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Abstract: In the battle against the Coronavirus, over 190 territories and countries independently
work on one end goal: to stop the pandemic growth. In this context, a tidal wave of data has
emerged since the beginning of the COVID-19 crisis. Extant research shows that the pandemic data
are partially reliable. Only a small group of nations publishes reliable records on COVID-19 incidents.
We collected global data from 176 countries and explored the causal relationship between average
growth ratios and progress in the reliability of pandemic data. Furthermore, we replicated and
operationalized the results of prior studies regarding the conformity of COVID-19 data to Benford’s
law. Our outcomes confirm that the average growth rates of new cases in the first nine months of the
Coronavirus pandemic explain improvement or deterioration in Benfordness and thus reliability of
COVID-19 data. We found significant evidence for the notion that nonconformity to BL rises by the
growth of new cases in the initial phases of outbreaks.
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1. Introduction

In January 2020, the World Health Organization (WHO) confirmed the first cases of
Coronavirus, also known as COVID-19 or SARS-CoV-2 in Wuhan City, China [1]. With mil-
lions of incidents and deaths to date, a tidal wave of data on COVID-19 has emerged. Since
the outbreak of the virus, countries unanimously reported two metrics, “new cases” (indi-
viduals testing positive for the virus) and “new deaths” (the daily number of deaths) [2].

Having access to reliable data is vital. Policymakers use statistics to make life-saving
decisions on restricting interventions colloquially known as lockdowns, travel bans, and
social distancing. Similarly, scientists use pandemic data to detect the characteristics of the
germ and respond accordingly.

There have been irregularities in Coronavirus data. Several forensic studies emerged,
inter alia, Koch and Okamura [2], Idrovo and Manrique-Hernández [3], Wei and Vell-
wock [4]. Lee et al. [5], and Isea [6]. Table 1 summarizes the prior research into the
COVID-19 data.

Jackson and Sambridge [7] evaluated Coronavirus data from 51 countries from
16 January 2020 to 9 April 2020. In one of the most comprehensive studies, Farhadi
examined over 100.000 integers from 154 countries [8] with the primary outcome that
approximately 28% of countries published reliable data on Coronavirus spread. In contrast,
six countries disclosed entirely inconsistent records in the first nine months of the global
pandemic. In a further step, Farhadi and Lahooti [9] investigated the “progress of Benford-
ness” across 182 countries from 21 January 2020 to 6 June 2021. They used prior results to
explain observed improvements in COVID-19 reliability. The dataset, as well as goodness
of fit tests, were further extended to inspect the reliability of over 200,000 integers. Evi-
dence was found that approximately 32% of nations worldwide accomplished measurable
progress in Benfordness, while 68.2% showed no explicit improvement. The same results
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underpinned a moderate correlation between the goodness of fit tests for Benfordness and
the Johns Hopkins Global Health Risk Index of 2019, suggesting a plausible relationship
between national healthcare policies and the reliability of pandemic data.

Table 1. Prior research into COVID-19 data reliability measured by Benford’s law.

Researcher Variables Deadline Number of
Countries

Idrovo and Manrique-
Hernándlockez

Confirmed cases, suspected cases, and deaths,
cumulated confirmed cases, and cumulated

confirmed deaths
21 January 2020–15 March 2020 1

Koch and Okamura Daily cases, deaths 20 January 2020–10 April 2020 3

Lee, Han, and Jeong Daily cases, deaths 22 January 2020–6 April 2020 10

Wei and Vellwock Daily cases, deaths Not stated–1 September 2020 20

Isea Daily cases, deaths 29 December 2019–30 April 2020 23

Jackson and Sambridge Cumulated confirmed cases and deaths 16 January 2020–9 April 2020 51

Farhadi Daily cases, deaths, tests 31 December 2019–24 September 2020 182

Farhadi and Lahooti Daily cases, deaths, tests, vaccination 21 January 2020–6 June 2021 154

All studies stated unanimously applied “the law of the first digits,” also known as
Benford’s law (BL), a generally repeated forensic technique for detecting fraudulent data in
academia and the business world. The core idea relates to the frequency of leading digits
in naturally generated datasets by Equation (1) [10]:

P(d) = log10

(
1 +

1
d

)
, d ∈ {1 , 2, 3, . . . , 9} (1)

According to BL, the leading digits one to nine follow a particular logarithmic distri-
bution: 30.1% for one, 17.6% for two, 12.5% for three, 9.7% for four, 7.9% for five, 6.7% for
six, 5.8% for seven, 5.1% for eight, and 4.6% for nine [10,11]; see Table 2.

Table 2. Benford’s law distribution of the first digit.

First Digit 1 2 3 4 5 6 7 8 9

Benford’s
frequency 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

In an artificially generated data set, the observed frequencies are very likely to deviate
from the BL distribution. Benfordness can be used on data with a geometrical tendency and
is characterized by the absence of minima and maxima. BL is commonly used and has been
widely applied in several disciplines such as finance and accounting [12,13], politics [14],
and epidemiology [2–9].

Previous research on COVID-19 has three major shortcomings. First and foremost,
it operationalized inconsistent data sets that were commonly limited to varying and fre-
quently smaller sample sizes. In particular, it also utilized a variety of statistical techniques
to assess Benfordness. Finally, due to their narrow scope, which was typically limited to
forensic analysis of COVID-19 data, earlier studies did not elucidate the determinants of
BL non-compliance.

A better understanding of changes in Benfordness is crucial. If the pandemic data are
only partly trustworthy, as found in previous studies, then restrictive measures such as
social distancing, lockdowns, or travel bans are ineffective interventions. For this reason,
it is imperative to gain insights into why some countries are improving compliance with
the BL while others are only partially complying or, in the worst case, not complying at
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all. This paper is therefore concerned with identifying the key drivers of irregularities and
improvements in BL compliance.

