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Abstract: Functionalisation of single-walled carbon nanotubes (SWNTs) with atoms and molecules
has the potential to prepare charge–transfer complexes for numerous applications. Here, we used
density functional theory with dispersion correction (DFT + D) to examine the encapsulation and
adsorption efficacy of single-walled carbon nanotubes to trap halogens. Our calculations show that
encapsulation is exoergic with respect to gas-phase atoms. The stability of atoms inside SWNTs
is revealed by the charge transfer between nanotubes and halogens. Encapsulation of halogens in
the form of diatomic molecules is favourable with respect to both atoms and diatomic molecules as
reference states. The adsorption of halogens on the outer surfaces of SWNTs is also exothermic. In all
cases, the degree of encapsulation, adsorption, and charge transfer is reflected by the electronegativity
of halogens.
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1. Introduction

Carbon nanotubes have been studied for the last three decades for their applications in
nanoelectronic devices [1–4], energy storage devices [5–8], biology, and medicine [9–12]. As
they exhibit good chemical, thermal, and mechanical properties, they are used as building
blocks for designing supramolecular arrays. This type of design is expected to modify the
structural and electronic properties of nanotubes.

A variety of atoms [13,14], molecules [15,16], one-dimensional nanocrystals [17–21],
nanowires [22,23], and nanoribbons [24,25] have been encapsulated experimentally inside
the SWNTs. The filling of bulk material has led to the formation of the one-dimensional
nanocrystal, which is different from the bulk structure [26,27]. For example, bulk zinc
blende HgTe formed a three-coordinated tubular structure inside SWNT [28]. The outer
surface of the nanotubes has been extensively studied theoretically for the adsorption
of a variety of molecules [29–32]. Such adsorption studies have been recognised for
sensor applications.

Carbon nanotubes and graphene have been effectively considered for the removal
of surfactants [33–35]. Surfactants should be removed before they enter the environment
as they can cause skin irritation [36]. Many experimental studies are available in the
literature addressing the functionalisation of carbon surfaces to adsorb surfactants [37–39].
Zelikman et al. [40] used molecular simulations to investigate the interactions between
SWNTs and surfactants. Enhancement in the binding energy was noted with the adsorption
of a benzoic ring with the graphitic surface.

Halogens are also candidate species that should be considered for the encapsulation or
adsorption with nanotubes as they are toxic to humans at their exceeded level. Molecular
bromine and iodine are important radioactive fission products that are released from
nuclear plants. In a previous simulation study [41], the interaction of single F and Cl atoms
has been studied. In a combined experimental and theoretical study [42], adsorption of ICl,
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Br2, IBr, and I2 molecules was considered. However, there are no studies available in the
literature that focus on halogens interacting with carbon nanotubes.

In this study, we used spin-polarized density functional theory together with disper-
sion correction to study the encapsulation and adsorption of halogens (of Cl, Br, and I)
in the form of atoms and molecules the three different armchair SWNTs [(8,8), (9,9) and
(10,10)]. Dispersion correction is important for atoms or molecules to interact noncovalently
with nanotubes. The current simulation method enabled us to calculate encapsulation or
adsorption energies, the charge transfer between halogens and nanotubes, and electronic
structures of encapsulated or adsorbed composites.

2. Computational Methods

We used plane wave-based DFT simulations, as implemented in the Vienna Ab initio
simulation package (VASP) code [43]. The exchange-correlation term was included in
the form of generalised gradient approximation (GGA) described by Perdew, Burke, and
Ernzerhof (PBE) [44]. The valence electronic configurations for C, Cl, Br, and I were 2s22p2,
3s23p5, 4s24p5, and 6s26p5, respectively. A plane-wave basis set with a cut-off of 500 eV and
the projected augmented wave (PAW) potentials [45] were used. For the pristine tubes and
atom-encapsulated or -adsorbed tubes, a 1 × 1 × 4 Monkhorst-Pack [46] k-point mesh was
used. Structure optimisations were performed using a conjugate gradient algorithm [47],
together with Hellman–Feynman theorem including Pulay corrections. Forces on the atoms
were smaller than 0.01 eV/Å in all relaxed configurations. Dispersive attractive interactions
were modelled using a semi-empirical pair-wise force field, as implemented in the VASP
code [48].

