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Abstract: Methods of predicting mineral scale formation have evolved over the years from simple
empirical fittings to sophisticated computational programs. Though best practices can now solve
complex multi-phase, multi-component systems, they are largely restricted to temperatures below
300 ◦C. This review examines critical gaps in existing mineral scale modeling approaches as well as
strategies to overcome them. Above 300 ◦C, the most widely used model of standard thermodynamic
functions for aqueous species fails when fluid densities are below 0.7 g cm−3. This failure occurs due
to the model’s reliance on an empirical form of the Born equation which is unable to capture the trends
observed in these high temperature, low density regimes. However, new models based on molecular
solvent-solute interactions offer a pathway to overcome some of the deficiencies currently limiting
high-temperature and high-pressure mineral scale predictions. Examples of the most common scale
prediction methods are presented, and their advantages and disadvantages are discussed.

Keywords: mineral scale; high temperature; high pressure; review scaling models; aqueous species;
partial molar Gibbs energy; equilibrium constants; Gibbs energy minimization

1. Introduction

The safety and reliance of many engineering applications rely on the prediction of
operating scenarios that lead to severe mineral scale formation events. A classic example
of the immediate and dramatic effects of scale formation is an event that occurred during
early production from the Miller oil field which brought production of 30,000 barrels a
day to zero in 24 h [1]. Knowledge of scaling conditions inform operating decisions that
directly affect lifetime and safety [2]. As such, methods of modeling mineral solubility,
which is the driving force for scale formation, date back to the early 1900s and are still being
improved today. When available, mineral scale models can be used to (i) avoid mixing of
incompatible brines, (ii) determine if scale inhibitors are needed and (iii) predict when scale
removal maintenance is required [2,3]. Some common mineral scales are sulfate-based (Ba,
Sr, Ca), oxides/hydroxide-based (Fe, Mg), and carbonate-based (Ca, Mg, Fe) [2]. However,
the development of models to predict the formation of all these possibilities is an ongoing
effort with many challenges due to the number of possible conditions that lead to mineral
scale formation.

Determining the thermodynamic favorability of mineral scale formation is the first
and most important step in combating mineral scaling. Thermodynamic favorability is
governed by a mineral’s solubility limit (bsat) and whether a particular fluid is above or
below that limit. As such, knowing bsat is paramount to effective mineral scale control. To
better predict bsat, the modeling of how it changes with system conditions has evolved
from simple polynomials [4,5] to sophisticated thermodynamic programs [6–9] containing
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computational algorithms and thermodynamic databases [10–12]. This progression was
a necessary response to the increasing complexity and diversity of how different min-
eral solubility limits change with the composition, temperature and pressure of fluids
observed in applications which now range from low-temperature, low-pressure (LTLP)
to high-temperature, high-pressure (HTHP) conditions [2,3]. Though complex, it is vital
that thermodynamic models reliably capture these trends because system properties (tem-
perature, pressure, etc.) vary dramatically within a system which can promote scaling in
different regions (see Figure 1).
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Figure 1. (a) A generic demonstration of how mineral solubility limits (bsat) can vary with temperature
for three different minerals (not to scale), (b) an example of how temperature and pressure gradients
can promote mineral scale formation (without considering the scaling kinetics), and (c) an image
capturing the possible consequences of mineral scale formation [13]. Figure 1c is reprinted with
permission from [13]. Copyright 2022 FQE Chemicals.

The solubility limits of a mineral depend strongly on the capacity of a solution to
solubilize the solute species needed to form that mineral. This capacity is called the ion
activity product (IAP), and it is used with a solubility product (Ksp) to assess a fluids
tendency for scale formation [14,15]. This tendency is quantified with what is known as the
scale saturation ratio (SR),

SR =
IAP
Ksp

(1)

which is a ratio of the IAP to Ksp for a given mineral [14,15].
For barite, a common scale in oil and gas applications, the SR is determined as follows:

SR(Barite) =
aBa2+(aq)aSO4

2−(aq)

Ksp, BaSO4(s)
(2)

where aBa2+(aq) is the activity of barium ions and aSO4
2−(aq) is the activity of sulfate ions

within the solution. The IAP value represents the activities of species present in the so-
lution, which can deviate from what is thermodynamically stable, and is affected by
side reactions with other chemical species also within the solution [14]. Setting aside the
non-thermodynamic contributions (e.g., kinetics of scaling), the influence of possible side
reactions with additional chemical species is no trivial matter and a primary driver of
the steady evolution of models to predict the solubility limit of minerals that account for
multi-phase, multi-component contributions.

