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Abstract: Sea urchins, in many instances, are collected from the wild, maintained in the laboratory
aquaculture environment, and used as model animals for various scientific investigations. It has
been increasingly evident that diet-driven dysbiosis of the gut microbiome could affect animal
health and physiology, thereby impacting the outcome of the scientific studies. In this study, we
compared the gut microbiome between naturally occurring (ENV) and formulated diet-fed laboratory
aquaculture (LAB) sea urchin Lytechinus variegatus by amplicon sequencing of the V4 region of the
16S rRNA gene and bioinformatics tools. Overall, the ENV gut digesta had higher taxa richness with
an abundance of Propionigenium, Photobacterium, Roseimarinus, and Flavobacteriales. In contrast, the
LAB group revealed fewer taxa richness, but noticeable abundances of Arcobacter, Agarivorans, and
Shewanella. However, Campylobacteraceae, primarily represented by Arcobacter spp., was commonly
associated with the gut tissues of both ENV and LAB groups whereas the gut digesta had taxa
from Gammaproteobacteria, particularly Vibrio spp. Similarly, the co-occurrence network displayed
taxonomic organizations interconnected by Arcobacter and Vibrio as being the key taxa in gut tissues
and gut digesta, respectively. Predicted functional analysis of the gut tissues microbiota of both
ENV and LAB groups showed a higher trend in energy-related metabolisms, whereas amino acids,
carbohydrate, and lipid metabolisms heightened in the gut digesta. This study provides an outlook of
the laboratory-formulated diet-fed aquaculture L. variegatus gut microbiome and predicted metabolic
profile as compared to the naturally occurring animals, which should be taken into consideration for
consistency, reproducibility, and translatability of scientific studies.
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1. Introduction

Organisms from all domains of life cohabit in the nearshore marine ecosystems world-
wide, where they thrive by modulating their community structure with the fluctuating
biotic and abiotic factors, food sources, and other perturbances, such as natural calamities
and human activities [1–3]. The resiliency of these ecosystems in such changing envi-
ronments is often contingent upon the composition and metabolic activities of microbial
communities that help sustain some of the crucial trophic functions [2]. However, often-
times organisms from their natural habitat are collected and transferred to laboratories and
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used as model animals for various scientific studies. These organisms are maintained in
the laboratory aquaculture environment where they are fed formulated feed with balanced
nutrients. Studies have shown that such controlled laboratory conditions and feeding
lab-standardized or commercially available diet reshape gut microbiota from their natural
habitat in a variety of laboratory model animals such as Mus musculus [4], Danio rerio [5],
Caenorhabditis elegans [6,7], and Drosophila [8]. The pivotal role of diet and gut microbiome
in maintaining host metabolisms, health, and disease has been a well-established fact
now [9–11]. Dysbiosis of the gut microbiota as a result of improper selection of diet thereby
affecting the homeostasis of laboratory animal models has been a growing concern in the
outcome and interpretation of various scientific studies [12–15].

Oftentimes, the sea urchins, including the green sea urchins, Lytechinus variegatus
(order Temnopleuroida, family Toxopneustidae), are collected from their natural habitats,
acclimated, and maintained in the laboratory aquaculture, fed a laboratory-standardized
formulated diet, and used for basic and applied research [16,17]. L. variegatus inhabit the
area along the U.S. South-Eastern Coastal waters and into the Gulf of Mexico; although
considered omnivorous, they primarily graze upon seagrass, algae, and decomposed mate-
rials in their natural habitats [18–21]. L. variegatus represents a characteristic deuterostome
gut system [22], in which the ingested food along with the natural microbial communities
from their habitat is encapsulated in the pharynx by a thick mucus layer known as gut
digesta. The microbiota in the gut digesta remains separated from that of the gut tissue
during their passage through the gut lumen until egested [23–26]. The culture-dependent
studies of urchins from their natural habitat have shown representative bacteria from the
gut capable of alginolytic activities [27]. In addition, gelatin, protein, and amino acid
assimilation by the gut microbiota have also been elaborated in urchins [28–30]. However,
the laboratory-maintained urchins are normally fed a diet consisting of combinations of
naturally occurring algal and seagrass sources [16,31] or a formulated feed optimized
for their nutritional requirements and health [32]. These conditions contrast the food in
their natural habitat and the diverse marine microorganisms associated with it [33–40].
Consequently, the laboratory-standardized formulated diet could potentially reshape the
gut microbiota and metabolic role in laboratory aquaculture L. variegatus. In this study, we
elucidate a comparative outlook of the gut microbial community compositions along with
the taxonomic co-occurrence network and predicted metabolic profiles in naturally occur-
ring and formulated diet-fed laboratory aquaculture L. variegatus using 16S rRNA-targeted
metagenomics approach and bioinformatics tools.

2. Materials and Methods
2.1. Sample Description and High-Throughput Sequencing

Adult L. variegatus were collected from Saint Joseph Bay Aquatic Preserve, Florida
(29.80◦ N 85.36◦ W), and transported to the University of Alabama at Birmingham (UAB)
and held for six months in a recirculating saltwater tank system before tissue collection
and processed for the microbiome analysis (LAB group; n = 3), as described elsewhere [41].
The LAB urchins were fed ad libitum once every 24–48 h with a formulated feed consisting
of 6% lipid, 28% protein, and 36% carbohydrate relative percentages [32], and the aquaria
conditions were maintained at 22 ± 2 ◦C with a pH of 8.2 ± 0.2 and salinity of 32 ± 1 parts
per thousand (ppt.). Similarly, adult L. variegatus (n = 3) from the same location (29.80◦ N
85.36◦ W) with 1 m2 area were collected and transported to UAB (ENV group), and tissues
were retrieved and processed for microbiome analysis within 7 ± 1 h after collection. The
conditions of the water were recorded as follows: 20 ± 2 ◦C with a pH of 7.8 ± 0.2 and
salinity of 28 ± 1 ppt. during sample collection [42]. The gut tissues and the digesta were
collected from urchins using the procedures described elsewhere [24]. Briefly, a radial
incision was made around the Aristotle’s Lantern mastication apparatus of the urchins
using sterile instruments. The pharynx enclosed by the lantern was separated from the
digestive tract, collected intact, without tearing, and rinsed with sterile phosphate-buffered
saline water (1× PBS, pH 7.4) (Fisher Scientific, Hampton, NH, USA). The gut tissues were
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then carefully opened by incision and the digesta were separated by gently rinsing with
sterile 1× PBS (pH 7.4). The gut tissues were examined under a dissecting scope to make
sure no residual digesta associated with the tissues before subjected to DNA purification.
Similarly, the gut digesta were gently rinsed multiple times in sterile 1× PBS (pH 7.4) to
remove any gut tissue-associated residual bacteria. All procedures were followed according
to the Animal Care and Use Committee (IACUC), University of Alabama at Birmingham
under the Animal Project Number (APN): IACUC-21893 (22 November 2019–21 November
2022 (S.A. Watts).

