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Abstract: The skin microbiome is an important part of amphibian immune defenses and protects
against pathogens such as the chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes the
skin disease chytridiomycosis. Alteration of the microbiome by anthropogenic factors, like pesticides,
can impact this protective trait, disrupting its functionality. Chlorothalonil is a widely used fungicide
that has been recognized as having an impact on amphibians, but so far, no studies have investigated
its effects on amphibian microbial communities. In the present study, we used the amphibian
Lithobates vibicarius from the montane forest of Costa Rica, which now appears to persist despite
ongoing Bd-exposure, as an experimental model organism. We used 16S rRNA amplicon sequencing
to investigate the effect of chlorothalonil on tadpoles’ skin microbiome. We found that exposure to
chlorothalonil changes bacterial community composition, with more significant changes at a higher
concentration. We also found that a larger number of bacteria were reduced on tadpoles’ skin when
exposed to the higher concentration of chlorothalonil. We detected four presumed Bd-inhibitory
bacteria being suppressed on tadpoles exposed to the fungicide. Our results suggest that exposure
to a widely used fungicide could be impacting host-associated bacterial communities, potentially
disrupting an amphibian protective trait against pathogens.
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1. Introduction

Amphibians around the world are increasingly threatened by diseases caused by fungi,
viruses, bacteria, and parasites [1,2]. Particularly, the infectious skin disease, chytridiomy-
cosis, is one of the main diseases impacting amphibian health [3,4]. This disease caused by
the chytrid fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans
(Bsal) can cause mass die-offs in amphibian species [5,6]. The skin microbiome is consid-
ered one of the first lines of defense against pathogenic infections and can mediate disease
susceptibility [7–9], suggesting it is an essential part of the amphibian’s innate immune sys-
tem. In amphibians, protection against pathogens has been linked to distinct characteristics
of the skin bacterial communities, such as bacterial species richness, microbial community
assemblage, and the presence and abundance of members in the bacterial communities
capable of producing metabolites that suppress pathogen infections [10–13]. In addition,
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in healthy organisms, pathogenic and symbiotic microbiota can coexist without problems.
However, if there is a disturbance in the current balance of the microbial community (called
dysbiosis) caused by certain stress factors, it can impair normal microbial interactions and
make the host more susceptible to diseases associated with pathogens [14].

Anthropogenic factors, such as pesticides, can cause dysbiosis, which can result in
decreased protection against pathogens in their hosts [15–17]. The impact that pesticides
can have on amphibian microbial communities, particularly fungicides, is a growing
concern because of the increased use of these chemicals in agricultural practices and
because many ecosystems are contaminated with these pollutants [18,19]. In agricultural
environments, fungicides are widely used to control pathogenic fungi that threaten fruits
and vegetables, and fungicides make up more than 35% of the pesticide market share
worldwide [19]. There is evidence that pesticides, such as fungicides, have the potential
to alter the structure and potential functionality of the microbiota of distinct taxa (e.g.,
fungicides, like chlorothalonil, perturbs honey bee gut microbiota) [20,21]. Fungicides
may have a broad spectrum of direct and indirect actions on microbial communities. For
example, they could be directly toxic to fungi and bacteria and/or they could favor the
survival of bacteria because the death they cause to fungi indirectly increases the amount of
nutrients available to the bacteria [22,23]. In soil environments, the fungicide chlorothalonil
stimulates the growth of heterotrophic bacteria and actinobacteria, while it inhibits fungi
growth [23]. The influence of pesticides on the amphibian microbiome remains poorly
understood [16]. Due to the link of the microbiome in host health maintenance and
protection against pathogens, studies that investigate the effects of pesticides, especially
fungicides, on the amphibian microbiome and its protective functionality are urgently
needed [16].