Many publications address the modeling of mineral solubility limits; all of which can
be sub-divided into three distinct strategies that have certain advantages and disadvantages.
However, the option to use a particular method depends strongly on the availability
of specific datasets. Over the last 40 years, the three options most frequently used are
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(i) empirical data fits of experimental data from solubility experiments, (ii) thermodynamic
calculation of solubility products from thermodynamic databases, and (iii) multi-phase,
multi-component computational thermodynamic programs. The first approach requires
experimental solubility limit data for the system of interest, whereas the last two approaches
leverage databases and publications that provide standard partial molar Gibbs energy
values for the species of interest to these models. Each method can be further sub-divided
to differentiate the range of sub-techniques used to obtain solubility limits of scaling
minerals (see Figure 2).
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Though empirical fits are often the easiest to apply and the most readily available
for simple systems, they have been steadily phased out from use for multi-phase, multi-
component environments.

Because a number of reviews have already been conducted on mineral scale modeling
strategies, we will briefly draw attention to some of their main findings to emphasize how
this review differs. A few recent publications have identified important deficiencies in scale
modeling methods for the petroleum and natural gas industry up to 200 ◦C. They found
that the availability of experimental data [16,17] and shortcomings in activity coefficient
modeling databases are both impeding reliable mineral scale modeling efforts [16,18].
A few studies have also stressed the need to incorporate multi-phase, multicomponent
features into scale modeling practices given their significant impact to several important
mineral scale chemistries [16,18]. Other studies have focused on the role of scale mitigation
strategies through the use of inhibitors [17,19,20]. However, none of these works discuss
the underlying model limitations for the standard thermodynamic functions that underpin
many of these modeling methods if extended to temperatures above 300 ◦C. Likewise,
the internal consistency and viability of available standard Gibbs energy and equilibrium
constant data used by many scale modeling programs are rarely discussed. Here, we
provide a general overview of basic scale modeling methods, discuss overlooked technical
gaps still present in commonly used standard thermodynamic functions and highlight
strategies to overcome them.

2. Empirical Fitting Methods

One of the earliest methods for modeling the solubility limits of mineral scale were
basic empirical fits of solubility data. Prior to the early 1980s, the partial molar standard



Liquids 2022, 2 306

Gibbs energy data required to determine the thermodynamic driving force for mineral
scale deposition reactions were not readily accessible or known for many conditions [21].
A good example of this method is calcium carbonate mineral scale in pure water and
saltwater environments [5,22]. These empirical fits were used to model solubility limits for
specific systems with known compositions, temperatures, and pressures. As such, they
were frequently updated as more experimental data became available; in many instances,
this approach remains the best way to compile data from multiple experimental studies.

Most empirical solubility models are basic polynomials with the minimum number of
parameters needed to get a satisfactory fit (i.e., a high R2 value). These models either fit an
equilibrium constant for a mineral precipitation reaction (solubility product) or a solubility
limit concentration itself [4,5,22–24]. The choice of solubility product over solubility limit
was often based on the desired use of the final fitting. Earlier works often focused on
obtaining the solubility products, since these were not known for many mineral reactions,
whereas later works focused on the solubility limits since these values are often used to
validate new thermodynamic models for predicting mineral precipitation conditions.

A notable example of the simple empirical method for solubility limits was demon-
strated by Krumgalz [4,23,24]. His three-part publication series analyzed over a thousand
publications with mineral solubility data to formulate empirical fits of the solubility limits
for alkaline and alkaline earth sulfates, chlorides and bromides at elevated temperatures.
The cations examined in each publication were sodium, potassium, magnesium, calcium,
strontium and barium, and the anions were chlorides, bromides, and sulfates. The temper-
ature range varied from mineral to mineral because they were limited by the availability
of experimental data. Generally, several of the minerals were fit for a range of 0 to 300 ◦C.
The systems analyzed were the mineral of interest in pure water for a series of different
temperatures. Each of these minerals were fit to a polynomial that had up to six of the
following terms:

bsat = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 + a6t6 (3)

where t is the temperature is Celsius, and a0–a6 are empirical constants used to fit the exper-
imental data. As such, this empirical model provides reliable mineral solubility limits for
the water-mineral system over a given temperature range. The work by Krumgalz demon-
strates both the impact of temperature on the solubility of common minerals, and how they
can vary dramatically between minerals for the same set of conditions (see Figure 3).
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Figure 3. Calcium sulfate (a) and barium sulfate (b) empirical fits of mineral solubility limits in pure
water as a function of temperature [4].

