplasm), among others [18–21]. 

The focus of this work is to review recent advances in the literature surrounding 

transcriptional regulation at a distance, using the budding yeast Saccharomyces cerevisiae 

as the model system. The budding yeast, S. cerevisiae, is an exceptional model system for 

molecular and genetic studies, and lends itself to insights in other eukaryotes [22–24]. 

While budding yeast has its own species-specific quirks, there is extensive conservation 

on a genetic level to humans [25,26]. Recent work has revealed valuable insights into the 
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chromosomal distance constraints in place that limits transcriptional activation and re-

pression across broad genomic regions.  

2. Overview of Transcriptional Regulation in the Budding Yeast, Saccharomyces  

cerevisiae 

One fundamental layer of transcriptional regulation is local cis regulatory nucleotide 

sequences that include promoters, enhancers, upstream activating sequences (UAS), and 

upstream repressive sequences (URS). The promoter sequence is what directly interacts 

with the RNA polymerase to form the pre-initiation complex (PIC) [27]. The formation of 

the PIC is stabilized by the UAS to increase transcription (and conversely, the URS inhibit 

and destabilize the PIC formation) [27]. S. cerevisiae contains a compact genome, and reg-

ulatory sequences are frequently in close proximity to the open reading frame (ORF) for 

a gene of about 300 base pairs, on average [28,29]. Promoters largely fall into two distinct 

families: those that are constitutively expressed under enriched nutrient growth (about 

55% of promoters) and those that are induced upon specific conditions (about 45% of pro-

moters) [30].  

Examples of constitutively active promoters include those for genes that are neces-

sary for ribosome biogenesis, including NOP12—which are regulated by an UAS for 

Abf1p and URSs such as the polymerase A and C (PAC) and ribosomal RNA processing 

element (RRPE) (Figure 1). These sequences balance the production of the 200+ genes that 

are components of the ribosome biogenesis (Ribi) regulon [31]. During periods of rapid 

growth and division, the Ribi genes are upregulated and highly expressed to meet cellular 

demands, but during stress they are rapidly downregulated as cellular resources are di-

verted elsewhere [3]. Conversely, there are inducible promoters including the GAL1 and 

CUP1 promoters. Transcription of genes that are associated with these promoters is typi-

cally repressed during rapid growth, but they are activated by the presence of galactose 

and copper, respectively, within the growth environment [32]. 

 

Figure 1. Chromosomal schematics of selected, representative genomic loci. (A) Regulatory circuitry 

and associated transcription factors for the ribosome biogenesis gene NOP12 during activation (top) 

and repression (bottom). (B) The tandem gene pair SRG1-SER3 that exhibits mutually exclusive ex-

pression. SRG3 transcription (top) inhibits the expression of SER3. Repression of SRG1 (bottom) 

allows for SER3 activation and expression to occur. (C) The galactose metabolism gene pair GAL10-

GAL1 are divergently oriented and share a common promoter region that is activated by Gal4 (top) 

and repressed by Gal80 (bottom). (D) The bicistronic transcript RTC4-GIS2 share a single RNA spe-

cies that is processed into the dual proteins. 
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The proximal regulatory sequences oftentimes are a binding site for trans acting tran-

scription factors (TFs) that can alter the recruitment of RNA polymerases. There are 

roughly 270 verified and predicted TFs in the budding yeast [33,34]. TFs work in collabo-

ration with one another for PIC formation, as seen in the ribosomal biogenesis transcrip-

tion factors Abf1p, Stb3p, Tod6p, and Dot6p, and, they function to maintain stoichiometric 

levels of expression of the Ribi genes during ribosome biogenesis (Figure 1A) [35–37]. 

The establishment of differential chromatin states modulates accessibility of the cis 

and trans factors within a spatial and temporal context. The presence of nucleosomes can 

inhibit transcription, and most transcribed genes have a 150–200bp nucleosome-free re-

gion (NFR, also called a nucleosome-depleted region, or NDR) upstream of the ORF [38–

41]. Epigenetic markers of active chromatin, including acetylated histones, are found at 

the 5′ end of actively expressed genes [42]. Induction of the stress response in budding 

yeast results in the upregulation of genes to adapt to a stressor, such as the heat shock 

proteins that act to maintain proteostasis and to modulate tRNA abundance to regulate 

transcription [5,43]. TF binding can alter nucleosome dynamics from the promoter region 

of corresponding genes and favors PIC formation [40,44].  