The metacommunity DNA samples from urchins were purified using the Zymo
Research kit (Irvine, CA, USA). Then high throughput amplicon sequencing (HTS) was
performed on an Illumina MiSeq sequencing platform using the 250 bp paired-end kits
(Illumina, Inc., San Diego, CA, USA) and by targeting the V4 hypervariable region of the
bacterial 16S rRNA gene [41,42]. The resultant sequences were demultiplexed and FASTQ
formatted [43,44] and then deposited on the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) under Bioproject #PRJNA291441 and #PRJNA326427
for the LAB and ENV groups, respectively, as described previously [45]. The subgroups for
the LAB group were relabeled for this study as LAB.Gut.Tissue (n = 3) and LAB.Gut.Digesta
(n = 3), and for the ENV group the samples were relabeled as ENV.Gut.Tissue (n = 3) and
ENV.Gut.Digesta (n = 3).

2.2. Taxonomic Distribution

The taxonomic profiles of the gut tissues and gut digesta of both ENV and LAB
urchins were determined using the QIIME2 (v.2020.8) bioinformatics tool [46]. The raw
sequence data from all samples were demultiplexed. The q2-demux (manifest method)
plugin, followed by denoising via DADA2 (q2-dada2) was used for quality filtering [47].
Amplicon sequence variants (ASVs) were aligned using mafft (q2-alignment) [48], and
this was used to build a phylogeny with fasttree2 (q2-phylogeny), [48,49] with the default
FastTree building method [49]. The “core-metrics-phylogenetic” command (q2-diversity
plugin) was used to generate Alpha-diversity metrics (Faith’s Phylogenetic Diversity, and
observed features) [50], Simpson [51] and Shannon [52], beta diversity metrics (weighted
UniFrac), unweighted UniFrac [53], Jaccard distance, and Bray-Curtis dissimilarity, and
Principal Coordinate Analysis (PCoA). The samples were rarefied (subsampled without
replacement) based on the minimum value of 36,535 sequences per sample. The taxonomy
was assigned to ASVs via the q2-feature-classifier plugin [54], “classify-sklearn” command
against the silva-138-99-nb-classifier [55]. The taxonomy was collapsed into tables using the
“qiime taxa collapse” command [46]. ANOSIM values were generated with the q2-diversity
plugin [56], via the “beta-group-significance command” and “anosim” parameters. Adonis
values were generated with the q2-diversity plugin [57], via the “adonis” command [58].
To determine the taxa with significant differential abundance between gut tissue and
gut digesta samples in the compartmentalized gut ecosystem, the ASV table of all the
gut tissue and gut digesta samples were further analyzed by the Linear Discriminant
Analysis (LDA) Effect Size (LEfSe) (v1.0.8.post1) and visualized via python3 package
Matplotlib (v3.1.0) and Seaborn (v0.9.0). Briefly, the non-parametric Kruskal-Wallis sum-
rank test was used between classes to determine significant differential abundance set at a
significance of p = 0.05 [59], followed by the pairwise Wilcoxon signed-rank test between
the subclasses at a significance of p = 0.05 [60]. The resultant data was used for LDA
analysis using the log(10) values at an inclusion threshold of ±3.6 [61,62]. Those taxa with
a significant effect size were also listed in a table format, to show the LDA effect size and
average relative abundance in each group with standard deviations determined through the
statistical analysis of metagenomic profiles. The heatmap was generated using the attribute
clustermap of Seaborn (v0.9.0) with average linkage and the Euclidean distance metric
of Z-score normalized relative abundance for hierarchical clustering. The representative
sequence corresponding to the highly abundant Campylobacteraceae ASV determined
in this study was further analyzed by using NCBI Basic Local Alignment Search Tool
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(BLAST) [63] against the non-redundant nucleotide collection (nr/nt) database optimized
for highly similarity sequences via MEGABLAST (http://blast.ncbi.nlm.nih.gov, accessed
on 28 August 2020).

2.3. Co-Occurrence Analysis of Microbial Taxa

Co-occurrence Network interference (CoNet v1.1.1) [64–66] was used to determine
significant co-occurrence patterns between the microbial communities of the gut tissue
and the gut digesta. To accomplish this, the ASV table data was uploaded into Cytoscape
(v3.8.0) [64,65] through the CoNet (v1.1.1) plugin. A parent–child exclusion was applied,
and the links between higher-level taxa were not explored. The gut digesta and gut tis-
sue taxonomic entries with a cumulative group sum of 200 and at least 2/3 of samples
containing non-zero values were kept with a 10-8 pseudo-count to determine the signifi-
cant co-occurrences between taxa [64,66–73]. The 200 highest (most positive) and lowest
(most negative) edges were chosen and combined via the union approach using the mean
value [68]. Multi-edge scores were then shuffled row-wise at 100 permutations (for the
randomization). The brown method [74] was used to merge node pairs, which were as-
signed via the p-values of the multi-edges. The unstable edges were filtered out, and
the threshold was set to a p < 0.05 for significance [64,65] to determine the q-value (the
corrected significance value). The final network was assembled in Cytoscape (v3.8.0). The
radial layout algorithm was used from the yFiles plugin (v1.0) [74], and NetworkAnalyzer
(v2.7) [75] determined the topological parameter (undirected approach). The node sizes
were scaled according to their group abundance size, and edges were scales via q-value.
Edges were colored via their positive (co-presence; green) and negative (co-exclusion; red)
association. The nodes which had a significant number of edges (high degree), closeness
centrality, and low betweenness centrality (determined via Network Analyzer (v2.7)) have
been described elsewhere as key taxa [68,76–78]. Microsoft Excel software (Seattle, WA,
USA) was used to plot these features as a scatter plot (y = closeness centrality; x = be-
tweenness centrality). The top 5 nodes were then selected as likely to be key taxa based on
closeness centrality scores.