Of the minerals analyzed, most fits obtained had an R2 of 0.98 or better, with only three
of the six empirical constants, but the number of constants required typically increased
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with the temperature range. Three to six terms are required for simple systems over
small temperature ranges, it becomes increasingly difficult to accommodate additional
dependences such as composition and pressure changes without a model being inundated
by empirical constants.

Though less common now, this empirical approach has been used to capture the
impact of more than one independent variable. Examples can be found as far back as
the early 1980s, when scientists were documenting the solubility product (Ksp) of calcium
carbonate minerals in different seawater salinities for a range of temperatures [5,22]. Their
goal was to model both the temperature and salinity dependences of calcium carbonate.
The resulting model to capture temperature and salinity trends are as follows:

log10Ksp = a0 + a1T + a2T−1 + a3log10(T) + (b0 + b1T + b2T−1)S0.5 + c0S + d0S1.5 (4)

where a0–a3, b0–b2, c0 and d0 are all the empirical constants needed to model the dependence
of the solubility product on salinity (S), (from 5 to 44 ppt), and temperature (T), (from
278.15 to 313.15 K). Note that Ksp can be converted to bsat through the following expression:

bsat = Ksp
0.5 (5)

Using Equation (5), the impact of salinity on the solubility limit of calcite is clear (see
Figure 4). Increasing salinity results in an order of magnitude increase in the solubility limit
for the range of temperatures observed.
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Though good agreement can be obtained between experimental data and the resulting
solubility models [4,5,22–25], the added complexity required to capture such a limited range
of conditions highlights the limitations of this approach. Extending the range and properties
covered by an empirical fit requires an ever-growing number of experimental data and
empirical constants. In short, though this approach is the easiest model to implement, it
only works for systems with available solubility data and a viable fit. Due to the strong
temperature and compositional dependences of solubility, larger data sets require more
empirical parameters and more empirical fits. These constraints limit the applicability of
this approach to simple systems and are typically of little value to the energy industry
beyond model validation.
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3. Solubility Product Methods

In the 1990s, the introduction of comprehensive thermodynamic databases for miner-
als and aqueous species allowed for direct calculation of solubility products without fitting
experimental solubility data [6,26,27]. This was accomplished with knowledge of standard
Gibbs energy of formation (∆fG0) data for species participating in mineral scale reactions.
These values can be used to calculate the standard Gibbs energy of reaction (∆rG0), and
by extension the solubility products shown in Section 2. Unlike the empirical approaches
in Section 2, this method leverages shared thermodynamic values for aqueous and solid
species that can be determined by experiments not directly involving solubility measure-
ments. This both reduces the number of empirical parameters required and expands the
data available for use in mineral scale predictions. The central link between these so-called
thermodynamic databases and mineral solubility limits is through the relationship between
Ksp and the ∆rG0:

ln
(
Ksp
)
= − ∆rG0

(
RT−1

)
(6)

where R is the molar gas constant (in J mol−1 K−1) and T is the thermodynamic temperature
(in K). Despite the apparent simplicity of this approach, the underlying equations used
to determine the necessary Gibbs energy data can be quite involved but they are able to
capture an extraordinary range of temperatures and pressures.