Chlorothalonil is a broad-spectrum organochlorine fungicide. It is mainly used to
control fungal diseases on a wide range of vegetables and fruit crops [24]. In the tropics,
chlorothalonil is applied extensively for the prevention and treatment of many crop diseases.
It is applied to crops by aerial and ground applications multiple times per season to
the same crop [25]. In Costa Rica, it is used in several plantations, such as bananas,
potatoes, pineapples, and melons [26]. The mechanism of action of chlorothalonil consists of
binding and depleting cellular glutathione (GSH) and can also inhibit glycolysis by binding
with glyceraldehyde 3-phosphate dehydrogenase (GAPDH), leading to cell death [27,28].
Chlorothalonil can be incorporated into aquatic environments through direct application,
runoff, evaporation, and aerial transport. Chlorothalonil can even reach places far away
from application areas and can accumulate dangerous concentrations, which can have
severe impacts on nontarget organisms [18,29]. For instance, chlorothalonil has been found
accumulating in the environment of some neotropical montane forests in Costa Rica where
many amphibian populations declined and disappeared, and far away from the lowlands
where this fungicide has been applied, indicating the occurrence of atmospheric transport
and wet deposition of chlorothalonil at high elevations [18]. Further, water systems
containing sediments with organic content can facilitate the transport and accumulation of
this chemical after its introduction [29]. Indeed, residues of this fungicide have been found
in wild amphibian tissues (e.g., liver) along with other pesticides, posing a potential risk to
their health and survival [30,31]. In amphibians, chlorothalonil has been found to be highly
toxic [32–34]. It can reduce survival, affect growth and development, impact corticosterone
levels, cause immunosuppression, and change disease susceptibility [33–36]. Considerable
efforts have been undertaken to elucidate the effects of chlorothalonil in amphibians.
However, the impact of this fungicide on amphibian microbial communities has not been
studied. Therefore, understanding how chlorothalonil affects microbial communities is
urgently needed, especially for amphibians that persist with the pathogen Bd in small and
isolated populations in areas where this fungicide can potentially be found.

Using tadpoles of the green-eyed frog (Lithobates vibicarius) as our model organism
and 16S rRNA amplicon sequencing, we examined the influence of chlorothalonil on
the skin bacterial communities. Lithobates vibicarius is a neotropical montane amphibian
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formerly common throughout the mountain ranges of Tilarán, Cordillera Central, and
Talamanca in Costa Rica and western Panama [37]. This species suffered population
declines and disappearances across its entire range in the late 1990s and was considered
possibly extinct. Six years after disappearing, this species has been re-encountered at
different sites in isolated populations in Costa Rica and is reproducing in high numbers [38].
The disease chytridiomycosis was one of the main drivers of declines for L. vibicarius,
possibly in combination with habitat disturbance, pesticides, and climate change [38]. The
skin bacterial community may provide protection against Bd in this species [39].

We hypothesized that exposure to chlorothalonil would change the skin bacterial
communities of tadpoles. We predicted that tadpoles exposed to chlorothalonil would
have different bacterial communities than those not exposed to chlorothalonil and that
this change would be more emphasized at higher fungicide concentrations. Thus, we
investigated changes in the relative abundance of members in the bacterial communities
when exposed to varying fungicide concentrations. We identified the presence of putative
Bd-inhibitory bacteria with differential abundance between treatments. The present study
serves as a baseline to understand the effect of a toxic fungicide on the microbially mediated
immune defenses of a montane tropical amphibian, as well as the potential risk faced by
remaining populations of L. vibicarius in landscapes where chlorothalonil can potentially
be present.

2. Materials and Methods
2.1. Tadpole Collection and Maintenance

In October 2017, we collected 80 tadpoles of L. vibicarius with similar developmental
stage (Gosner stage 27–29), body size (mean ± standard deviation (SD): 41.5 ± 4.4 mm).
and weight (0.71 ± 0.19 g) from a permanent lagoon in the Juan Castro Blanco National
Park, Alajuela, Costa Rica. Due to the high abundance of tadpoles we observed in the
lagoons of the Juan Castro Blanco National Park during our monitoring program, we
concluded that the number of collected animals did not have an impact on this popu-
lation. The study and ethical procedures were approved by National Commission for
the Biodiversity Management of Costa Rica (R-057-2019-OT-CONAGEBIO) and the Min-
istry of Environment and Energy of Costa Rica-National System of Conservation Areas
(SINAC-ACAHN-PI-R-010-2017).

We captured the animals with nets and placed them in sterile plastic trays containing
pond water. Animals were transported to a laboratory at the University of Costa Rica to
carry out the chlorothalonil exposure experiment. All tadpoles were placed in an aquarium
with filtered water and acclimatized to laboratory conditions for 8 days before starting the
experiment. We consider an 8-day acclimation period an adequate time to acclimatize both
host and microbiome to experimental conditions previous to any manipulations [40,41].
We know that the amphibian skin microbiome can change under captive conditions [42];
therefore, all tadpoles were set up under the same conditions to maintain the same initial
microbiome baseline between treatments and reduce any potential effect in the results.