2.4. Predicted Functional Analysis

The predicted functional capacity of gut microbial communities was determined
through Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt2) [79]. This was accomplished using the PICRUSt2 picrust2_pipeline.py
single script. The script runs sequence placement, hidden-state prediction of genomes,
metagenome prediction, pathway-level predictions, and the weighted Nearest Sequenced
Taxon Index (NSTI) values. This single script outputs the unstratified EC number
metagenome predictions, KO metagenome predictions, and predicted pathway abundances
and coverages per sample. To add descriptions of each pathway the “add_descriptions.py”
command was used to describe each functional category. This was further analyzed using
linear discriminant analysis (LDA) effect size (LEFSe) against predicted functional profiles
corresponding to the microbial communities of L. variegatus gut tissues and gut digesta. The
visualization was performed using BURRITO software (a visualization tool for exploratory
data analysis of metagenomic data) (http://borenstein-lab.github.io/burrito/, accessed
on 24 August 2020) estimated functional abundances using the QIIME2 16S rRNA ASV
table, and the PICRUSt2 KEGG_metagenome_output table to compute species abundance,
function abundance, and the share of each function linked to each species, which then
displayed metabolic pathways of amino acid, carbohydrate, energy, membrane transport,
cell motility, and cofactors, which were selected for bar plot analysis (plotted using R ggplot
package) [80].

http://blast.ncbi.nlm.nih.gov
http://borenstein-lab.github.io/burrito/
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3. Results
3.1. Read Quality and Sample Statistics

The raw sequence count of the V4 segment of the 16S rRNA generated from the
paired-end Illumina MiSeq across all samples yielded 1,433,598 reads following quality
checking (Supplementary Table S1). A total of 834 observed ASVs were identified following
quality filtering through QIIME2 (v.2020.8) (Table 1). The observed taxonomic distribution
is listed in Supplementary Table S2.

Table 1. Alpha diversity analysis based on observed ASVs, Shannon’s index, and Simpson’s index
of each Lytechinus variegatus gut microbiota sample used in this study. The group assignments are
indicated as ENV = naturally occurring L. variegatus, and LAB = laboratory-maintained L. variegatus.

Sample Observed ASVs Shannon Diversity Simpson Diversity

ENV.Gut.Digesta.1 250 5.487767954 0.944642074
ENV.Gut.Digesta.2 152 4.841885921 0.930314741
ENV.Gut.Digesta.3 295 6.061862678 0.962199539
ENV.Gut.Tissue.1 15 0.571363207 0.160769415
ENV.Gut.Tissue.2 14 0.189163468 0.047561491
ENV.Gut.Tissue.3 11 0.302996014 0.082618331

LAB.Gut.Digesta.1 207 3.967739212 0.859951252
LAB.Gut.Digesta.2 161 3.728789803 0.866174131
LAB.Gut.Digesta.3 54 3.109402559 0.841666322
LAB.Gut.Tissue.1 29 0.057624124 0.012002203
LAB.Gut.Tissue.2 74 0.395491696 0.069834258
LAB.Gut.Tissue.3 28 0.076786117 0.012002203

3.2. Taxonomic Distribution across Samples

At the phylum level, the gut tissue of both the LAB and ENV L. variegatus was dominated
by Proteobacteria, which is represented by an almost exclusive abundance of the class Epsilon-
proteobacteria (data not shown). At the highest achievable taxonomic resolution determined
through the described bioinformatics tools, these taxa were identified as order Campylobac-
terales, primarily represented by the Campylobacteraceae family of bacteria, comprising >90%
of the relative abundance in all gut tissues (Figure 1; Supplementary Table S2). Further
analysis using the NCBI BLAST alignment (http://ncbi.nlm.nih.gov, accessed on 28 Au-
gust 2020) of the representative sequence provided an additional resolution to this taxon.
From the top 100 assigned identities, 34% were related to Uncultured Arcobacter sp., 8% to
Arcobacter sp., 7% as Arcobacter bivalviorum, and 3% to Sulfuricurvum sp., all with an
E-value < 5E−83 and percent identity > 89.76% (data not shown). The ENV gut tissue
showed a noticeable abundance of Candidatus Hepatoplasma (~2.5–7.5%). However, the
relative abundance of this taxon was negligible in the LAB group (<1%).

The gut digesta of both the LAB and ENV groups showed taxa assigned to Gammapro-
teobacteria to be the most abundant. From this class, Vibrio was found to be the more
dominant taxon in the LAB digesta (~35–65%), as compared to the ENV digesta (~9–18%).
However, the LAB gut digesta showed a unique abundance of taxa that were not noticeable
in the ENV digesta, which included Agarivorans (~2–24%) and Shewanella algae (~2–8%)
from Gammaproteobacteria, Rhodobacteraceae from Alphaproteobacteria (~3–7%), and
order Campylobacterales (~13–40%). In contrast, the ENV digesta showed Photobacterium of
Gammaproteobacteria (~9–11%), Propionigenium of Fusobacteria (~9–12%), Roseimarinus of
Bacteroidetes (~9–11%), and a noticeable abundance of Flavobacteriales (~8–13%) (Figure 1;
Supplementary Table S2).

http://ncbi.nlm.nih.gov
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rally occurring L. variegatus gut digesta; LabGutDigesta = laboratory-maintained L. variegatus gut digesta. The relative 
abundance plot was created using Microsoft Excel Software (Seattle, WA, USA). Some of the major taxa are indicated 
within the graph. Due to the insufficient space within some of the stacked column bars, the common taxa are indicated by 
the connecting lines. A list of taxa and their abundances is presented in Supplementary Table S1. 
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based on their assignment through the (SILVA v138) database as determined by the Quantitative Insights into Microbial
Ecology (QIIME_2, v2020.8) and graphed using R (ggplot package). Sample designations are as follows: EnvGutTissue =
naturally occurring L. variegatus gut tissues; LabGutTissue = laboratory-maintained L. variegatus gut tissues; EnvGutDigesta
= naturally occurring L. variegatus gut digesta; LabGutDigesta = laboratory-maintained L. variegatus gut digesta. The relative
abundance plot was created using Microsoft Excel Software (Seattle, WA, USA). Some of the major taxa are indicated within
the graph. Due to the insufficient space within some of the stacked column bars, the common taxa are indicated by the
connecting lines. A list of taxa and their abundances is presented in Supplementary Table S1.