One prominent example of this approach is the prediction of barite solubility between
0 and 300 ◦C in pure water using just standard Gibbs energy of formation values. For
these conditions, the ∆rG0 can be calculated using the following relation which requires
the partial molar Gibbs energy of formation for each aqueous species as well as the molar
Gibbs energy of formation of barite at the temperature of interest:

∆rG0
T = ∆fG0

Ba2+(aq),T +∆fG0
SO2−(aq),T−∆fG0

BaSO4(s),T
(7)

The molar Gibbs energies of formation obtained from the SUPCRT database of minerals
and aqueous species [8] required by Equation (7) results in predictions that are in excellent
agreement with experimental solubility data up to 300 ◦C (see Figure 5).
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Though effective for simple systems, this approach requires self-consistent thermody-
namic databases which necessitate considerable work to develop. Through great efforts
in the 1980s to the 1990s, a few notable databases were established and enabled solubility
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product calculations over a wide range of conditions for hundreds of minerals. How-
ever, due to the considerable efforts required in building these databases, many technical
gaps [6,8] have gone unaddressed in the decades since.

One of the most notable thermodynamic databases for minerals was first published
by the U.S. Geological Bulletin in 1978 with revisions ending in 1984 [28]. This massive
database covered thermodynamic properties of 133 metal oxides and 212 other miner-
als [28]. Gibbs energy values were tabulated in 100 K intervals up to 1800 K provided no
phase changes were expected [28]. Temperature dependences of all mineral species were
captured using a polynomial to express enthalpy at a given temperature (HT) relative to its
enthalpy at a reference temperature (H298) [28]:

HT − H298 = A + BT + CT2 + DT−1 + ET1/2 + FT3 (8)

where A, B, C, D, E, and F are specific to each mineral empirical constants which are fitted
using available data across the temperature range. A derivation of this relationship can
provide values of ∆fG0 for over 300 minerals using the following equation [28]:

∆fG0
T = H298 + ∆T

[
HT − H298

T
− S0

T

]
(9)

where S0
T is the standard molar entropy of the mineral at temperature T. Applying this

approach enabled the use of a broader range of experiments beyond solubility and mineral
scale tests to fit model parameters relating to the solid phase. Shortly after the introduction
of this massive mineral database, the underlying equations were also published [8] for
one of the most comprehensive aqueous species thermodynamic databases.

Unlike gas and mineral phases, thermodynamic models for species in aqueous phases
took much longer to create due to the complexities of solvent–solute interactions. It was not
until the early 1990s that scientific literature contained a critical mass of thermodynamic
properties for aqueous species at elevated temperatures and pressures required to make a
comprehensive database. Much of the credit is due to a few scientists who developed the
robust model underpinning most modern databases, now known as the Helgeson-Kirkham-
Flowers (HKF) model, and the subsequent fitting of more than a hundred species over
the next 10 years [21]. The HKF model predicts the standard partial molar Gibbs energy
values of aqueous species based on the Born equation for solvation with seven empirical
parameters. The HKF model works over a remarkable range of pressures (1–5000 bar) and
temperatures (0–1000 ◦C) but only at relatively high density ρ > 0.7 g cm−3 [8]. This density
limitation excludes a sizable range of conditions of interest to petroleum and natural gas
extraction [29] and some other important applications such as high-enthalpy supercritical
geothermal technology [30] and supercritical water gasification of biomass [31] (see Figure 6).
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Several studies [32–37] fit available data to extend the HKF model and provide reliable
predictions for multiple species that were used to form the SUPCRT database. The primary
equation within the HKF model is as follows:
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(10)

where a1–a4, c1–c2 and ω are the seven empirical constants specific to each species. In
Equation (10) Θ = 228 K and Ψ = 2600 bar are constant values within the model. ΩPr,Tr is
the conventional born coefficient, ε is the relative permittivity of the solvent, and YPr,Tr is a
constant based on of the relative permittivity of the solvent at 25 ◦C and 1 bar.

To calculate a reliable solubility product using these databases, both the empirical
constants for the participating species and the underlying model equations must be valid
for the conditions of interest. However, in practice one or both conditions may not be
satisfied. Recent works by the authors of this review have demonstrated the failures of the
HKF model in predicting the solubility of silica (see Figure 7) and barite (see Figure 8) in
HTHP conditions [6,38].
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Figure 7. Observed (•) solubility of quartz in supercritical water at t = 500 ◦C as a function of pressure [39]
compared to NETL-PSU model [6] calculations (•) and HKF results which failed due to model limitations
(#) [6]. The authors generated these plots assuming negligible activity coefficient contributions.