Pandemic Growth

The new Coronavirus follows the simplest model with lumped parameters known as
the autonomous logistic sigmoid function [15,16]; see Equation (2):

dN
dt

= r× N ×
(

1− N
N∞

)
(2)

where N is the total number of people affected by the epidemic, N∞ represents the en-
tire population (or the maximum number of incidents) and r is the growth rate of the
epidemic [16]. Infectious disease spreading in its full range is limited to the entire pop-
ulation or N∞. The severe acute respiratory syndrome (SARS) outbreak of 2002 [17,18]
kept out about 8096 cases in 29 territories, and the Spanish flu of 1918, killing an estimated
50–100 million people [19,20]. Accordingly, the number of daily incidents is proportional
to the number of existing cases, as underlined in Equation (3):

Nd = (1 + E× p)d × N0 (3)

where, N0 : number of new cases on the first day of the pandemic; Nd: number of new
instances on a given day; E: average number of people exposed to new infection on a given
day; p: the probability of each exposure becoming an infection; d: number of days since the
beginning of the pandemic [20].

Logistic growth of the new Coronavirus can only be stopped when either E or p
declines, an ineluctable fact since viruses are subject to growth limitations at some point,
for instance after herd immunity has occurred or when vaccination programs have been
initiated. In consequence, even in the worst-case scenario in which COVID-19 spreads
widely, a group of people may no longer be exposed to the virus; in other words, they will
be immunized [20]. This group is expected to increase to N∞ over time. The number of
new daily cases progressively grows on the sigmoid curve before hitting the inflection
point, following constantly rising slopes. In contrast, the number of incidents digressively
grows to obey to constantly decreasing slopes after passing the inflection point. One of the
critical statistics to monitor pandemics is thus the growth ratio (gd), see Equation (4):

gd =
Nd

Nd−1
(4)

where Nd is the number of new cases on a particular day, Nd−1 is the same number on the
previous day. The “growth ratio” (sometimes referred to “growth factor”) rests consistently
above one (gd > 1) on the exponential part of the sigmoid curve and before reaching the
curve’s inflection point. At the inflection point, the slope equals one (gd = 1) It further
falls below one (gd < 1) after moving away from the inflection point. This is why gd can
have both progressive and degressive growth patterns.

Logic suggests that interventions and restricting policies, such as lockdowns or social
distancing, turn progressive growth into degressive growth. Suppose countries publish
average growth ratios below or equal to one. If so, it can be concluded that the spreading of
infectious diseases is growing at a slower pace. Ma postulated that “the initial exponential
growth rate of an epidemic is an important measure of the severeness of the epidemic and
is also closely related to the basic reproduction number” [18].

Another important concept in our view is the volatility of the pandemic’s progressive
or degressive growth. We denote the volatility as the fluctuation in the daily growth of new
cases as measured by the standard division of the average growth ratios; see Equation (5):
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δ =

√√√√ 1
N − 1

N

∑
i=1

(
gdi
− gdi

)2 (5)

where δ stands for standard deviation (or volatility), N is the number of observations, gdi
represents the growth ratio on a particular day. Expectedly, fluctuation in growth ratios
occurs when daily incidents show sudden upward and downward movements. This may
pertain to delayed reporting, e.g., when COVID-19 reports are conducted with a time lag.
Larger volatility may signal inconsistent testing and reporting capabilities.

To illustrate the impact of growth ratios and volatility, we have compiled Table 3 and
Figure 1, including the results of the most notable cases in our study. Table 4 summarizes
the correlations between all variables. In previous studies, Tajikistan, Belarus, Bangladesh,
Iran, and Turkey [9] were the major BL non-compliant countries [8,9]. These countries
have striking statistical characteristics: our evaluation showed nonconformity to BL, low
average growth rates, and low turnover in new cases for these countries. Unpredictably,
Tajikistan proclaimed itself to be COVID-19-free in early 2021 [21]. Belarus faced ongoing
political unrest and mass protests, which increased the risk of infections [22]. Bangladesh
acknowledged an instant decline in Coronavirus cases with no reasonable explanations [23].
The Government of Turkey pushed for a revision of the epidemic guidelines to discourage
reporting new SARS-CoV-2 cases [24].

Table 3. Growth and volatility of top BL compliant and incompliant nations.

Location Total
Growth

Total
STDEV

Phase1
Growth

STDEV
Phase1

Phase2
Growth

STDEV
Phase2

Afghanistan 1.38 2.14 1.48 2.85 1.29 1.29
Germany 1.37 1.59 1.34 1.63 1.40 1.55
Australia 1.26 1.51 1.30 2.02 1.22 0.90

Israel 1.25 2.16 1.23 1.43 1.26 2.62
Belgium 1.10 0.58 1.11 0.67 1.09 0.50
Pakistan 1.09 1.01 1.21 1.51 1.00 0.21
Kuwait 1.06 0.54 1.11 0.78 1.02 0.18
Turkey 1.05 0.59 1.09 0.82 1.02 0.29

Netherlands 1.04 0.31 1.07 0.42 1.01 0.18
Bangladesh 1.04 0.27 1.07 0.35 1.02 0.19

Iraq 1.04 0.36 1.07 0.51 1.01 0.16
Russia 1.04 0.49 1.08 0.74 1.00 0.05

Indonesia 1.04 0.35 1.07 0.49 1.01 0.16
Iran 1.03 0.21 1.06 0.30 1.01 0.09

Belarus 1.03 0.67 1.04 0.98 1.02 0.27
Tajikistan 0.96 0.28 0.96 0.28 0.95 0.26
Sweden 0.95 1.19 1.21 1.43 0.57 0.48

In contrast, the conforming cases countries that conform to the BL—have substantially
greater levels of growth and volatility ratios. One of the world’s most transparent and
well-developed public health systems, Australia had a more realistic growth ratio of 1.26
and a volatility of 151%. Australia consistently adhered to Benfordness throughout the
period and even showed progress in disseminating reliable data. We grouped these diverse
jurisdictions with analogous characteristics; see Figure 1. Prominent BL representatives
calmly disclosed daily growth rates that averaged close to 1.0. Compliant countries such as
Israel, Australia, and Germany showed much higher average growth ratios and volatilities.
We believe that that this growth could drive change in Benfordness.
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Figure 1. Clustering most notable cases.