2.2. Chlorothalonil Exposure and Sampling

Following the acclimation period, we conducted an 8-day exposure experiment to
investigate the effect of chlorothalonil on the skin microbiome of tadpoles. We established
four treatments, which consisted of a negative control (filtered water), a solvent control
(SC; methanol), and two concentrations of chlorothalonil; low concentration (1 µg/L) and
high concentration (5 µg/L) (nominal concentrations). In Costa Rica, chlorothalonil has
been detected in the environment (e.g., soil, air, and water), and concentrations above
11 µg/L have been reported in water bodies [18,26,43]. In addition, the concentrations of
chlorothalonil used in this experiment are similar to demonstrably nonlethal concentrations
used in another study using a species of the same genus, Lithobates taylori (E. Ballestero,
unpublished data). Therefore, the exposure levels were chosen to reflect conditions that
the species may experience in the wild. We prepared chlorothalonil exposure solutions by
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adding an aliquot of a stock solution to the exposure medium (filtered water). Stock solution
(1061 µg/mL) was prepared from 97.5% pure chlorothalonil standard (Dr. Ehrenstorfer,
Germany) dissolved in HPLC-grade 99.97% methanol (J.T. Baker, Phillipsburg, Unites
States) and kept at 4 ◦C. Aliquots were taken using a microvolume syringe (SGE Analytical
science, Australia). The quantitative analyses of chlorothalonil were performed with
solid-phase extraction (SPE) and gas chromatography–mass spectrometry (GC–MS) at
the Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional,
Costa Rica. The actual concentrations for the low-concentration and high-concentration
treatments at the beginning of the experiment were 0.9 µg/L and 5.3 µg/L, respectively.
We did not detect chlorothalonil in water samples at the end of the experiment (<0.1 µg/L).

In water, the half-life of chlorothalonil ranges from 0.18 to 8 days [44]. The amount
of methanol added in the solvent control was the same as that one used in the highest
concentration of chlorothalonil. We measured temperature (◦C), pH, and dissolved oxygen
(mg/L) during the experiment (Supplemental Data Table S1).

Our experimental unit was one randomly chosen tadpole in a 1 L glass jar containing
800 mL of filtered water. We established 20 replicates per treatment (Table S2). Tadpoles
were randomly assigned to one of the experimental treatments. We fed animals ad libitum
with organic Spirulina on Days 0, 3, and 6.

On Day 8, we collected skin bacterial samples (skin swabs) from each animal. Swab-
bing consisted of moving a sterile rayon-tipped swab (Peel Pouch DryswabTM Fine Tip)
across the animal skin. The swabbing protocol consisted of 12 strokes on each side (along
body and tail), 12 strokes on the dorsal surface of the body, and 12 strokes on the mouth.
We placed swabs in sterile vials with 300 µL of DNA/RNA Shield (Zymo Research). The
tubes were transported to Ulm University, Germany, and stored at −20 ◦C until DNA
extractions and sequencing. We used tricaine methanesulfonate (MS222) to euthanize all
tadpoles at the end of the experiment.

2.3. DNA Extraction and 16S rRNA Gene Amplicon Sequencing

We extracted bacterial genomic DNA from swabs using the NucleoSpin Soil kit
(Macherey-Nagel, Düren, Germany) following the manufacturer’s protocol. We am-
plified the hypervariable V4 region of the 16S rRNA gene using the primers 515F (5′-
GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). We
followed the Fluidigm scheme (Access Array System for Illumina Sequencing Systems,
Fluidigm Corporation), in which PCR and barcoding occur simultaneously. The PCR and
barcoding (15 µL volume) were performed as described in Jiménez et al. [39]. Barcoded
samples were purified using NucleoMag NGS Beads (Macherey-Nagel, Düren, Germany)
and quantified with picogreen on Tecan F200. Then, we pooled all samples to an equal
amount of 12 ng of DNA and diluted the pool down to 6 nM. Finally, the pooled sample
library was paired-end sequenced in a single run on an Illumina MiSeq platform at the
Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Germany.
Raw sequence data were deposited into NCBI Repository, BioProject ID PRJNA703661.