The spatial arrangement and positioning of genes along the chromosome contribute 

to the absolute levels of expression due to position effects within a genomic locus. These 

effects were initially characterized based on proximity to heterochromatin, including that 

found at the telomeres [45]. These positional effects are not limited to the proximity of 

heterochromatin, but are prevalent throughout the genome as well [46]. Such position ef-

fects can result in transcriptional regulation at a distance, as is seen in adjacent gene co-

regulation, a phenomenon that links transcription of functionally clustered genes via 

shared regulatory mechanisms [47,48]. This phenomenon results in the clustering of genes 

whose transcripts are required in roughly equivalent stoichiometric levels by the cell, as 

seen in shared biosynthetic pathways and protein complexes [49]. 

3. Transcriptional Interference and Gene Repression at a Distance 

Gene proximity can influence the transcription of neighboring genes via transcrip-

tional interference, as seen in the SRG1-SER3 locus (Figure 1B) [50]. The SRG1 transcript 

is a non-coding RNA species that represses the expression of SER3 when transcribed [51]. 

The spatial arrangement of these two genes in a tandem orientation (→→) results in inter-

genic transcription of the SRG1 locus into the regulatory region of SER3 [51]. This overlap 

of transcription results in a repression of SER3 as a part of a serine responsive transcrip-

tional circuit [50,51]. Transcriptional interference is a potent regulator of gene expression, 

and thus can favor genome organization to allow mutually exclusive transcription pat-

terns [52]. 

Proximity of a regulatory element to a gene correlates with expressional regulation. 

The closer that a promoter, enhancer, or regulatory sequence is located to a gene, the 

greater the influence of the regulatory sequence on the transcription of the neighboring 

gene(s) [53]. Simply separating a regulatory sequence from a gene with an increasing 

spacer size causes a decrease in the resulting expression of a reporter gene [53,54]. Acti-

vation drops off to nil at a distance of approximately 600 base pairs of distance between a 

regulatory element and a gene.  

Interestingly, the Mediator complex imposes one of the distance constraints to limit 

transcriptional activation at a distance [53]. The Mediator protein complex is a multiple 

subunit complex that associates with transcriptional activators and components of the PIC 

to help modulate transcription [55]. The S. cerevisiae Mediator complex has three distinct 

domains (head, middle, and tail) and is comprised of 21 subunits [56]. One such subunit 

is Sin4p, which plays a role in UAS-core promoter specificity by means of encoding a sub-

unit of the tail domain of the Srb/mediator coactivator complex. SIN4 null mutants display 

an ability to activate transcription at a distance of up to two kilobases away [53]. Thus, the 

Mediator coactivator complex limits long-distance activation under normal conditions. 

The Mediator components Sin4p, Rgr1p, and Cdk8p are responsible for repression of 
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long-distance transcription, and are dependent on the Med2p and Med3p [57]. In a sin4 

null background, the Mediator tail components can be recruited independently of the rest 

of Mediator [57]. 

An elegant genetic screen for polygenic mutants that can transcribe at greater dis-

tances found causative mutations in MOT3, GRR1, MIT1, MSN2, and PTR3 that allow for 

long-distance activation at distances that are otherwise impermissible for transcriptional 

activation [57]. These isolated polygenic mutants transcribe effectively at distances out-

side of the range of the wild type, however they cannot activate transcription as efficiently 

at the distance within the range typical of a wild type promoter element. Consistent with 

these observations, the authors reason that there are multiple factors that regulate activa-

tion (or repression) at a distance and that for other, larger eukaryotes, the regulation of 

long-distance activation may be coordinated by multiple additional factors [57]. 