Table 4. Correlation of Benfordness, periodic growth ratios, and volatility.

d* CHI K-S Growth Phase1 Phase2 δAll δI δII

d-Factor 100%
CHI 49% 100%
K-S 73% 45% 100%

Growth 12% 58% 15% 100%
Phase1 26% 75% 28% 78% 100%
Phase2 7% 46% 10% 98% 64% 100%
δAll 9% 53% 9% 98% 70% 99% 100%
δI 21% 76% 19% 78% 96% 65% 73% 100%
δII 8% 50% 8% 98% 67% 99% 100% 69% 100%

We, therefore, hypothesize that epidemic growth ratios increase the distance from the
expected Benford frequencies:

Hypothesis (H1). Pandemic growth increases the distance to Benford’s law.

Hypothesis (H2). Average growth ratio in the early stage determines the future
pandemic growth.

2. Materials and Methods
2.1. Hypothesis Testing

The structural equation modeling (SEM) technique was utilized to examine the hy-
potheses in our research. We used the partial least squares (PLS) method to support the
explanatory research [25] and to analyze both structural and measurement models. We
chose SmartPLS software to further explore the predictive power of the theoretical frame-
work [26]. Our objective has been to uncover the growing complexity of Coronavirus
growth and its causal interrelationship with the epidemic data reliability. Explanatory
research is beneficial when theory has not yet been established [26–28]. By employing PLS-
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SEM, we benefited from the high statistical power of the method [29,30]. As an alternative
to covariance-based methods, SEM-PLS facilitates variance-based structural equation mod-
eling. PLS is especially suitable for early phases of research when the phenomenon is
new, and there are no theories already in place. PLS approach is especially appropriate for
predictive studies [31].

To assess a change in Benfordness, we incorporated the results of earlier research and
subsequently analyzed two phases of the Coronavirus pandemic data. Correspondingly, the
first and second phases included 31 December 2020 to 24 September 2020 and 25 September
2020 to 6 June 2021. The simultaneous system is composed of two endogenous and one
exogenous construct, as shown in Figure 2, including the latent variables “Benfordness
Change,” “Growth Phase One,” and “Growth Phase Two.”

Figure 2. Simultaneous system and hypotheses.

Each of the exogenous constructs, growth phase one and growth phase two, comprises
one indicator, i.e., “average growth rate phase one” (or AGRP1) for the period 31 December
2019 to 24 September 2020, and “average growth rate phase two” (or AGRP2) for the period
25 September 2020 to 6 June 2020. The “Change in Benfordness” involves three reflective
indicators, BL changes captured by Chi-square (CHI-Delta), K-S statistics (KS-Delta), and
d* or d-factor (d-Delta). These stats were used in prior studies [2–9]. We regard these
items as reflective indicators of the endogenous construct “Change in Benfordness” as
they conceptually measure the same phenomenon. According to Jarvis, MacKenzie, and
Podsakoff [25], the causality direction for reflective constructs runs from the construct to
the item; a change in the indicator values will not change the construct.

2.2. COVID-19 Data Sampling

We collected data from the COVID-19 database of the Centre for Systems Science and
Engineering at Johns Hopkins University. Our sample consisted of 87,011 integers on daily
new cases and 77,236 on daily new deaths reported worldwide between 21 January 2020 to
6 June 2021. We purposefully excluded other variables, such as new deaths, new tests, and
new vaccinations, since these items can be moderated and influenced by domestic public
health systems and policies in different regions or countries. We focused on new cases only
to capture and study the pandemic’s logistic growth curve between 21 January 2020 to
24 September 2020 or phase one, within 248 days and 25 September 2020 to 6 June 2021 or
phase two, including 255 days.

On average, each country provided 344.69 observations in the first phase of our
study. Logic suggests that countries with a smaller population or more limited health care
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capabilities may have yielded narrower data sets on the COVID-19 spread. However, both
the average growth ratio of the logistic curve and the statistical tests for BL conformity
depend on the sample size. A small sample size adversely affects the statistical testing and
measurement of pandemic growth.

Thus, we focused additionally on those states with comparable and significant sample
sizes over the average of 344.69 observations in the first phase. This led to an additive sam-
ple of 102 states that clearly met the specifications for acceptable sample size in SEM-PLS [6].
A frequently used methodology for estimating the minimum sample size in PLS-SEM is
the ten-fold rule of thumb (28), stating that the minimum sample size should be more than
ten times the maximum number of inner or outer model linkages to latent variables. All
the 102 countries supplied over 570 observations in the second phase.