2.4. Bioinformatics

The initial processing of the sequences was performed using QIIME 2 (version 2019.1)
as described in Jiménez et al. [39]. For dada2 analysis, we trimmed the first bases of each
read to remove primers (–p-trim-left-f 23, –p-trim-left-r 20) and truncated forward and
reverse reads to 200 bp due to decreasing average quality scores of the sequences at the end.
We collapsed reads into amplicon sequence variants (ASVs) and assigned bacterial taxon-
omy using the Greengenes database (version 13_8) as reference (http://greengenes.lbl.gov;
accessed on 30 November 2020). We removed sequences classified as chloroplast, mito-
chondria, archaea, eukaryota, and unclassified phylum. We built a phylogenetic tree of the
bacterial ASVs for further diversity analyses using MAFFT [45] and Fast Tree 2 [46]. Then,
we imported our data into the R environment version 3.6.3 (https://www.r-project.org/;
accessed on 30 November 2020) for further processing of the sequences using the R pack-
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age “phyloseq” [47]. We removed ASVs with less than 20 reads in the entire dataset and
excluded samples with fewer than 9000 sequences. The resulting mean library size across
individuals was 18,597 reads (range 9415–43,854). For alpha and beta diversity analyses,
we rarefied the ASV table according to the sample with the lowest number of reads.

2.5. Statistical Analysis in R Environment

Because we used methanol as a carrier solvent, we first compared the negative control
to the solvent control to detect statistical differences in alpha and beta diversity. We
did not detect significant differences between negative and solvent controls considering
the three alpha diversity measures (ASV richness: p = 0.94, Shannon diversity index:
p = 0.97 and PD: p = 0.95; Figure S1). However, we observed that beta diversity differed
between negative and solvent controls based on the ASV presence–absence composition
(unweighted UniFrac: R2 = 0.05; p = 0.040) and the ASV abundance-weighted composition
(Bray–Curtis: R2 = 0.12; p = 0.001) (Figure S2). Thus, the solvent control was used as the
basis of comparison in further analysis.

To investigate the effect of chlorothalonil treatments on the skin bacterial alpha diver-
sity measures (ASV richness, Shannon diversity index, and phylogenetic diversity (PD)), we
used Generalized Linear Models (GLMs) with Gaussian distribution. We log-transformed
the alpha diversity measures prior to model fitting.

To examine the effect of chlorothalonil treatments on skin bacterial beta diversity, we
calculated the unweighted UniFrac (based on ASV absence/presence) and Bray–Curtis
dissimilarity (based on abundance pattern of ASV) metrics using the R package “phyloseq”.
We fitted permutational multivariate analyses of variance (PERMANOVAs) using the adonis
function of the R package “vegan” [48] to statistically test the effect of fungicide treatments
on both beta diversity metrics. We performed permutational pairwise post-hoc tests with a
Bonferroni correction to evaluate statistical differences of bacterial beta diversity between
chlorothalonil treatments and solvent control. Additionally, we quantified the extent of the
difference between group centroids (treatments) as a measure of effect size by calculating
Cohen’s d and 95% CI with the R package “compute.es” [49]. We performed principal
coordinate analysis (PCoA) to visualize the beta diversity distances between treatments.

Then, to identify ASVs that were significantly suppressed or overabundant in the two
fungicide treatments, we used a negative binomial model-based approach (exact binomial
test generalized for overdispersed counts) using the R package “edgeR” [50]. We present
only ASVs that differed significantly between fungicide treatments and solvent control
(FDR-corrected p-values at p < 0.001). We used the unrarefied dataset and the Trimmed
Mean of M-values (TMM) method for the normalization of samples. Additionally, we
explored the presence of putative Bd-inhibitory bacteria being suppressed or overabundant
from the results of the previous analysis. To identify the putative Bd-inhibitory ASVs, we
queried our ASV sequences against a database of culturable anti-Bd bacteria identified
from different amphibian species (Antifungal Isolates Database; [51]). We retained ASVs
with a ≥99% sequence identity match to those in the mentioned database following the
methods outlined by Muletz-Wolz et al. [52] with the software Geneious version 20.1.2.

3. Results
3.1. Chlorothalonil Disturbs the Skin Microbiome Beta Diversity

We did not detect a significant effect of chlorothalonil treatments on the three alpha
diversity measures (ASV richness: p = 0.90, Shannon diversity index: p = 0.90, and PD:
p = 0.33; Figure S1). The PERMANOVA models revealed a significant effect of treatments
on the ASV presence–absence composition (unweighted UniFrac: R2 = 0.09, p = 0.02,
Figure 1a) and the ASV abundance-weighted composition (Bray–Curtis dissimilarity:
R2 = 0.09, p = 0.004, Figure 1b). Pairwise PERMANOVA tests indicated significant dif-
ferences in the bacterial community composition between the tadpoles kept in the solvent
control and the treatment with a high concentration of the fungicide, whereas those be-
tween solvent control and the treatment with a low concentration were similar (Table 1).
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Pairwise PERMANOVA tests and Cohen’s d effect sizes showed that the R2 and effect
sizes between tadpoles of the solvent control and the high-concentration treatment were
higher than between tadpoles of the solvent control and the low-concentration treatment,
indicating a greater difference in the higher concentration of fungicide (Table 1). Further-
more, skin bacterial communities of tadpoles exposed to a high concentration of fungicide
clustered more distantly from solvent control treatment on the PCoA than those exposed
to a low concentration of fungicide (Figure 1a,b).
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Table 1. Pairwise comparisons of beta diversity skin microbiota of tadpoles in response to chlorothalonil.