3.3. Alpha Diversity

The alpha diversity for both LAB gut tissue and digesta showed lower taxonomic
diversity as compared to the ENV group (Table 1). Overall, the LAB and ENV gut tissue
had the least number of ASVs compared to the gut digesta samples. The ENV gut digesta
had the highest diversity and ASV count, followed by the LAB gut digesta that showed
a comparatively moderate alpha diversity and ASV count. A t-test comparison between
the alpha diversity values of the gut tissues from the LAB and ENV groups showed no
significant (p > 0.05) differences using the Shannon (p = 0.58) and Simpson (p = 0.227)
metrics. However, a comparison between the LAB and ENV digesta showed significant
differences in the Shannon (p = 0.02) and Simpson (p = 0.05) values between the two groups.
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3.4. Beta Diversity

The microbial taxonomic distribution patterns determined through Bray-Curtis met-
rics across all samples determined that the gut tissues from both the LAB and ENV groups
cluster strongly together (Figure 2a). For the gut digesta, distinct subclustering according
to group assignment was observed. These cluster patterns were also elaborated in a den-
drogram (Figure 2b). ANOSIM and Adonis also supported the low within-group variation
shown by the cluster patterns, revealing R and R2 values of 0.778 and 0.913, respectively
(p = 0.001), thus indicating significant grouping based on biological replicates.
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Figure 2. Beta diversity analysis of gut microbiota of Lytechinus variegatus was observed across all
similarity metrics determined for the ASV table. (a) A Bray-Curtis PCOA plot to display sample
clustering patterns based on observed ASVs. (b) Dendrogram analysis was also performed, and
the cluster pattern was based on the average of the Bray-Curtis distance matrix data generated via
QIIME2 (v2020.8), and (a) plotted with R (ggplot package) and (b) python3 (package matplotlib and
scipy). Bray-Curtis distance matrix data generated via qiime_2(v2020.8), and the q2-qiime diversity
beta-group-significance. The group assignments are indicated as follows: ENV-Tissue (Green Square;
n = 3) = naturally occurring L. variegatus gut tissues; ENV-Digesta (Red Circle; n = 3) = naturally
occurring L. variegatus gut digesta; LAB-Digesta (Blue Triangle; n = 3) = laboratory-maintained
L. variegatus gut digesta. LAB-Tissue (Open Triangle; n = 3) = laboratory-maintained L. variegatus
gut tissues.
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LEfSe analysis performed between the collective gut tissue and gut digesta showed
those taxa that contributed most to the effect size (Figure 3a,b). For the gut tissue sam-
ples, the highest effect size was attributed to the abundant Campylobacteraceae taxon
(LDA score = 5.65) followed by Candidatus_Hepatoplasma. For the gut digesta, Vibrio
showed the highest effect size (LDA score = 5.11). This taxon was more abundant in the
LAB digesta (44.66 ± 5.04), as compared to the ENV digesta (16.21 ± 4.99). This was
followed by Flavobacteriales, Propionigenium, and Photobacterium, which were noticeably
abundant in the ENV digesta, whereas Agarivorans and Rhodobacteraceae in the LAB
digesta. Few taxa that were represented at low abundances in the LAB digesta, particularly,
Alteromonadales and OM60 presented in Supplementary Table S2 and withing phylum
Gammaproteobacteria (Figure 3a,b). Similarly, order Marinilabiliaceae of phylum Bac-
teroidetes and family Pirellulaceae of phylum Planctomycete were also found in reasonably
low abundances in the gut ENV gut digesta. These taxa were negligibly abundant in the
gut tissues (Supplementary Table S2).
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Lytechinus variegatus samples at the highest resolution. The effect size was visualized as a bar graph of two classes, one class
representing the gut tissue samples (n = 6; green bars) that comprised the subclass laboratory-maintained sea urchin gut
tissue (n = 3), and naturally occurring sea urchin gut tissue (n = 3); and the other class representing the gut digesta samples
(n = 6; red bars) that comprised the subclass laboratory-maintained sea urchin gut digesta (n = 3) and naturally occurring
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threshold of ±3.6. (b) Heatmap of the 17 differentially abundant taxa revealed by LEfSe between sea urchin gut digesta and
gut tissues. Green bar = gut tissues (n = 6); red bar = gut digesta (n = 6). The relative abundances were converted to Z-scores
by taxa, shown in blue color. Relative abundances are also indicated through black track lines. Dendrograms represent
a clustering of taxa (columns) and samples (rows) based on hierarchical clustering with Euclidean distance metric and
average linkage. (* = Taxonomic classification beyond the level could not be identified in the reference database).

3.5. Co-Presence, Co-Exclusion, and Key Taxa in ENV and LAB Digesta

The co-occurrence network representing potential interactions occurring among the
microbial taxa from ENV urchin digesta produced 39 nodes and 254 edges (Figure 4a).
NetworkAnalyzer (v2.7) determined the network properties and showed an average num-
ber of neighbors of 13.026, the characteristic path length of 1.693, with a network density
of 0.171, and a clustering coefficient of 0.387. The bacterium with the largest degree was
Congregibacter (22 total), with most of these associations shown as co-presence (16 total).
Closeness centrality values were plotted against betweenness centrality values to display
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trends via scatter plot analysis (Figure 4b). The top five candidate key taxa in ENV urchins
digesta were chosen based on the descriptions of the topological qualities of taxonomic
nodes and ranked via their closeness centrality described elsewhere [77]. The key taxa
were represented by Desulfobulaceae, Flavobacteriales, Spirochaetes, Propionigenium, and
Agarivorans (Figure 4b).

In contrast, the network of the LAB urchin digesta yielded 35 nodes, 245 edges
(Figure 5a). NetworkAnalyzer (v2.7) revealed an average number of neighbors of 14,
the characteristic path length of 1.768, with a network density of 0.206, and a clustering
coefficient of 0.390. The largest abundance taxa were Vibrio and Arcobacter. Closeness cen-
trality values plotted against betweenness centrality values displayed the top five key taxa,
Labrenzia, Psychrilyobacter, Thiohalorhabdales, Octadecabacter, and Alphaproteobacteria
(Figure 5b).
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Figure 4. (a) Co-occurrence Network interference (CoNet v1.1.1) was used to determine significant
co-occurrence patterns between the microbiota of naturally occurring (ENV) Lytechinus variegatus gut
digesta, as analyzed through Cytoscape (v3.8.0). The gut digesta taxonomic entries with a cumulative
group sum of 200 and at least 2/3 of samples containing non-zero values were kept with a 10-8 pseudo-
count to determine the significant co-occurrences between taxa. The 200 highest (most positive) and
lowest (most negative) edges were chosen and combined with the union approach using the mean
value. Multi-edge scores were then shuffled row-wise at 100 permutations (for the randomization).
The network analysis displays edges based on the q-value, which were merged via the brown method
at p < 0.05 and are shown as red (co-exclusion) and green (co-presence). The radial layout algorithm
was used from the yFiles plugin (v1.0), and NetworkAnalyzer (v2.7) was used to determine the
topological parameters (undirected approach). The node size was scaled according to their group
abundance size, and edges were scaled via the q-value. (b) A scatter plot analysis was conducted based
on the topological metrics selected by NetworkAnalyzer (v2.7) to reveal patterns of key (keystone)
species between the naturally occurring L. variegatus gut digesta taxonomy based on the closeness
and betweenness centrality scores, and the degree (the number of co-exclusion and co-presence
edges). Microsoft Excel software (Seattle, WA, USA) was used to determine the linear regression.
The linear regression between closeness and betweenness centrality was displayed as logarithmic
(R2 value = 0.2079). The top 5 taxonomic entries are shown and ranked via their closeness centrality.
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positive) and lowest (most negative) edges were chosen and combined with the union approach
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based on the topological metrics selected by NetworkAnalyzer (v2.7), to reveal patterns of key species
between the LAB L. variegatus gut digesta based on closeness and betweenness centrality scores,
and with the degree (the number of co-exclusion and co-presence edges). Microsoft Excel software
(Seattle, WA, USA) was used to determine the linear regression. The linear regression between
closeness and betweenness centrality was displayed as logarithmic (R2 value = 0.4528). The top 5
taxonomic entries are shown and ranked via their closeness centrality.