Prior research already measured and provided countries’ distance to BL by apply-
ing multiple statistical tests. The variables commonly used in previous studies were
Kolmogorov–Smirnov statistic, Chi-square (χ2) goodness-of-fit test, and Euclidean
distance [2–10]. To be consistent with prior research, we operationalized the same variables
to assess the distance to Benford’s frequencies. For this reason, we replicated the results
of previous studies [9] and calculated the changes in COVID-19 goodness of fit tests, i.e.,
∆ = τB

τA
, where τ A and τ B are countries’ goodness of fit tests for the first and second

phases. A ∆ < 1 signifies countable progress in Benfordness, while a ∆ > 1 suggests the
opposite, a worsening development. To exclude the undesired effect of serial correlation,
we conducted the Durbin Watson test, resulting in an acceptable value of d = 1.975 for the
variables AGRP1 and AGRP1. The rule of thumb suggests that if (1.5 < d < 2.5) is true,
then autocorrelation is not a cause for concern.

Therefore, we computed the day-to-day growth ratios for all the countries reported in
earlier reports (8-9). We then calculated the average growth rates on a country-by-country
basis and initialized the periodic average growth rates as follows (see Equation (6)):

gdNi
=

1
n

n

∑
i=1

dNi
dNi−1

(6)

where n is the number of daily growth ratios per country. We applied the Monte Carlo
Simulation of the pandemic logistic growth and conformity to BL based on the Chi-square
goodness of fit test. Our simulation included 1000 iteration based on the average daily new
cases of the countries included in the randomly selected cases of countries. We observed
that 49% of randomly created cases had a growth ratio larger than one; on average, 52% of
simulated cases violated the threshold for BL conformity. See Table 5 for the variables and
Table 6 for the aggregate results of changes in Benfordness.

Table 5. Descriptive statistics of variables and indicators.

Variable Definition N Mean Std.
Deviation Minimum Maximum

d-Delta

d* improvement between Phase One and Phase Two
∆d = τB

τA
τB: d-factor for Period B from 21 January 2020 to

6 June 2021;
τA: d-factor for Period A from 31 December 2019 to

24 September 2020

174 0.890 0.442 0.260 2.537

102 0.972 0.491047 0.293 2.538

KS-Delta

K-S change between Phase One and Phase Two
∆KS = τB

τA
τB: K-S statistic for the period B from 21 january 2020

to 6 June 2021
τA: K-S statistic for period A from 31 December 2019 to

24 September 2020

174 4.377 6.5230 0.248 36.530

102 24.990 14.625 6.410 71.117
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Table 5. Cont.

Variable Definition N Mean Std.
Deviation Minimum Maximum

CHI-Delta

Chi-square change between Phase One and Phase Two
∆CHI = τB

τA
τB: Chi-square for Period B from 21 January 2020 to

6 June 2021
τA: Chi-square for Period A from 31 December 2019 to

24 September 2020

174 4.782 13.063 0.006 137.382

104 6.256 16.730 0.006 137.382

AGRP1
gdNi

= 1
n

n
∑

i=1

dNi
dNi−1

Average growth ratio for the period from 21 January
2020 to 24 September 2020

176 1.202 0.798 0.056 10.546

102 1.311 0.952 0.188 10.546

AGRP2
gdNi

= 1
n

n
∑

i=1

dNi
dNi−1

Average growth ratio for the period from 25 September
2020 to 6 June 2021

176 1.242 1.668 0.000 17.901

102 1.382 2.154 0.000 17.901

Table 6. Covid-19 data assessment.

Location Sample Size CHI-Delta KS-Delta d-Delta AGRP1 AGRP2

Afghanistan 814 1.01 2.51 0.40 1.48 1.29

Albania 1281 0.03 3.95 0.01 1.20 1.04

Algeria 897 0.41 2.28 0.18 1.11 1.01

Andorra 394 0.62 2.81 0.22 1.83 0.95

Angola 677 2.67 3.39 0.79 1.26 1.18

Antigua and Barbuda 167 5.60 5.76 0.97 0.12 0.59

Argentina 1369 0.67 2.36 0.28 1.09 1.04

Armenia 1063 11.01 2.93 3.76 1.21 1.13

Australia 878 0.05 1.77 0.03 1.30 1.22

Austria 1265 1.65 2.37 0.70 1.28 1.02

Azerbaijan 888 11.01 2.52 4.37 1.03 1.10

Bahamas 368 1.14 2.36 0.49 1.14 0.79

Bahrain 1115 1.00 2.49 0.40 1.44 1.02

Bangladesh 1332 4.11 2.37 1.73 1.07 1.02

Barbados 318 0.97 3.83 0.25 0.74 1.14

Belarus 916 7.03 2.22 3.17 1.04 1.02

Belgium 1341 3.57 2.21 1.62 1.11 1.09

Belize 395 0.56 4.11 0.14 0.79 1.00

Benin 168 2.16 1.66 1.30 0.37 0.06

Bhutan 636 1.21 8.05 0.15 0.70 1.25

Bolivia 1267 6.21 2.30 2.70 1.17 1.06

Bosnia and Herzegovina 1030 1.13 2.97 0.38 1.20 0.83

Botswana 180 0.60 3.46 0.17 0.08 0.05

Brazil 888 4.31 2.25 1.92 1.16 1.09

Bulgaria 1194 5.12 2.58 1.98 1.32 1.46

Burkina Faso 464 3.25 2.38 1.37 1.33 1.06
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Table 6. Cont.