Beta Diversity Metric Comparison R2 p-Value Adjusted p-Value Cohen’s d

Unweighted UniFrac

SC vs. Low 0.06 0.07 0.21 0.61 (−0.15, 1.39)

SC vs. High 0.09 0.01 0.02 * 0.89 (0.17, 1.62)

Low vs. High 0.04 0.30 0.90 0.23 (−0.55, 1.02)

Bray–Curtis
dissimilarity

SC vs. Low 0.04 0.16 0.46 0.49 (−0.27, 1.26)

SC vs. High 0.10 0.001 0.003 * 0.98 (0.25, 1.71)

Low vs. High 0.05 0.12 0.35 0.37 (−0.42, 1.17)

* p < 0.05. SC = solvent control.

3.2. Chlorothalonil Shifts Relative Abundance of Bacterial Strains

We detected that ASVs differed significantly between fungicide treatments and SC
(Figure 2a,b). We found three ASVs suppressed when tadpoles were exposed to a low
concentration of chlorothalonil, and 14 ASVs showed an increased abundance (Figure 2a).
Tadpoles exposed to a high concentration of chlorothalonil showed 13 suppressed ASVs
and seven overrepresented (Figure 2b). Tadpoles exposed to a high concentration had a
higher number of bacterial taxa with reduced abundance than those exposed to a low con-
centration of fungicide. In both treatments, a low and high concentration of chlorothalonil,
tadpoles showed a significant decrease in abundance for ASVs of the genera Sulfuricurvum
and Janthinobacterium, whereas an abundance increment was observed for ASVs of the
genera Nevskia, Flavobacterium, and Runella. We identified four putative Bd-inhibitory
ASVs with significantly lower abundance in tadpoles exposed to chlorothalonil, one in



Appl. Microbiol. 2021, 1 32

tadpoles exposed to a low concentration and four in those exposed to a high concentration
(Figure 2a,b). These putative Bd-inhibitory ASVs were assigned to the family Comamon-
adaceae and the genus Janthinobacterium, Acinetobacter, and Novosphingobium.
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4. Discussion

The present study highlights the impact of chlorothalonil, a widely used fungicide, on
the immunologically important skin microbial community of a threatened frog that persists
despite ongoing exposure to Bd. We provide evidence that exposure to chlorothalonil
changes the skin bacterial community of tadpoles of L. vibicarius and, even more impor-
tantly, that chlorothalonil can suppress putative Bd-inhibitory bacterial strains at high
concentrations. These results raise new concerns and hypotheses that need to be addressed
to have a broader understanding of the impact of fungicides on the protective relationship
between skin microbiomes and amphibian hosts.

Our results show that the skin bacterial community differed when tadpoles were
exposed to higher concentrations of chlorothalonil. The effect sizes on beta diversity
indicated that differences in bacterial communities of tadpoles increased as animals were
exposed to higher concentrations of the fungicide. These findings indicate a change, and
potential disruption, of skin bacterial communities as the concentration of chlorothalonil
increases. Given that the microbiome can play a role in host health maintenance and that
disruption of the natural range of microbial communities may lead to increased incidence
of diseases in their hosts [15,53,54], our results suggest that exposure to chlorothalonil
may increase susceptibility to diseases. Further work is needed to corroborate these
hypotheses. A previous study found an alteration of the skin bacterial communities of
tadpoles of Blanchard’s cricket frog (Acris blanchardi, family Hylidae) when exposed to an
herbicide [55]. Together, these studies suggest that changes in bacterial communities occur
with a distinct type of pesticides and highlight an interest in investigating how pesticide
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mixtures (for example, a mixture of fungicides and herbicides) could be interacting to
impact the function of microbial communities of amphibians.