The network of LAB urchin gut tissues yielded 15 nodes, 53 edges (Supplementary
Figure S1a). NetworkAnalyzer (v2.7) showed an average number of neighbors of 7.1, a
characteristic path length of 1.433, a network density of 0.252, and a clustering coefficient
of 0.377. The largest abundance of the taxon was Campylobacteraceae (>90%). Close-
ness centrality values plotted against betweenness centrality values displayed the top
five candidate key taxa, Luteolibacter, Arcobacter, Vibrio, Ruegeria, and Comamonadaceae
(Supplementary Figure S1b).

The network of ENV urchin gut tissues yielded 10 nodes, 17 edges (Supplementary
Figure S2a). NetworkAnalyzer (v2.7) showed the average number of neighbors of 3.4,
the characteristic path length of 1.047, with a network density of 0.189, and a cluster-
ing coefficient of 0.305. Similar to the LAB urchin gut tissues, the largest abundance
of the taxon was Campylobacteraceae (>90%). The closeness centrality and between-
ness centrality values represented in the scatter plot showed Campylobacteraceae, Al-
phaproteobacteria, Bacteroidales, Flavobacteriales, and Propionigenium as the top five taxa
(Supplementary Figure S2b). The LAB and ENV gut tissue networks are provided in the
supplementary material, due to the large abundance of Campylobacteraceae (>90%), and
minimal taxa diversity.
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3.6. Predicted Functional Analysis

The NSTI values calculated through PICRUST (v2.3.0) showed an average value of
0.14 (ranging from 0.08–0.20) (Figure 6).

Appl. Microbiol. 2021, 1, FOR PEER REVIEW  12 
 

 

3.6. Predicted Functional Analysis 
The NSTI values calculated through PICRUST (v2.3.0) showed an average value of 

0.14 (ranging from 0.08–0.20) (Figure 6).  

 
Figure 6. The distribution of Amplicon Sequence Variants (ASV) read counts with different Nearest 
Sequenced Taxon Index (NSTI) values of Lytechinus variegatus gut microbiota using a method de-
scribed elsewhere [79]. The x-axis indicates the sample category, and the y-axis indicates the cumu-
lative percentage of ASV read counts. The color key indicates the NSTI value for ASVs. The mean 
NSTI values for ENV gut digesta, ENV gut tissue, LAB gut digesta, and LAB gut tissue were 0.29 ± 
0.04 (mean ± SD), 0.20 ± 0.03, 0.08 ± 0.02, and 0.14 ± 0.004, respectively. NSTI < 0.15 indicates a mod-
erate to high quality of metagenomic content prediction. 

Overall, the trends of KEGG-Level-2 categories were consistent among sample repli-
cates, irrespective of habitat (Figure 7a). The LAB and ENV gut tissues showed heightened 
cell motility, replication and repair, translation, and other amino acid metabolism path-
ways when compared to the gut digesta. In contrast, the gut digesta of both groups 
showed a heightened abundance of carbohydrate metabolism, lipid metabolism, mem-
brane transport, metabolism of terpenoids [81,82], and xenobiotics biodegradation as 
compared to the gut tissues. Moreover, these metabolic categories were noticeably en-
riched in the ENV gut digesta as compared to the LAB gut digesta. KEGG-level-3 obser-
vations showed a preferential abundance of methionine metabolism, oxidative phosphor-
ylation, glyoxylate and dicarboxylate metabolism, porphyrin and chlorophyll metabo-
lism, purine metabolism, and pyrimidine metabolism in the gut tissue as well as catego-
ries related to transport systems (membrane transport, ABC transport, membrane trans-
porters) (Figure 7b). The gut digesta displayed categories related to peptidase metabolism, 
folate biosynthesis, glycan and lipopolysaccharide biosynthesis proteins, and histidine 
metabolism. Gut digesta also displayed a higher abundance of categories related to bac-
terial motility and chaperones. Other categories that were enriched in the ENV group in 
contrast to the LAB group included peptidase metabolism, chlorophyll metabolism, pu-
rine metabolism, tryptophan metabolism, glutamate metabolism, methionine metabolism, 
lysine biosynthesis, pyruvate metabolism, and translation pathways (Figures 7a,b and 8). 
When LAB and ENV gut digesta were compared, the enriched pathways in LAB gut di-
gesta were bacterial chemotaxis and flagellar assembly, both of which were related to cell 
mobility; on the other hand, the ENV gut digesta showed higher differential abundance 
in streptomycin biosynthesis and other glycan degradation (Supplementary Figure S3). 

Figure 6. The distribution of Amplicon Sequence Variants (ASV) read counts with different Near-
est Sequenced Taxon Index (NSTI) values of Lytechinus variegatus gut microbiota using a method
described elsewhere [79]. The x-axis indicates the sample category, and the y-axis indicates the
cumulative percentage of ASV read counts. The color key indicates the NSTI value for ASVs. The
mean NSTI values for ENV gut digesta, ENV gut tissue, LAB gut digesta, and LAB gut tissue were
0.29 ± 0.04 (mean ± SD), 0.20 ± 0.03, 0.08 ± 0.02, and 0.14 ± 0.004, respectively. NSTI < 0.15 indicates
a moderate to high quality of metagenomic content prediction.