Location Sample Size CHI-Delta KS-Delta d-Delta AGRP1 AGRP2

Burundi 255 3.72 4.40 0.85 0.48 1.45

Cambodia 300 1.15 5.36 0.21 0.92 0.96

Cameroon 247 0.08 1.43 0.06 1.06 0.20

Canada 1373 5.84 2.37 2.47 1.27 1.17

Cape Verde 883 0.20 4.31 0.05 1.67 1.23

The Central African Republic 211 1.63 1.56 1.04 1.07 0.45

Chad 468 3.70 2.94 1.26 1.19 1.35

Chile 1310 0.54 2.29 0.24 1.07 1.03

China 572 10.19 1.46 6.98 1.53 1.15

Colombia 1247 0.70 2.15 0.32 1.11 1.02

Comoros 243 0.13 4.76 0.03 0.49 2.51

Congo 1145 1.76 2.17 0.81 0.19 0.00

Costa Rica 1081 1.51 2.25 0.67 1.20 0.70

Cote d’Ivoire 985 9.45 2.40 3.94 1.20 1.78

Croatia 1216 1.54 2.44 0.63 1.13 1.31

Cuba 1117 0.59 2.54 0.23 1.23 1.07

Cyprus 1029 16.56 5.44 3.04 1.22 1.06

Dem. Rep. of Congo 992 4.15 2.40 1.73 1.34 1.26

Denmark 1256 1.11 2.42 0.46 1.76 17.90

Djibouti 432 3.32 2.53 1.32 1.33 1.66

Dominican Republic 1205 11.41 2.21 5.17 1.10 1.14

Ecuador 1284 1.08 2.31 0.47 1.52 1.70

Egypt 901 0.66 2.35 0.28 1.28 1.01

El Salvador 1155 4.22 2.54 1.66 1.06 0.88

Equatorial Guinea 155 0.72 2.77 0.26 0.20 0.02

Eritrea 180 0.28 4.00 0.07 0.15 0.81

Estonia 1145 0.91 2.68 0.34 1.39 1.11

Ethiopia 1222 2.54 2.63 0.97 1.20 1.05

Finland 1121 5.57 2.32 2.40 1.33 1.05

France 1281 137.38 2.47 55.66 10.55 14.79

Gabon 293 1.56 2.06 0.76 0.59 0.04

The Gambia 614 2.09 5.20 0.40 0.68 0.94

Georgia 740 3.40 3.56 0.96 1.32 1.22

Germany 911 7.44 2.23 3.33 1.34 1.40

Ghana 793 8.42 2.29 3.67 0.91 0.73

Greece 1233 2.02 2.54 0.79 1.51 1.07

Guatemala 1295 11.21 3.82 2.93 1.33 1.49

Guinea 1044 3.85 2.53 1.52 0.97 1.10

Guinea-Bissau 209 2.89 2.40 1.20 0.75 0.93

Guyana 577 1.16 3.14 0.37 1.20 1.49

Haiti 440 1.38 1.81 0.76 1.40 0.84

Honduras 803 10.53 2.27 4.63 1.33 1.12
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Table 6. Cont.

Location Sample Size CHI-Delta KS-Delta d-Delta AGRP1 AGRP2

Hong Kong 574 2.51 2.23 1.12 1.19 1.24

Hungary 1299 7.19 2.47 2.91 1.21 1.05

Iceland 797 5.85 2.18 2.69 1.11 0.91

India 1320 1.20 2.30 0.52 1.21 1.00

Indonesia 1242 1.05 2.30 0.46 1.07 1.01

Iran 1127 0.12 2.06 0.06 1.05 1.01

Iraq 1231 16.20 2.40 6.75 1.07 1.01

Ireland 1208 5.31 2.35 2.26 1.35 1.04

Israel 1335 0.21 2.24 0.10 1.23 1.26

Italy 1401 1.13 2.39 0.47 1.06 1.02

Jamaica 911 9.20 4.38 2.10 1.14 1.15

Japan 1403 3.99 3.32 1.20 1.09 1.05

Jordan 904 1.35 4.28 0.32 1.23 1.01

Kazakhstan 1160 0.51 2.53 0.20 1.54 2.65

Kenya 999 0.50 2.13 0.23 1.13 1.21

Kosovo 613 0.71 2.05 0.35 1.53 0.63

Kuwait 1236 1.49 2.47 0.60 1.11 1.02

Kyrgyzstan 677 15.50 2.57 6.02 1.45 0.99

Latvia 1154 0.66 2.77 0.24 1.66 1.19

Lebanon 807 6.62 2.78 2.38 1.36 1.04

Lesotho 241 1.98 3.95 0.50 0.29 1.82

Liberia 281 1.12 1.46 0.77 1.29 0.53

Libya 1032 1.71 2.61 0.66 1.15 0.88

Liechtenstein 686 1.50 13.72 0.11 0.47 1.62

Lithuania 1190 0.38 3.25 0.12 1.30 1.08

Luxembourg 1027 6.30 2.31 2.72 1.39 0.84

Macedonia 1273 - - - 1.39 0.84

Madagascar 625 2.13 2.47 0.86 1.32 0.93

Malawi 739 10.13 2.14 4.73 1.70 1.28

Malaysia 1195 0.32 2.61 0.12 1.40 1.05

Maldives 936 0.92 2.57 0.36 1.26 1.12

Mali 641 0.98 2.68 0.37 1.60 1.54

Malta 1081 1.86 2.77 0.67 1.35 1.11

Mauritania 621 3.14 4.78 0.66 1.33 1.21

Mauritius 188 0.92 3.62 0.25 1.08 0.98

Mexico 1412 0.37 2.18 0.17 1.08 1.16

Moldova 884 14.04 2.37 5.92 1.12 1.10

Monaco 335 1.38 4.04 0.34 0.85 1.31

Mongolia 528 1.56 8.38 0.19 1.05 1.16

Montenegro 707 4.33 3.29 1.32 1.23 1.03

Morocco 1308 0.20 2.40 0.08 1.21 1.20

Mozambique 1046 5.67 2.83 2.01 1.46 1.11
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Table 6. Cont.