Periodic boundary conditions were applied to all three nanotubes along the c axis,
and a minimum lateral separation of 30 Å between adjacent structures in the other two
directions was maintained. Encapsulation energy was calculated using the following
Equation (1):

Eenc = E (X@SWNT) − E (SWNT) - E (X or
1
2

X2) (1)

where E (X@SWNT) is the total energy of a halogen atom (X = Cl, Br and I) encapsulated
within an SWNT; E (SWNT) and E (X or 1

2 X2) are the total energies of an SWNT and
an isolated gas-phase halogen atom in the form of atomic or molecular state. A similar
equation was also used for the calculation of adsorption energy. Bader charge analysis [49]
was carried out to determine the charge transfer between tubes and halogen atoms. The
density-of-states (DOS) plots were used to calculate the electronic structures of pristine
SWNTs and halogen-encapsulated or -adsorbed SWNT composites.

Three different nanotubes [(8,8), (9,9), and (10,10)] were selected. Seven unit cells were
extended along the tube axis to make a supercell. Table 1 lists the number of carbon atoms
in each nanotube supercell and their diameters.

Table 1. Diameters and number of carbon atoms in the supercells of (8,8), (9,9), and (10,10) SWNTs.

Type Diameter (Å) Number of Carbon Atoms in the Super Cell

(8,8) 10.86 224
(9,9) 12.21 252

(10,10) 13.57 280

The quality of the PAW potentials for C, Cl, Br, and I used in this study was reported
in our previous simulation studies [50,51].
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3. Results and Discussion
3.1. Encapsulation of Halogen Atoms within SWNTs

First, we considered the encapsulation of halogen atoms within SWNTs. Relaxed
structures of Cl encapsulated within (8,8), (9,9), and (10,10) SWNTs and corresponding
charge density plots are shown in Figure 1. Relaxed structures of Br and I atoms encap-
sulated within SWNTs are similar to those presented in Figure 1 and are provided in the
supplementary information (ESI, Figures S1 and S2). In all cases, halogen atoms are closer
to the centre of the nanotubes.
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Figure 1. Relaxed structures of (a) Cl@(8,8), (b) Cl@(9,9), and (c) Cl@(10,10). Corresponding charge
density plots (d–f) are also shown.

The stability of single halogen atoms was examined by calculating encapsulation
energies. In Table 2, we provide encapsulation energies calculated with respect to gaseous
halogen atoms and diatomic molecules and Bader charges on encapsulated halogen atoms.
Encapsulation energies calculated with respect to gaseous atoms are negative, meaning
that they are stable inside the SWNTs. However, encapsulation energies are positive in all
cases with respect to dimers as references. This is because of the additional endothermic
energy required to break dimers to form gaseous atoms. The degree of encapsulation
decreases from Cl to I with any of the three SWNTs. This is clearly due to the fact that
the electronegativity order of halogen is Cl > Br > I. Electronegativity values of Cl, Br,
and I are 3.16, 2.96, and 2.66, respectively [52]. When the size of the nanotube increases,
the encapsulation energy of a particular halogen decreases as expected. For example,
encapsulation energies of Cl in (8,8), (9,9), and (10,10) tubes are −1.15 eV, −1.00 eV, and
−0.92 eV, respectively. The importance of inclusion of dispersion is indicated by the higher
values of encapsulation energies than those calculated without dispersion. In all cases,
a small amount of charge is transferred from SWNTs to halogen. The amount of charge
is observed to be dependent on the electronegativity of halogen. The charge transfer
decreases when the diameter of SWNTs increases as the distance between the halogen and
the tube wall increases.
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Table 2. Encapsulation energies and Bader charges on halogen atoms. Numbers reported in paren-
theses are values calculated without dispersion.