Models of some aqueous species were extended into the critical technical gap shown
in Figure 6 by leveraging advances in molecular statistical thermodynamics [6,38]. This
approach decreased the number of empirical constants from seven (aka. The HKF model)
to four for ionic species or five for species with a dipole moment. It also expanded the Born
equation to a more correct form that treats the solvent molecules like a particle rather than a
dielectric continuum, thereby accounting for the ion-dipole and dipole–dipole interactions
based on the molecular statistical theory with the mean spherical approximation (MSA).
The basic thermodynamic equation in this approach for calculating the molar Gibbs energy
of formation of an aqueous species is as follows [6,38]:
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these expressions empirical diameters of the solute (σi) and solvent (σw) and dipole moment
of a molecule/ion pair (pj) are the three parameters that are fit for an ionic species with or
without a dipole [6].

The hard sphere contribution, Gj
HS, is determined as [40]:
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where R is the molar gas constant = 8.3145 J K−1 mol−1, η = πNAρσw
3/6, ρ is the molecular

density, D = σi/σw, NA is the Avogadro number = 6.0221 1023 mol−1, β = 1/(kT) where k is
the Boltzmann constant = 1.3806 10−23 J K−1. The mean spherical approximation (MSA)
for an ion-dipole interaction was determined as [42]:
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where zi is the charge number of the ionic species, e is the elementary charge = 1.602 10−19 C,
ε is the permittivity of the pure solvent. ε is related to β6 and β3 through the well-known
Wertheim equation given as:
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where b2 is a parameter of the MSA theory. The dipole–dipole electrostatic term, Gj
DD, is

calculated as [43]:
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)3 (15)

The Gibbs energy contribution due to the change in the standard state density is
given as [6]:

GSS
j

RT
= −RT ln(ρRT/P∗) (16)

where P* = 1 bar is the pressure of the ideal gas reference state. Lastly, the Gibbs energy
that determines the difference in unit mol fraction and unit molality reference states is
given as [6]:

GMS
j

RT
= −RT ln

(
Ms/b0

)
(17)

where Ms is the molar mass of the solvent = 18.015 10−3 kg/mol and b0 = 1 mol/kg is the
standard molality. While this approach has been more successful than the HKF model, it
has only been applied to a few dozen species and not the hundreds currently covered by
the SUPCRT database.

Limitations in the HKF model and the fitted parameters can result in errors in excess
of 1000% [38] when ρ < 0.7 g cm−3 or prohibit calculations entirely [8,10]. As such, this
approach to mineral scale modeling is only valid if (i) the reaction of interest is known,
(ii) the database models are valid for the conditions of interest and (iii) the species of interest
have available empirical constants for the conditions of interest. For these reasons, the
multi-phase, multi-component systems, encountered in the applications mentioned earlier,
require computational software beyond the basic solubility product methods for predicting
the solubility limit of scaling minerals.

4. Speciation Model Methods

The coupled phase and thermochemistry requirements to model mineral scaling are
examples of thermodynamic problems best solved using computational thermodynamics.
Both empirical fits and solubility product methods are limited in their ability to predict
the diverse impacts of composition-based and phase-based influences on mineral scale
formation. This is in large part due to the multi-phase and multi-component nature of the
scaling process. As a classical example, the impact of solution pH and CO2 partial pressure
on calcium carbonate scaling are well-known [9,15,45–47], and require more complex
methods to predict the extent of scaling [9,48,49]. Likewise, the advent of ion-pairs at
elevated temperatures and pressures [26,50–52], complicate the identification of the correct
solubility product limiting mineral solubility.

By the 1990s, speciation and phase equilibria software provided a means to leverage
the thermodynamic databases with the increasing availability and computation power
of computers. Phase equilibria and speciation calculations provide detailed predictions
of how the solution composition changes, in addition to phase changes such as scale
deposition. The impact of pH and its influence on some mineral solubility is a common
example (see Figure 9).