Overall, the trends of KEGG-Level-2 categories were consistent among sample repli-
cates, irrespective of habitat (Figure 7a). The LAB and ENV gut tissues showed heightened
cell motility, replication and repair, translation, and other amino acid metabolism pathways
when compared to the gut digesta. In contrast, the gut digesta of both groups showed a
heightened abundance of carbohydrate metabolism, lipid metabolism, membrane trans-
port, metabolism of terpenoids [81,82], and xenobiotics biodegradation as compared to
the gut tissues. Moreover, these metabolic categories were noticeably enriched in the ENV
gut digesta as compared to the LAB gut digesta. KEGG-level-3 observations showed a
preferential abundance of methionine metabolism, oxidative phosphorylation, glyoxylate
and dicarboxylate metabolism, porphyrin and chlorophyll metabolism, purine metabolism,
and pyrimidine metabolism in the gut tissue as well as categories related to transport sys-
tems (membrane transport, ABC transport, membrane transporters) (Figure 7b). The gut
digesta displayed categories related to peptidase metabolism, folate biosynthesis, glycan
and lipopolysaccharide biosynthesis proteins, and histidine metabolism. Gut digesta also
displayed a higher abundance of categories related to bacterial motility and chaperones.
Other categories that were enriched in the ENV group in contrast to the LAB group in-
cluded peptidase metabolism, chlorophyll metabolism, purine metabolism, tryptophan
metabolism, glutamate metabolism, methionine metabolism, lysine biosynthesis, pyruvate
metabolism, and translation pathways (Figure 7a,b and Figure 8). When LAB and ENV gut
digesta were compared, the enriched pathways in LAB gut digesta were bacterial chemo-
taxis and flagellar assembly, both of which were related to cell mobility; on the other hand,
the ENV gut digesta showed higher differential abundance in streptomycin biosynthesis
and other glycan degradation (Supplementary Figure S3). When LAB and ENV gut tissue
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were compared, only carbon fixation pathways were identified as differentially abundant
pathways in the LAB group (data not shown).
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Figure 8. (a) Horizontal barplot of predicted KEGG orthology (KO) metabolic functions of Lytechinus variegatus gut micro-
biota deTable 2. v2.3.0-b) script pathway_pipeline.py. Light blue = LAB gut tissue (n = 3), light red = ENV gut tissue (n = 
3), Blue = LAB gut digesta (n = 3) and Red = ENV gut digesta (n = 3). The ASV table was generated from QIIME2 (v2020.8). 
The analysis and visualization were performed via BURRITO (a visualization tool for exploratory data analysis of meta-
genomic data). The horizontal barplot contains KEGG BRITE categorical levels cellular processes, environmental infor-
mation processing, and genetic information processing. The KEGG BRITE levels SuperPathway and SubPathway are dis-
played on the horizontal barplot. The x-axis displays the functional abundance of each sample, and the y-axis displays the 
name of the pathway. (b) Horizontal barplot of predicted KEGG orthology (KO) metabolic functions of Lytechinus varie-
gatus gut microbiota determined through Phylogenetic Investigation of Communities by Reconstruction of Unobserved 
States (PICRUSt2 v2.3.0-b) script pathway_pipeline.py. Light blue = LAB gut tissue (n = 3), light red = ENV gut tissue (n = 
3), blue = LAB gut digesta (n = 3) and red = ENV gut digesta (n = 3). The ASV table was generated using QIIME2 (v2020.8). 
The analysis and visualization were performed via BURRITO (a visualization tool for exploratory data analysis of meta-
genomic data). The horizontal barplot contains the KEGG BRITE categorical level metabolism. The KEGG BRITE levels 
SuperPathway and SubPathway are displayed on the horizontal barplot. The x-axis displays the functional abundance of 
each sample, and the y-axis displays the name of the pathway. 

  

Figure 8. (a) Horizontal barplot of predicted KEGG orthology (KO) metabolic functions of Lytechinus variegatus gut
microbiota determined through Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt2 v2.3.0-b) script pathway_pipeline.py. Light blue = LAB gut tissue (n = 3), light red = ENV gut tissue (n = 3), Blue
= LAB gut digesta (n = 3) and Red = ENV gut digesta (n = 3). The ASV table was generated from QIIME2 (v2020.8). The
analysis and visualization were performed via BURRITO (a visualization tool for exploratory data analysis of metagenomic
data). The horizontal barplot contains KEGG BRITE categorical levels cellular processes, environmental information
processing, and genetic information processing. The KEGG BRITE levels SuperPathway and SubPathway are displayed
on the horizontal barplot. The x-axis displays the functional abundance of each sample, and the y-axis displays the name
of the pathway. (b) Horizontal barplot of predicted KEGG orthology (KO) metabolic functions of Lytechinus variegatus
gut microbiota determined through Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt2 v2.3.0-b) script pathway_pipeline.py. Light blue = LAB gut tissue (n = 3), light red = ENV gut tissue (n = 3), blue
= LAB gut digesta (n = 3) and red = ENV gut digesta (n = 3). The ASV table was generated using QIIME2 (v2020.8). The
analysis and visualization were performed via BURRITO (a visualization tool for exploratory data analysis of metagenomic
data). The horizontal barplot contains the KEGG BRITE categorical level metabolism. The KEGG BRITE levels SuperPathway
and SubPathway are displayed on the horizontal barplot. The x-axis displays the functional abundance of each sample, and
the y-axis displays the name of the pathway.
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4. Discussion

The sequence dataset used in this study was analyzed using the QIIME2/ASV tools,
which have been described as superior tools on multiple fronts, such as the recovery of
sequences, by avoiding spurious taxa assignments as well as providing more accurate
diversity estimates as compared to previously reported tools, including QIIME1 (v1.9.1)
and others [45,47,83,84]. Based upon the current analysis, the microbiota in the L. varie-
gatus gut ecosystem using the rarified HTS data revealed that Arcobacter spp. belonging
to Epsilonproteobacteria were the dominant taxon in the gut tissues of both LAB and
ENV samples (Figure 1). In general, these findings are comparable qualitatively to other
studies [24,25,31,45,85]. Besides Arcobacter, other members of the Epsilonproteobacteria are
commonly associated with other marine Echinoderms, such as unculturable Helicobacter in
sea stars Patiria pectinifera and Asterias amurensis [86], and Helicobacter, Sulfurospirillum, and
Sulfuricurvum among the sea cucumber [87]. The presence of Epsilonproteobacteria (33.6%)
has been reported on the surface of a red urchin Loxechinus albus from a fish farming of
aquaculture environment [88]. The source of the reported Epsilonproteobacteria in a closed
aquaculture environment [88] could be the shedding of the gut contents. Interestingly,
the Epsilonproteobacteria was not detected in the gut microbiota of an Antarctic heart
urchin (Spatangoida) Abatus agassizii [89], although the explanation for such variation is
currently unknown. In contrast, a comparison between the LAB and ENV gut digesta
showed noticeable differences in microbial community composition. Overall, both LAB
and ENV gut digesta showed Vibrio to be dominant, which is consistent with previously
reported urchins Strongylocentrotus droebachiensis, Tripneustes ventricosus [30], Strongylocen-
trotus intermedius, Strongylocentrotus nudus [90], Echinus esculentus [91], L. variegatus [85],
Hemicentrotus pulcherrimus [92], and Strongylocentrotus purpuratus [41], as well as in the
coelomic fluid of Paracentrotus lividus [93].