Structures
Encapsulation Energy (eV)

Bader Charge |e|
X (Cl or Br or I) 1

2 X2 (Cl or Br or I)

Cl@(8,8) −1.15 (−1.05) 0.35 (0.45) −0.59 (−0.59)
Br@(8,8) −0.99 (−0.84) 0.27 (0.42) −0.55 (−0.50)
I@(8,8) −0.84 (−0.62) 0.50 (0.50) −0.50 (−0.45)

Cl@(9,9) −1.00 (−0.94) 0.50 (0.56) −0.54 (−0.54)
Br@(9,9) −0.81 (−0.72) 0.45 (0.54) −0.50 (−0.50)
I@(9,9) −0.64 (−0.51) 0.48 (0.61) −0.46 (−0.45)

Cl@(10,10) −0.92 (−0.87) 0.58 (0.63) −0.51 (−0.51)
Br@(10,10) −0.72 (−0.66) 0.54 (0.60) −0.47 (−0.47)
I@(10,10) −0.54 (−0.45) 0.58 (0.67) −0.43 (−0.43)

The calculated density of plots for (8,8) and (9,9) tubes are shown in Figure 2. Both
tubes exhibit metallic character in agreement with the fact that armchair tubes (n,n)
are metallic.
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Figure 3 shows the calculated total DOS plots of Cl, Br, and I encapsulated within (9,9)
tube and atomic DOS plot of Cl, Br, and I. SWNTs still exhibit metallic character.

3.2. Adsorption of Halogen Atoms on the Surfaces of SWNTs

Next, halogen atoms were allowed to adsorb on the surfaces of SWNTs. Three possible
sites (H, 66, and C) were considered (see Figure 4). In configuration H, the atom is
positioned above the centre of the hexagonal ring. Atoms are positioned above the centre
of the bond connecting adjacent six-membered rings and the three coordinated carbon in
66 and C configurations.
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Figure 4. Starting configurations considered for the adsorption of halogens on the SWNT: (a) H,
(b) 66, and (c) C.

All three configurations were fully relaxed for the (8,8) tube. Relative energies are
shown in Table 3. The lowest energy structure is calculated to be the C configuration.

Table 3. Relative energies of three different outer surface configurations of a (8,8) tube.

Configuration Relative Energy (eV)

C 0.00
66 0.02
H 0.05

Next, we considered the adsorption of halogen atoms on the surfaces of all three
SWNTs. The relaxed structures of halogens adsorbed on the (9,9) tube are shown in
Figure 5. Adsorption is exoergic with respect to gas-phase atoms (refer to Table 4), meaning
that atoms are stable on the surface of SWNTs. Stronger adsorption is calculated with
dispersion correction in all cases. The diameter of the nanotube does not significantly
change the adsorption energies. Negative Bader charges on the halogen atoms indicate that
there is a charge transfer from tubes to halogen atoms. The electronegativity of halogen
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reflects in the amount of charge transferred. This is further confirmed by the C–X distances,
as listed in Table 4.
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Corresponding charge density plots (d–f) are also shown.

Table 4. Adsorption energies and Bader charges on halogen atoms. Numbers reported in parentheses
are values calculated without dispersion.

Structures
Adsorption Energy (eV)

Bader Charge |e| C-X (Å)
X (Cl or Br or I) 1

2 X2 (Cl or Br or I)

Cl_(8,8) −1.01 (−0.88) 0.49 (0.62) −0.54 (−0.54) 2.67 (2.70)
Br_(8,8) −0.79 (−0.61) 0.47 (0.65) −0.45 (−0.47) 3.02 (3.21)
I_(8,8) −0.52 (−0.36) 0.60 (0.76) −0.39 (−0.39) 3.41 (3.50)

Cl_(9,9) −1.01 (−0.89) 0.49 (0.61) −0.50 (−0.50) 2.66 (2.69)
Br_(9,9) −0.77 (−0.63) 0.49 (0.63) −0.44 (−0.44) 3.08 (3.15)
I_(9,9) −0.54 (−0.38) 0.58 (0.74) −0.36 (−0.36) 3.37 (3.21)

Cl_(10,10) −1.00 (−0.88) 0.50 (0.62) −0.50 (−0.50) 2.91 (2.78)
Br_(10,10) −0.75 (−0.61) 0.51 (0.65) −0.44 (−0.44) 3.12 (3.26)
I_(10,10) −0.53 (−0.38) 0.59 (0.74) −0.37 (−0.37) 3.51 (3.64)

Figure 6 shows the total and atomic DOS plots calculated for Cl, Br, and I atoms
adsorbed on the surface of (9,9) tube. All three resultant complexes exhibit metallic
character, as calculated for pristine nanotubes. The Fermi energy levels are partly occupied
by the p-state halogen atoms (see Figure 6).
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3.3. Encapsulation of Molecular Halogens inside SWNTs

Here, we examine the formation of halogen dimers inside SWNTs. Two different
possible configurations (along the tube axis and perpendicular to the tube axis) were
considered. Relaxed structures of Cl2, Br2, and I2 molecules encapsulated within SWNTs
are shown in Figure 7. Table 5 reports the encapsulation energies, Bader charges on halogen
molecules, and intermolecular distances of halogens.