Though many software options are available, each employs one of two methods,
Gibbs energy minimization (GEM) or iteratively solving a system of equilibrium con-
stants [10,55–57]. The most notable examples of the equilibrium constant approach are the
Geochemist’s workbench [58–60] and PHREEQC. It leverages the thermodynamic databases
of Unitherm [10,61] and others described previously developed to solve complex speciation
problems. Notable examples of the GEM approach are OLI Studio:Scalechem [12,62,63],
HCh [10,61,64,65], and Thermo-Calc [57].
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The equilibrium constant method requires the assembly of a systems of equations
connecting species interest to potentially relevant reactions. The first step is to express each
of these reactions as equilibrium constants that can be calculated using standard Gibbs
energy of reactions [14]. Next, mass and charge balance equations [14] must be formulated.
The resulting equations can be solved to determine the resulting speciation from known
inputs.

By comparison, the GEM approach formulates an equation to calculate the total Gibbs
energy of a system and minimizes the function under mass balance and charge balance
constraints using Lagrangian functions [55,57]. A general description of the Gibbs energy
of a system is as follows:

G = ∑
p

∆fG0
T,P

p
k ∑

k
np

k (18)

where G is the Gibbs energy of the system and np
k are the molar amount of substance, k in

phase, p [66]. Using the expression for the Gibbs energy of the system and equations for all
necessary mass balance and charge balance constraints, a Lagrangian function, L can be
formulated to minimize the Gibbs energy of the system as follows [13]:

L = G−
j

∑
i=1

λiΦi (19)

where λi are the Lagrangian factors corresponding to each constraint function, Φi [13]. By
solving these series of equations, these programs provide the molar amounts of species in
each phase that result in the lowest Gibbs energy for the constraints provided.

Regardless of the method, these computational thermodynamic programs permit
the prediction of transitions from one predominant scaling reaction to another, which
was otherwise difficult to accomplish without prior knowledge. One such example is the
transition observed with barite at temperatures above 300 ◦C due to the thermodynamically
favored formation of an ion pair between barium and sulfate ions (see Figure 10) [38].
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Figure 10. The effect of forming an ion pair on the solubility of barite at high temperatures [38].
The computation program predicts that mineral solubility limit is limited by the formation of ionic
species at low temperatures and the ionic pair at high temperatures. The authors generated these
plots assuming negligible activity coefficient contributions.

The introduction of speciation models provides a means to resolve composition de-
pendences on mineral scaling that limited empirical and solubility product approaches.
However, it is important to note that these speciation programs are still limited by the
shortcomings of the thermodynamic databases used within these programs. Therefore,
technical gaps in the underlying models and limited speciation databases will impact these
approaches as significantly as the solubility product method.

5. Conclusions

Multiple approaches have been developed to predict the thermodynamic favorability
of mineral scale formation in aqueous systems at high-temperature, high-pressure condi-
tions. Table 1 provides a final summary of the benefits and limitations to each method
covered in this review.

Table 1. Overview of Mineral Scale Modeling Techniques.

Method Empirical Fits Solubility Product Speciation Models

Benefits
Easy to implement Easy to implement Predictive capabilities

Predictive capabilities Works with multiphase systems
Provides solution compositions

Limitations
No predictive capabilities Requires a thermodynamic database Requires a thermodynamic database

Requires system-specific solubility data Limited to the temperature and pressure
range of the database

Limited to the temperature and pressure
range of the database

Limited to the temperature and pressure
range of the fit Limited to simple systems

Early methods were restricted to empirical fits of experimental data collected from
the mineral scaling system. After the emergence of the HKF model, researchers developed
thermodynamic databases able to predict the standard partial molar Gibbs energy of
formation values for aqueous species over a considerable range of temperatures and
pressures. Access to thermodynamic databases permitted the prediction of solubility
limits for hundreds of simple mineral scale systems. Now, computational thermodynamic
programs can provide solubility limits for multi-phase, multi-component systems within
the confines of pre-existing database limitations.

Though many works now focus on activity coefficient models and increasing the
pool of available experimental data, a third equally important factor also needs to be
addressed before mineral scale modeling can be successful above 300 ◦C. As of now, almost
all standard thermodynamic databases are not reliable in high temperature (>300 ◦C), low
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density (<0.7 g cm−3) regions. This issue stems from inherent flaws in the empirical models
used to build these databases. Though models of new standard thermodynamic functions
have proved to be successful, they still cover a very small number of species needed by
the growing number of industrial applications in this space. Therefore, future efforts are
needed to recreate these self-consistent databases which have underpinned so much recent
growth in aqueous-based mineral scale modeling.
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