However, the higher relative abundance of Vibrio in the LAB group could be due to
the relatively higher salt concentration (32 ± 1 ppt.), pH (~8.4), and temperature (22 ± 2 ◦C)
used in the laboratory aquaculture as compared to the conditions of their natural habitat
(salinity = 28 ± 1 ppt.; pH = 7.8 ± 0.2; temperature = 20 ± 2 ◦C) [94]. Other differences
included a prevalence of Photobacterium in the ENV group, certain species of which
have been reported to perform lipid metabolisms in another urchin species, Paracentrotus
lividus [95–97]. Additionally, the prevalence of a strictly anaerobic genus Propionigenium of
phylum Fusobacteria in the ENV groups likely due to the higher fraction of non-digestible
carbohydrates in seagrass compared to the laboratory-formulated feed. Propionigenium
spp. generate the fatty acid propionate from succinate [98–100] and may benefit urchins
through such health-related effects as mitigation of inflammation [99].

Although the gut tissues in both ENV and LAB groups had comparable taxonomic
diversity, the differences in the alpha diversity observed could be due to the diverse
bacterial taxa in the nearshore Gulf of Mexico marine habitat (Table 1). Additionally,
fluctuations of the abiotic factors such as pH, temperature, photoperiod, and salinity could
also promote differences in the microbial diversity on a temporal scale [101–104]. Moreover,
it has been reported that diet plays a significant role in the gut microbial composition in a
wide range of organisms [105,106]. Although L. variegatus generally grazes seagrass in their
habitat, they also consume alternate food sources such as detritus materials, various algae,
and their epibionts [33,35]. In contrast, the defined laboratory-maintained aquaculture
conditions could have contributed to the low alpha diversity in the gut digesta of the LAB
group. This could be due to the small number of species outcompeting other species due
to excess nutrient loading in laboratory-maintained conditions [107]. Although a similar
reduction of the alpha diversity has been reported [8,108,109], this is not a universal trend
in laboratory-maintained animals, as had been observed in the zebrafish [5], baboon [110],
hydra [111], fruit flies [112], and birds [113–115], at least at the phylum and class levels.
Thus, in our study, the replacement of the diet from their natural habitat with the defined
nutritionally balanced feed used ad libitum for the LAB group likely restructured the gut
microbial community but may need further investigation. However, it is important to note
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that the differences in the gut microbiota in experimental animals when maintained and
fed a formulated diet as compared to animals used directly from the wild could impact the
interpretations of the outcomes of various scientific studies [12,15].

The ANOSIM and Adonis statistics (p = 0.001) supported distinct cluster patterns of
the four groups comprising the gut tissue and gut digesta of the LAB (n = 3) and ENV
(n = 3) urchin’s biological replicates used in this study. The microbial communities of
the gut tissue and gut digesta showed unique cluster patterns of biological replicates as
determined by beta diversity analysis (Figure 2a,b). Notably, the gut tissues of both the
LAB and ENV groups clustered together, indicating a gut tissue-specific microbiota likely
maintained following the transition to the laboratory aquaculture environment. Although
the LAB and ENV gut digesta showed common higher taxonomic classifications, such as
Gammaproteobacteria, differences at the lower taxonomic levels were noted. Such results
suggest that habitat may influence the microbial community composition in the gut digesta
environment. The LEfSe analysis between the gut tissue and gut digesta across both groups
predicted Campylobacteraceae and Vibrio to contribute to the uniquely separated microbial
ecology in the L. variegatus gut ecosystem (Figure 3a,b).

To gain further insight into the interactive aspects of the microbiota, we used CoNet
(v1.1.1) [64,66,67] analysis for theoretical modeling of relationships occurring at the tax-
onomic level in the gut digesta of ENV and LAB urchins. Overall, the CoNet identified
highly abundant Propionigenium as the key taxon in the ENV gut digesta (45%) (Figure 4a,b),
with a high degree of positive associations with other taxa, while it exhibited relatively low
abundance in the LAB gut digesta (~2%). In addition, the Propionigenium also exhibited a
significant degree of positive associations (six out of seven) with taxa in the LAB digesta
other than the ones in the ENV digesta (Figure 5a,b). Interestingly, Propionigenium was
also found in the purple urchins, S. purpuratus, suggesting their dominant influence in
structuring the gut microbial communities in urchins [41,76]. Propionigenium is known for
energy metabolism primarily through membrane-associated energy transduction and ATP
synthesis [116]. Thus, a high degree of association and abundance of Propionigenium in the
gut digesta microbial community likely support the CoNet results.

Two of the taxa identified in both LAB and ENV gut digesta were Desulfobacteraceae
and Desulfovibrio. The highest resolution in the ENV gut digesta, which were included in the
top 15 most likely key taxa in the gut digesta, were sulfur-reducing bacteria (<1%), which
represented a total degree of 9 and 18 associations with the majority of those indicated as co-
exclusion relationships. These taxa belong to the phylum Deltaproteobacteria and represent
species known to use sulfate as electron acceptors [117]. However, in LAB gut digesta,
the resolution significantly decreased. The CoNet (v1.1.1) [64–66] analysis was used to
perform the theoretical modeling of the relationships occurring between microbial taxa in
the gut tissue between ENV and LAB urchins. Campylobacteraceae (~90%) abundance
was responsible for the majority of LAB and ENV tissue, and this resulted in a reduced
network structure. Overall, the CoNet identified Arcobacter as the key taxon (<1%) for the
LAB gut tissue, with a high degree of positive associations (7 out of 13) (Supplementary
Figure S1a). Alphaproteobacteria was identified as a key taxon for the ENV gut tissue,
with a high degree of positive associations (3 out of 5) (Supplementary Figure S1b). It is
important to note that this network will be influenced by Campylobacteraceae, as well as
the reduced number of taxa to work with.