Micro 2021, 1, FOR PEER REVIEW 7 
 

 

 
Figure 6. Calculated total DOS plots for (a) Cl@(9,9), (b) Br@(9,9), and (c) I@(9,9). Corresponding 
atomic DOS plots for Cl, Br, and I (d-f) are also shown. 

3.3. Encapsulation of Molecular Halogens inside SWNTs 
Here, we examine the formation of halogen dimers inside SWNTs. Two different pos-

sible configurations (along the tube axis and perpendicular to the tube axis) were consid-
ered. Relaxed structures of Cl2, Br2, and I2 molecules encapsulated within SWNTs are 
shown in Figure 7. Table 5 reports the encapsulation energies, Bader charges on halogen 
molecules, and intermolecular distances of halogens. 

 
Figure 7. Relaxed structures of (a) Cl2, (b) Br2, and (c) I2 molecules configured along the (9,9) tube axis and (d–f) corre-
sponding molecules positioning perpendicular to the tube axis. 

  

Figure 7. Relaxed structures of (a) Cl2, (b) Br2, and (c) I2 molecules configured along the (9,9) tube axis and (d–f) corre-
sponding molecules positioning perpendicular to the tube axis.



Micro 2021, 1 147

Table 5. Encapsulation energies, Bader charges on halogen molecules, and intermolecular distances of halogens. Numbers
reported in parentheses are values calculated without dispersion: A, along the axis; C, perpendicular to the tube axis.

Structures
Encapsulation Energy (eV)/X Atom

Bader Charge |e| X-X (Å)
X (Cl or Br) X2 (Cl or Br)

Cl2@(8,8)_A −1.62 (−1.52) −0.11 (−0.005) −0.07/+0.05 (−0.07/+0.04) 2.01 (2.01)
Cl2@(8,8)_C −1.60 (−1.52) −0.15 (−0.015) −0.03/−0.02 (−0.02/−0.01) 2.02 (2.01)
Br2@(8,8)_A −1.43 (−1.28) −0.18 (−0.025) −0.13/−0.05 (−0.11/−0.04) 2.38 (2.36)
Br2@(8,8)_C −1.48 (−1.29) −0.23 (−0.03) −0.09/−0.09 (−0.09/−0.09) 2.41 (2.40)
I2@(8,8)_A −1.32 (−1.19) −0.19 (−0.05) −0.08/−0.07 (−0.08/−0.06) 2.73 (2.72)
I2@(8,8)_C −1.36 (−1.21) −0.21 (−0.06) −0.07/−0.06 (−0.05/−0.04) 2.72 (2.71)

Cl2@(9,9)_A −1.57 (−1.51) −0.06 (0.00) −0.05/+0.04 (−0.04/+0.05) 1.99 (2.00)
Cl2@(9,9)_C −1.59 (−1.52) −0.08 (−0.005) −0.04/+0.03 (−0.04/+0.03) 2.00 (2.00)
Br2@(9,9)_A −1.35 (−1.26) −0.10 (−0.01) −0.10/−0.03 (−0.10/−0.03) 2.36 (2.36)
Br2@(9,9)_C −1.39 (−1.27) −0.13 (−0.02) −0.09/−0.04 (−0.10/−0.04) 2.37 (2.36)
I2@(9,9)_A −1.28 (−1.10) −0.12 (−0.03) −0.06/−0.05 (−0.04/−0.03) 2.74 (2.73)
I2@(9,9)_C −1.25 (−1.16) −0.13 (−0.04) −0.05/−0.03 (−0.04/−0.02) 2.71 (2.70)