Location Sample Size CHI-Delta KS-Delta d-Delta AGRP1 AGRP2

Myanmar 897 7.56 5.86 1.29 1.38 1.10

Namibia 951 1.91 3.37 0.56 1.43 1.21

Nepal 1170 1.40 2.61 0.54 1.03 1.04

Netherlands 889 6.36 2.38 2.67 1.07 1.01

New Zealand 711 5.32 2.01 2.65 0.95 1.38

Nicaragua 132 1.43 2.13 0.67 0.06 0.00

Niger 423 1.63 2.60 0.63 0.94 1.26

Nigeria 922 0.89 2.02 0.44 1.16 1.17

Norway 1066 0.65 2.37 0.27 1.27 1.07

Oman 695 3.12 1.93 1.61 1.01 0.63

Pakistan 1286 10.48 2.29 4.58 1.21 1.00

Palestine 1025 1.77 3.96 0.45 1.25 0.99

Panama 1327 6.91 2.30 3.00 1.83 1.04

Papua New Guinea 212 0.55 3.59 0.15 1.20 0.61

Paraguay 1228 0.19 2.61 0.07 1.49 1.04

Peru 1216 53.13 2.16 24.56 1.15 0.71

Philippines 1329 3.80 2.38 1.60 1.28 1.04

Poland 1296 1.42 2.41 0.59 1.08 1.05

Portugal 1343 0.53 2.26 0.23 1.07 1.07

Qatar 1114 1.51 2.26 0.67 1.23 1.30

Romania 1251 0.21 2.20 0.10 1.11 1.04

Russia 1297 30.11 2.28 13.23 1.08 1.00

Rwanda 917 1.95 2.45 0.80 1.43 1.25

Saint Lucia 236 1.08 14.75 0.07 0.27 0.91

St Vincent and Grenadines 162 1.04 5.59 0.19 0.27 0.91

San Marino 290 1.10 2.59 0.43 1.53 0.93

Sao Tome and Principe 279 1.72 2.76 0.62 3.06 1.59

Saudi Arabia 1345 1.63 2.31 0.71 1.13 1.01

Senegal 1219 2.05 2.34 0.88 1.17 1.15

Serbia 1318 0.46 3.60 0.13 1.08 1.01

Seychelles 173 2.44 7.52 0.32 0.41 1.25

Sierra Leone 399 0.75 1.95 0.39 1.48 1.15

Singapore 516 1.94 1.99 0.97 1.06 1.22

Slovakia 1150 0.25 2.99 0.08 1.91 1.31

Slovenia 1231 0.22 2.78 0.08 1.22 1.26

Somalia 331 1.74 2.14 0.82 0.85 1.12

South Africa 1307 2.41 2.32 1.04 1.00 1.03

South Korea 1299 0.10 2.25 0.04 1.00 1.03

South Sudan 384 3.06 3.00 1.02 1.00 1.03

Spain 690 0.07 1.95 0.04 1.02 0.64

Sri Lanka 1105 0.57 2.70 0.21 1.68 1.17

Sudan 847 2.00 2.49 0.80 0.85 0.99
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Table 6. Cont.

Location Sample Size CHI-Delta KS-Delta d-Delta AGRP1 AGRP2

Suriname 521 - - - 1.22 1.43

Sweden 919 2.08 1.94 1.07 1.21 0.57

Switzerland 1132 27.69 1.99 13.94 1.14 0.70

Syria 704 10.73 3.76 2.85 1.10 1.01

Taiwan 853 0.33 2.34 0.14 0.75 1.37

Tajikistan 301 3.01 1.66 1.81 0.96 0.95

Thailand 1028 0.74 2.68 0.28 1.34 1.29

Timor 139 2.11 11.58 0.18 0.79 1.00

Togo 951 81.66 2.37 34.43 1.52 1.18

Trinidad and Tobago 853 3.82 6.37 0.60 1.33 1.56

Tunisia 741 0.47 1.79 0.27 1.22 0.98

Turkey 1325 2.71 2.45 1.11 1.09 1.02

Uganda 819 4.60 3.16 1.45 1.08 1.12

Ukraine 1178 0.68 2.34 0.29 1.12 1.03

UAE 1313 0.98 2.34 0.42 1.04 1.03

UK 1358 0.01 2.29 0.00 1.04 1.03

USA 1389 6.56 1.87 3.51 1.04 1.03

Uruguay 1013 0.37 2.80 0.13 1.43 1.12

Uzbekistan 655 1.23 2.22 0.56 1.20 1.06

Venezuela 793 1.39 2.88 0.48 1.18 1.00

Vietnam 452 1.07 2.69 0.40 1.18 1.89

Yemen 548 0.70 2.08 0.34 1.40 0.93

Zambia 1010 0.01 2.90 0.00 1.76 1.22

Zimbabwe 1004 3.71 2.99 1.24 1.44 1.39

3. Results

We tested Hypotheses H1 and H2 using the samples of 176 and 102 countries and
confirmed the explanatory power of the model in the sample. By simplifying the reflexive
indicators and the endogenous construct change in Benfordness, we found a significant
improvement in the out-of-sample measures and the predictive power of the PLS-SEM.
Cases with missing values were excluded using the listwise deletion procedure. In this
procedure, each row containing a missing value was deleted. Only the remainder of the
sample is used.

3.1. Measurement Model

First, we examined the robustness of all constructs. All item loadings exceeded the
threshold of 0.708 and confirmed over 50% of the variance of their indicators, as suggested
in the literature [28–31]. For the sample of 102 countries, PLS signaled a KS-delta (0.699)
and a d-delta (0.683), indicating that both item loadings may be removed in the context
of the smaller sample. Single-item constructs attained high values of 1.000 for the items
AGRP1 and AGRP2. The use of single-item constructs is an acceptable practice in PLS-
SEM. The very significant T-statistics for each item loading reaffirmed the relevance of the
convergent validity. The factor loading for each item on its respective construct was highly
significant (p < 0.0001), as evidenced by the T-statistics. See Table 7—outer loadings.
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Table 7. Outer loadings.