4. Gene Activation at a Distance 

Budding yeast has a compact genome for a eukaryote, so it is important that activa-

tion occurs only over a short distance to limit activation accordingly [58,59]. In S. cerevisiae, 

UASs are typically found within 450 base pairs of the TSS, whereas in metazoans with 

larger genomes, enhancers can be located at greater distances and are often located several 

kilobases away [60]. Gene proximity can influence transcription throughout a chromoso-

mal region. This results in ‘pockets’ of correlated gene expression genome-wide [61]. This 

likely occurs via the activation of genes due to promiscuous promoter and enhancer ele-

ments that exert activation at distance, oftentimes to genes that are located at a distance 

[62]. In budding yeast, this distance constraint has been characterized, with a global acti-

vation distance of roughly one kilobase of distance—although there is extensive variance 

that is present depending on the genomic locus queried [62]. 

The orientation of genes is important for transcriptional regulation. In simple pro-

karyotic organisms, functionally related genes are often clustered to allow for 

polycistronic transcription and regulation of a gene family [63,64]. Operons are not a char-

acteristic of most eukaryotes, with the characterized exception of C. elegans, which con-

tains clustered genes that are transcribed as a polycistronic mRNA species [65,66]. This 

orientation represents an efficient manner to co-regulate multiple genes simultaneously.  

One feature of yeasts, including S. cerevisiae, is the prevalence of extensive clustering 

of functionally related genes as neighbors throughout the genome [49,67,68]. This cluster-

ing is present in a vast number of gene families whose protein products are components 

in the same metabolic pathways, and has been extensively characterized in the ribosomal 

protein (RP) and ribosome biogenesis (Ribi) families [48]. This clustering of the RP and 

Ribi gene families are extensively conserved throughout eukaryotes that are evolutionar-

ily divergent [69]. 

The orientation of co-expressed, clustered genes likely facilitates the mechanism un-

derlying expression regulation. Clusters can be found in divergent (← →), tandem (→→ 

and ←←), or convergent orientations (→ ←). Divergent promoters activate multiple genes 

simultaneously, such as a the shared GAL1-GAL10 promoter (Figure 1C) [70]. Many func-

tionally clustered genes in yeasts are oriented in a divergent manner, allowing for a shared 

bidirectional promoter [67,68,71]. Many yeast promoters have been characterized as being 

bidirectional in nature and can function regardless of orientation relative to a gene [72,73]. 

The prevalence of bidirectional promoters results in pervasive ‘cryptic’ transcription in 

yeast, which is normally limited at select loci by the activity of Rap1p [74,75]. 

Tandem and convergent orientations also can help to modulate transcription of func-

tionally clustered genes. When orientated in a tandem orientation, there is the possibility 

of a single mRNA intermediary that contains coding information for both genes. A recent 

analysis of the entire S. cerevisiae has found that a small, but significant, fraction of the 

genome is transcribed in a bicistronic manner, such as the RTC4-GIS2 locus (Figure 1D) 

[76]. As a mechanism, the prevalence of bicistronic transcripts represents approximately 
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10% of the genes in the genome [76]. A convergent arrangement lends itself to co-expres-

sion via mechanisms that may include chromatin remodeling or long range looping inter-

actions within the nucleoplasm [54]. 

5. Conclusions 

Regulation of gene expression throughout a genomic region has important implica-

tions for our understanding of gene functions and biotechnological applications. A pau-

city of data pertaining to this phenomenon has led to a missed annotation of gene func-

tions due to transcriptional disruption across a genomic region. Representative examples 

include the attribution of a genetic interaction between CDC50 and PAN2, rather than the 

bona fide interaction between PAN2 and CDC39, which is neighbors with CDC50 [77,78]. 

Such effects are especially important for geneticists exploring gene functions, which fre-

quently employ reporter genes that may disrupt the transcriptional patterns throughout 

a region via the neighboring gene effect. Likewise, researchers working to engineer or 

manipulate specific metabolic pathways for pharmaceutical and industrial uses should 

take heed—the choice of location can have unintended secondary effects, depending on 

the locus chosen for manipulation [46]. 
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