Although Vibrio comprises a noticeably abundant taxon in both the ENV and LAB
groups, low-abundance taxa such as Congregibacter (<1%), a member of Gammaproteobac-
teria, in the ENV group exhibited a high closeness centrality compared to betweenness
centrality, as well as a large number of edges (22 total), with 16 positive associations to
other taxa (Figure 4a,b). The Congregibacter is an aerobic, bacteriochlorophyll a-producing,
a photosynthetic bacterium found in marine environments, and contributes to marine
carbon cycling [118]. Thus, it is reasonable to predict that this bacterium, although found
in relatively low abundance, will exhibit a high degree of interaction with other taxa and
potentially play an important role in energy metabolism in the gut digesta of the ENV sam-
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ples. In the LAB group, Octadecabacter (<1%), a member of Proteobacteria, was observed to
have a high closeness centrality compared to betweenness centrality, and a large number
of edges (22 total), with 20 positive associations to other taxa (Figure 5a,b). Octadecabacter
has been described as part of the marine Roseobacter clade, which is found as a dominant
symbiont in the brittle star Amphipholis squamata inhabiting shallow intertidal cold coastal
waters, and which might play a possible role in nutrient uptake [119]. Octadecabacter has
also been found in extremely cold Arctic and Antarctic Sea ice ecosystems, with the possible
role of nitrogen metabolism [120]. However, the presence of this bacterium and its potential
metabolic role in LAB urchins in our study is unclear and may need further investigation
in future studies.

The predicted functional analysis of the gut microbial communities using PICRUSt2
(v2.3.0-b) indicated carbohydrate, amino acid, and lipid metabolisms to be more dominant
in the gut digesta than in the gut tissue in both LAB and ENV groups (Figure 7a,b).
These results indicate that the gut digesta is the primary location for the microbial-driven
metabolism of environmental and laboratory-prepared dietary macromolecules [121–123].
Moreover, these metabolic categories were enriched in the ENV gut digesta, suggesting
a higher metabolic capacity. Conversely, the gut tissues of both groups showed energy
metabolism to be significantly heightened as compared to the gut digesta (Figure 8). This
category includes nitrogen and sulfur metabolisms, which have been attributed to the
microbial communities of other urchins [29,30,93,124,125]. Additionally, Arcobacter spp. has
been described as a chemolithoautotrophic bacterium [78], performing crucial biochemical
processes in the marine environment, such as sulfur oxidation in hydrothermal vents [126]
and nitrogen metabolisms [127]. However, whether these metabolisms are of any benefit to
their host’s health and nutrition, including the specific metabolic input of the dominant
Epsilonproteobacteria of the gut tissue, remains to be clarified.

Bacterial motility is an essential virulence factor in pathogens, including Vibrio, which
can affect a vast range of aquatic organisms [128]. In our study, as compared to the
ENV digesta, the LAB gut digesta showed higher differential abundance in cell motility
(bacterial chemotaxis and flagellar assembly in Supplementary Figure S3). This could
have caused adverse outcomes reflecting the lower alpha diversity in the LAB gut digesta
(Table 1) [107,129]. The glycan degradation pathway, on the other hand, was the most
differentially abundant in ENV gut digesta group (Supplementary Figure S3). It has been
reported that gut microbiota can forage glycans from the host as a nutrient source [130,131].
However, further studies are needed to better understand the nutrient exchange between
the host and the gut digesta to maintain a steady-state metabolic benefit for this animal.

5. Conclusions

In conclusion, L. variegatus maintained a distinct microbial community representing
primarily Arcobacter spp. in the gut tissues. Predicted functional roles indicated that this
taxon is involved in the energy metabolisms irrespective of the laboratory conditions
(LAB) or their natural habitat (ENV). While a comparison of the microbiota at the most
resolved level exhibited distinct differences between the gut digesta of the LAB and ENV
groups, consistencies were observed at the phylum or the class level. The co-presence,
co-exclusion, and the key taxa determined through CoNet network revealed an abundance
of Vibrio in both ENV and LAB gut digesta, with ENV gut digesta having an abundance
of Flavobacteriales, Propionigenium, Photobacterium, and Campylobacteraceae. However,
the LAB gut digesta displayed only an abundance of Vibrio and Arcobacter. The ENV gut
digesta revealed Congregibacter and Rhodobacteraceae as having the highest degrees (22
and 21), and LAB gut digesta revealed Octadecabacter and Ruegeria as having the highest
degrees (22 and 21). The CoNet analysis revealed an abundance of Campylobacteraceae
in both ENV and LAB gut tissue, with Alphaproteobacteria have the highest degrees (2
and 3), and LAB gut digesta revealed Arcobacter as having the highest degrees (6 and
7). Additionally, the metabolisms of macronutrients in the gut digesta were consistently
higher than the gut tissues in both LAB and ENV groups. These results indicate that the
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gut digesta is potentially the primary location in the L. variegatus gut ecosystem at which
maximum microbial energy metabolisms occur.

The results from this provide an insight into the potential impact of the diet on struc-
turing and predicted metabolic functions of the gut microbial communities of laboratory
aquaculture vs. naturally occurring L. variegatus. Such changes likely contribute to the
host’s metabolism and health, further emphasizing the importance of gut microbiome
composition and the selection of diet, which may affect the reproducibility, consistency,
and interpretation of scientific data when L. variegatus are used directly from their natural
habitat, compared to a laboratory aquaculture environment, in various laboratory exper-
iments. However, we realize that future studies may be needed to further elaborate the
significance of the close association of Epsilonproteobacteria with the gut tissues and the
potential role of habitat-specific or laboratory-formulated diet in restructuring the micro-
biota, particularly in the mucous-encapsulated high-energy gut digesta that contribute to
the host’s metabolism and health.
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co-exclusion and co-presence, and (B) scatter plot analysis showing top 5 taxa ranked via their close-
ness centrality, Figure S2: Co-occurrence Network (CoNet) patterns of the naturally occurring (ENV)
Lytechinus variegatus gut tissues displaying (A) edges with taxonomic co-exclusion and co-presence,
and (B) scatter plot analysis showing top 5 taxa ranked via their closeness centrality, Figure S3: Linear
discriminant analysis (LDA) effect size (LEfSe) predicted functional profiles corresponding to the
microbial communities of the Lytechinus variegatus gut digesta between LAB and ENV samples. Table
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