Sample Chi-Square K-S d-Factor

176 countries, full
sample

0.920
p-Value: 0.000

0.760
p-Value: 0.000

0.767
p-Value: 0.000

102 countries with
significant data

1.000
p-Value: 0.000

1.000
p-Value: 0.000

1.000
p-Value: 0.000

Second, we checked internal consistency reliability, mainly by using Jöreskog’s [32].
Larger values between 0.70 and 0.90 are generally considered satisfactory to good. For
constructs with more than one item, a value greater than 0.95 is problematic because it
indicates that the items are redundant, which negatively impairs the construct validity. Our
single-item constructs scored high (1.000) and met all the above requirements, meaning
that these constructs were completely (100 percent) dependent on one item.

Third, convergent validity is concerned with the extent to which the construct explains
the variance in its reflective items. As one of the building blocks of PLS model evaluation,
and consistent with the guidelines of Fornell and Larcker [12], we determined the average
variance extracted (AVE) to have a threshold of 0.50 or higher, implying that the construct
explains at least 50 percent of the variance in its reflective items [26,33]. See Table 8:
Measurement Model Evaluation, Changes in Benfordness.

Table 8. Assessment of the measurement model, Change in Benfordness.

Sample Cronbach’s Alpha Composite
Reliability AVE

176 countries, total sample 0.808 1.213 0.858
102 countries with a large sample size 1.000 1.000 1.000

Fourth, we also tested discriminant validity by applying the Heterotrait–Monotrait
ratio (HTMT). The HTMT is defined as the mean of item correlations across constructs
relative to the (geometric) mean of the average correlations for items measuring the same
construct. Problems with discriminant validity are present when HTMT values are high [26]
with a threshold of 0.90 for structural models. According to Rönkkö and Cho, the HTMT is
indeed a new application of the parallel reliability coefficient [26]. High HTMT coefficients
would indicate a problem of discriminant validity. The HTMT criterion outperforms
classical approaches to assess discriminant validity, such as the Fornell-Larcker criterion
and (partial) cross-loadings, which are widely unable to detect a lack of discriminant
validity [34]. Our analysis confirms that the HTMT coefficients of all constructs did
not exceed the recommended threshold of 0.90. See Table 9: discriminant validity by
Heterotrait-Monotrait ratio (HTMT).

Table 9. Discriminant validity by way of the Heterotrait–Monotrait Ratio (HTMT).

Construct Size Change in
Benfordness

Growth Ratio
Phase One

Growth Ratio
Phase Two

Change in Benfordness
176 0 0 0

102 0 0 0

Growth Ratio
Phase One

176 0.710 0 0

102 0.768 0 0

Growth Ratio
Phase Two

176 0.461 0.623 0

102 0.464 0.661 0

3.2. Structural Model

Before evaluating the structural model, multicollinearity was screened using the
variance inflation factors (VIF), which specify the degree to which the items are inflated [26].
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The VIF values should be close to 3 and below. Multicollinearity is induced by a high
correlation between the independent variables and would affect the statistical power of the
coefficients and weaken the reliability of the estimated p values. Our model based on the
samples put into effect is not affected by highly correlated predictor variables. See Table 10:
collinearity statistics VIF.

Table 10. Collinearity statistics VIF.

Items 176 Countries (Full Sample) 102 Countries with a Large Sample Size

CHIDelta 1.359 1.000

KSDelta 2.653 -

Phase1 1.000 1.000

Phase2 1.000 1.000

dDelta 2.724 -

Following the satisfactory evaluation of the measurement model, we evaluated the
structural model against four standard criteria, including (a) the coefficient of determination
R2, (b) the path coefficients, and (c) the out-of-sample predictive power [35]

To test the predictive accuracy of the PLS path model, the coefficient of determina-
tion R2 in the context of the study was performed. As a general guideline, Hair et al.
recommended the following thresholds: substantial (equal to or above 0.75), moderate
(close to 0.50), and weak (less than 0.25) results (28). In our explanatory research, the
endogenous constructs “change in Benfordness” and “growth rate phase two” achieved
R2: 0.370 and 0.388 for the sample of 176 countries and R2: 0.590 and 0.437 for the sample
of 102 countries [26]. The R2 indicates only the explanatory power of the model within
the sample. These findings can be attributed to the statistical power of the smaller sample,
including those countries with a sufficient number of COVID-19 records. See Table 11:
coefficient of determination R2.

Table 11. Coefficient of determination, R2.

Sample R2

176 countries (total sample)
Change in Benfordness 0.370

Growth Ratio Phase Two 0.388

102 countries with a large sample size
Change in Benfordness 0.590

Growth Ratio Phase Two 0.437

All path coefficients are positive (i.e., in the expected direction) and statistically
significant (at p < 0.05). To model the interaction effects, we followed Chin et al. [33].
The interaction terms were expressed by multiplying the corresponding indicators of the
predictor and moderator constructs. We also adhered to their recommended hierarchical
process to construct and compare the models with and without the respective interacting
constructs. Table 12 shows the results of the structural model with interaction effects for
both samples with 176 and 102 countries.