Cl2@(10,10)_A −1.56 (−1.51) −0.05 (0.00) −0.04/+0.03 (−0.03/−0.04) 1.99 (2.00)
Cl2@(10,10)_C −1.56 (−1.51) −0.05 (0.00) −0.01/+0.01 (−0.01/−0.01) 2.00 (2.00)
Br2@(10,10)_A −1.32 (−1.26) −0.06 (−0.005) −0.07/−0.01 (−0.02/−0.08) 2.34 (2.34)
Br2@(10,10)_C −1.33 (−1.26) −0.08 (−0.005) −0.05/−0.05 (−0.05/−0.05) 2.34 (2.34)
I2@(10,10)_A −1.20 (−1.08) −0.10 (−0.02) −0.05/−0.03 (−0.03/−0.02) 2.70 (2.69)
I2@(10,10)_C −1.22 (−1.10) −0.11 (−0.03) −0.04/−0.02 (−0.03/−0.02) 2.68 (269)

Encapsulation energies are negative with respect to both atom and molecule as refer-
ence states indicate that the formation of dimers is possible inside SWNTs. The inclusion of
dispersion strengthens the encapsulation. The electronegativity of halogens also influences
encapsulation. Stronger encapsulation is reflected by higher electronegative halogen. Bader
charge analysis shows that dimers are polarised in most cases, and the total charge on
the molecules is very small. There is only a small energy difference between the two
configurations (along the axis and perpendicular to the axis). Isolated dimer distances of
Cl2, Br2, and I2 in this study are 1.99 Å, 2.32 Å, and 2.69 Å, respectively. Encapsulation has
a small effect on dimer distances. Elongation in the dimer distances increases with the size
of the molecules.

3.4. Adsorption of Molecular Halogens on the Surfaces of SWNTs

Finally, we considered the stability of dimers adsorbed on the surfaces of SWNTs.
Figure 8 shows the relaxed structures of Cl2, Br2, and I2 adsorbed on the (9,9) tube. Table 6
lists the adsorption energies, Bader charges on the molecules, and dimer distances.
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Table 6. Adsorption energies, Bader charges on halogen molecules, and intermolecular distances of
halogens. Numbers reported in parentheses are values calculated without dispersion.

Structures
Adsorption Energy (eV)/X Atom

Bader Charge |e| X-X (Å)
X (Cl or Br or I) X2 (Cl or Br or I)

Cl2_(9,9) −1.59 (−1.50) −0.08 (−0.01) −0.01/+0.02
(−0.01/+0.03) 1.99 (2.00)

Br2_(9,9) −1.36 (−1.27) −0.06 (−0.02) −0.04/+0.01
(−0.03/+0.01) 2.32 (2.01)

I2_(9,9) −1.23 (−1.12) −0.03 (−0.01) −0.06/+0.03
(−0.05/+0.02) 2.74 (2.73)

In all cases, adsorption is exothermic with respect to gas-phase atoms and dimers. The
highest adsorption energy is calculated for the Cl due to its highest electronegativity. Bader
charge analysis shows that dimers are polarised, and there is a negligible charge transfer
between tubes and molecules. Dimer distances in the relaxed configurations are closer to
the distances calculated in the isolated dimers.

4. Conclusions

In this study, we used DFT simulation, together with dispersion, to examine the
encapsulation and adsorption of gas-phase halogen atoms and dimers. Strong encapsula-
tion energies were calculated for all three halogen atoms with respect to their gas-phase
atoms. A significant charge transfer from nanotubes to halogens was noted in all cases.
Diatomic molecules were also stable inside SWNTs with respect to both atoms and diatomic
molecules as reference states. Exothermic adsorption energies were calculated for all three
halogens, meaning that they can be trapped via the outer surfaces of SWNTs. Electronega-
tivity of halogens determines the nature of encapsulation or adsorption and the amount of
charge transferred between SWNTs and halogens.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/micro1010011/s1, Figure S1: Relaxed structures of (a) Br@(8,8), Br@(9,9) and Br@(10,10).
Corresponding charge density plots (d–f) are also shown, Figure S2: Relaxed structures of (a) I@(8,8),
I@(9,9) and I@(10,10). Corresponding charge density plots (d–f) are also shown.
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