Previous studies indicate that microbial communities are among the first taxa to
respond to chemicals exposure [56–58]. Chlorothalonil could be directly and/or indirectly
interacting with the skin bacteria of L. vibicarius tadpoles by altering their cutaneous
bacterial communities. Microorganisms are functionally or nutritionally connected to
each other, and changes in one component of a microbial community (e.g., the fungal
community (mycobiome)) can influence the structure of the entire community [59–61].
Therefore, the fungicide chlorothalonil could be changing the skin mycobiome and thereby
influencing the observed changes in the bacterial communities. In this study, we did
not evaluate the skin mycobiome, so further research investigating interactions between
fungal and bacterial communities after chlorothalonil exposure will provide broader insight
into the impact of this fungicide on host-associated microbial communities. In addition,
chlorothalonil could be affecting tadpoles’ physiology, endocrine, and immune systems,
as previously observed in different amphibian species [34], indirectly altering the host
bacterial communities through different mechanisms. Here, we have not evaluated the
host physiology mechanisms that could be changing these communities. However, we
suspect that chlorothalonil could be contributing to an increment of stress on exposed
individuals, as observed in tadpoles of the Cuban tree frog Osteopilus septentrionalis (family
Hylidae) [34], thus affecting the tadpoles’ skin bacterial community and resulting in a
potential detriment of the host immune defenses. It is also possible that chlorothalonil
may have interfered with the host skin peptide secretions that act as a selective force that
controls which microbes can grow on each host’s skin. The properties of the skin peptides
have been shown to be affected by exposure to the insecticide carbaryl in yellow-footed
frogs (Rana boylii, family Ranidae) [62]. These potential alterations to the skin properties
by chlorothalonil may have disrupted the appropriate conditions for some bacteria to
grow, consequently suppressing their abundance and altering host microbial communities.
Further research is needed to investigate these potential mechanisms and will provide a
better understanding of the impact of chlorothalonil on an amphibian immune defense trait.

We found different patterns in the relative abundances of bacterial taxa across chlorotha
lonil treatments. We also observed the suppression of some putative Bd-inhibitory bacterial
strains (for example, strains of genus Janthinobacterium and Acinetobacter) when exposed to
chlorothalonil, particularly in the high-concentration treatment. These protective bacteria
are known to be capable of producing metabolites that suppress Bd infections [10,11,63].
Together, this suggests that changes in bacterial abundances from chlorothalonil exposure
could be disrupting the adequate production of defensive bacterial metabolites that facili-
tate disease resistance. Further, the suppression of some Bd-inhibitory bacteria provides
evidence that chlorothalonil can interfere with these protective taxa, highlighting a po-
tential risk in the disruption of host susceptibility to chytrid infections in early and/or
later life stages. This knowledge is relevant as a reduction in bacterial abundances could
represent the loss of key bacterial species and functions linked to host health. Previous
evidence suggests that amphibian larval stages that have been exposed to chlorothalonil
have higher Bd intensity and greater Bd-induced mortality when challenged with Bd after
metamorphosis [36]. Therefore, exposure to chlorothalonil in early life might alter the
normal bacterial community that establishes a healthy and Bd-protective skin microbiome
after metamorphosis, making exposed animals vulnerable to future Bd infections. Based
on this information, it would be interesting to investigate if this early-life disruption of
bacterial abundances has lasting impacts on host Bd resistance later in life. It is also possible
that opportunistic microbes and/or parasites with tolerance to chlorothalonil increase their
abundance altering the natural microbial structure. Addressing this gap in our knowledge
will allow a better understanding of the development of the immune system and will
provide information that will help prevent early disruption of host microbiomes to confer
better protection against diseases, such as chytridiomycosis.
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We observed some individuals in the high-concentration treatment showing reddish
skin, suggesting some type of external dermatitis probably attributed to the fungicide
exposure. This is an interesting observation to highlight from our study because skin
irritation has been linked to chlorothalonil exposure in animals [64]. This is merely an
observation during our experiment but brings out the need for further investigation because
chlorothalonil exposure has been associated with skin irritation and contact dermatitis in
humans [65–67]. Atopic dermatitis can also allow for the colonization of certain types of
bacteria that trigger immune response such as inflammation that can worsen symptoms
and jeopardize host health [68].

Our understanding of how pesticides influence the amphibian microbiome is still in
its infancy [16]. Our study reveals the effect of the exposure to environmentally relevant
concentrations of the fungicide chlorothalonil on the skin microbiomes of amphibians in
the early-life stage, which may, in turn, impact the stability of host-microbe interactions
and microbiome-fitness correlations. Further studies are desperately needed, so we can
fully understand the interaction between pesticides, the disease-causing organisms, and
how these effects scale up to play a role in amphibian disease dynamics.
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