Further assessment of the PLS model for predictability, as suggested by Shmueli et al. [35]
and Hair et al. [26], affirmed moderate out-of-sample predictive power for our results.
The actual SmartPLS software algorithm allowed us to retrieve k-fold cross-validated
prediction error and prediction error summary statistics, the root mean square error (RMSE),
to evaluate the predictive performance of their PLS pathway model. Independent from
the PLS, the linear regression (LM) model offers prediction errors. In the LM approach,
each exogenous indicator variable is regressed on every endogenous indicator variable to
generate predictions. Thus, a side-by-side comparison with the PLS-SEM and LM outcomes
indicates whether the use of a theoretically grounded path model improves (or at least
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does not worsen) the predictive performance of the indicators at hand. In this study, the
RMSE showed a lower prediction error for the reflective indicators Chi-square Delta and
K-S Delta than the LM as recommended by the literature. The changes in Benfordness
captured in this study had out-of-sample predictive power. Table 13 includes all results on
the out-of-sample prediction power assessment.

Table 12. Path coefficient analysis.

N Original
Sample (O)

Sample Mean
(M)

Standard Deviation
(STDEV)

T Statistics
(|O/STDEV|) p Values

Growth Ratio Phase One ->
Change in Benfordness 176 0.609 0.503 0.236 2.582 0.01

102 0.623 0.57 0.266 2.344 0.019

Growth Ratio Phase One ->
Growth Ratio Phase Two 176 0.768 0.55 0.387 1.986 0.048

102 0.661 0.643 0.246 2.687 0.007

Table 13. Out-of-sample prediction power assessment.

Items RMSE

LM PLS

KSDelta 13.662 13.343

dDelta 0.437 0.443

CHIDelta 12.458 11.681

Phase2 1.479 1.479

Based on the evaluation of the structural and measurement models, we can confirm
the two hypotheses: H1, pandemic growth reduces Benfordness, and H2, pandemic growth
in the initial phase determines future growth.

4. Conclusions
4.1. Findings

Initial exponential growth in the first nine months of the global pandemic explains the
overall progress in line with BL and the future development of the pandemic.

We face an emerging question: why it is that the initial growth can explain changes in
Benfordness? Logic suggests that BL non-compliance worsens when local authorities are
confronted with uncontrolled epidemic growth in the early stages of the pandemic. These
decision-makers may have lowered the number of COVID-19 incidents, which would
ultimately result in a reverse development of Benfordness.

Our results confirm that the leading violators of the BL law showed similar behaviors
in previous studies. Notably, Belarus and Iran-the top BL law violators-demonstrated
the widest distance from BL frequencies in previous studies, based on at least one of
the statistical tests. COVID-19 has exacerbated existing and, in some cases, deep-rooted
political, economic, social, and security problems in those countries. Many of the challenges
have troubled social cohesion in these countries, such as in Iraq as reported by the United
Nations (https://reliefweb.int/report/iraq/impact-covid-19-social-cohesion-iraq; last
accessed on 11 September 2021). On 16 March 2020, Alexander Lukashenko, the president
of Belarus, denied the threat of Coronavirus. He called for people to work in the fields
and drive tractors to overcome the pandemic: “You just have to work, especially now,
in a village. There the tractor will heal everyone. The fields will cure everyone.” [36].
Ali Khamenei, the Supreme Leader of the Islamic Republic, downplayed the threat of
the Coronavirus, banned vaccines from the United States and the United Kingdom, and
expelled Médecins Sans Frontières, who provided pro bono health services to Iranians. The
British BBC news channel reported in early August 2021 that the numbers of deaths and

https://reliefweb.int/report/iraq/impact-covid-19-social-cohesion-iraq
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new cases in Iran were nearly triple and double the official figures, though [37]. The
pandemic emerged at a time when public faith in the clerical regime was at a low ebb. Iran
was amid economic turmoil, and regular protests were erupting throughout the country.

The vast majority of the countries showing significant BL improvements, such as
Israel, the United Kingdom, or Australia, had an average growth ratio greater than or equal
to 1.00 during the first nine months of the pandemic. According to the Johns Hopkins
University Global Health Risk Index (GHRI) [38], these countries have vibrant public
health capabilities to adequately react to epidemic outbreaks. The correlation analysis
between the GHRI scores and the change in Benfordness showed no statistically significant
relationship in this context. We conclude that higher GHRI scores do explain changes in BL
conformity. Not unexpectedly, the observed cases of BL compliance, such as the United
Kingdom, Israel, Australia, and Germany, adopted advanced vaccination programs and
even performed a seminal role in cutting-edge research into COVID-19 vaccine develop-
ment. Complementing previous research, our findings addressed the critical determinants
of data reliability [2–9]. Figure 3 shows all countries based on their changes in Benfordness
as measured by the metrics stated. Russia, Switzerland, and Iraq have demonstrated
notable reverse development in BL conformity based on ∆KS, ∆d, and ∆Chi.

Figure 3. Change in Benfordness.

Overall, the statistical tests conducted in this study support both proposed hypotheses.
The moderate predictive power of the out-of-sample changes in Benfordness strongly
suggested the potential applicability of the propounded theory in any future cases of the
pandemic disease data. Given the evidence provided by our research, policymakers should
give due consideration to the pandemic growth trajectory in countries affected by infectious
diseases. To implement effective public policies to decelerate the outbreak, policymakers
and scientists need to scrutinize epidemic data regarding anomalies in the logistic growth
rates. Inconsistent growth ratios from outlier territories might signal poor conformity of
pandemic data to BL.

4.2. Limitation

Notable cases in our study indicate that improvement in Benfordness depends on
logistic growth in the initial phases of the pandemics. According to BL, we did not identify
any qualitative factors that led to a larger distance from the expected frequency of the
leading digits. In addition, we did not explore the different variants of COVID-19, i.e.,
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alpha, beta, gamma, and delta, with particular attention to their transmissibility, possibly
leading to the progression of the Coronavirus outbreak.
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