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Abstract: Recently, an inverse relationship between incidence of COVID-19 and seasonal aerosoliza-
tion of mold spores was demonstrated. Analyses of that relationship suggested mold spores compete
with SARS-CoV-2 virions for a receptor on the pulmonary epithelial surface. By inference, the opera-
tive receptor was proposed to be Toll-like receptor 4, with surface-localized virions being responsible
for symptomatology. In this report, the pathogenesis of COVID-19 is further developed, with a focus
on a role for surfactant protein D in the process. This developed proposal provides both mechanistic
understanding and suggested treatments of COVID-19.
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1. Background, Introduction, and Rationale

The SARS-CoV-2 pandemic has produced a broad spectrum of clinical presentations,
from asymptomatic to fatally ill [1]. According to the model espoused here, symptomatic
illness is a consequence of the complexation of virions with Toll-like receptor 4 (TLR4), a
notion congruent with the findings that: (1) aerosolized mold spores, with which sharply
seasonal respiratory viruses appear to compete, have, as their likely receptor, TLR4 [2],
(2) TLR4-mediated signaling is upregulated in COVID-19 patients [3], (3) the SARS-CoV-2
spike protein induces pro-inflammatory responses in human leukocytes via TLR4 activa-
tion [4], (4) activated TLR4 may increase the expression of angiotensin-converting enzyme
2 (ACE2) [5], a membrane protein generally held responsible for SARS-CoV-2 entry [6], and
(5) TLR4 activation is a determinant for viral entry and tropism in other seasonal respiratory
viruses [7]. However, if the complexation of SARS-CoV-2 with TLR4 is responsible for
symptomatic COVID-19, then, given the existence of so many asymptomatic persons, there
must be an immune defense operating to prevent such complexation. And because humans
are naïve to the SARS-CoV-2 virus [8], that defense must be innate.

TLR4 is expressed abundantly on the pneumocytes and alveolar macrophages that
constitute the pulmonary epithelial surface [9,10]. That surface serves not only as a nidus of
SARS-CoV-2 infection, but also—by means of cough—as a platform for viral transmission.
In this regard, TLR4 potentiates the activity of transient receptor potential V1 (TRPV1) [11],
a receptor implicated in the genesis of cough [12]. Because some seasonal respiratory
viruses upregulate TRPV1 in the airways of diseased hosts [13], it seems likely that TLR4
activation benefits them by triggering cough, thereby maximizing the dissemination of
viral progeny.

2. Hypothesis

Because: (1) engagement of epithelial TLR4 yields the systemic inflammation char-
acteristic of SARS-CoV-2 infection [3], (2) TRPV1 activation can occur at the level of the
pulmonary epithelium [12], and (3) the life cycle of SARS-CoV-2 necessitates persistence of
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the virus on the environmental face of the pulmonary tree, it appears that the pulmonary
epithelial surface is central to COVID-19 pathogenesis. This notion is further supported
by the targeting of ACE2, which is expressed primarily on ciliated cells of the respiratory
tract [14]. Inasmuch as mucociliary clearance is responsible for removal of virions from
the epithelial surface [15], its disruption ensures accumulation and—again by means of
cough—maximal aerosolization and the transmission of infectious materials. Although
the virus demonstrates tissue tropism for some organs [16], early reports suggested that
most hospitalized patients did not have detectable levels of viral materials in their sera [17].
Although a more recent report has demonstrated viral materials in 50–60% of sera of
moderate-to-critically ill patients, no association has yet been shown between serum detec-
tion and the development of multiorgan dysfunction syndrome, either prior to admission
or during the first 24 h of intensive care [18]. Overall, the evidence suggests that viremia is
not a requirement for either symptomatology or severe disease.

Observations made early in the pandemic indicate that COVID-19 severity is a function
of viral dose [19], an indication supported by an animal model [20] and elaborated upon by
others [21]. Given both the dose dependence and the certain existence of an innate defense,
symptomatic SARS-CoV-2 infection must be a consequence of a viral dose that exceeds
temporally the capacity of the innate defense. Because available evidence suggests that
symptomatic COVID-19 involves the engagement of TLR4 on pulmonary epithelium, the
innate defense operating to prevent engagement likely involves an effector native to the
pulmonary epithelial surface.

3. Discussion

Innate effectors active on pulmonary epithelium especially feature pulmonary surfac-
tant, a lipoprotein complex comprised of 90% lipid and 10% protein. Although the biophys-
ical function of pulmonary surfactant in preventing alveolar collapse is well-understood,
the immunological function of it remains actively investigated. Essential to the operation of
pulmonary surfactant are surfactant proteins A (SP-A) and D (SP-D), collagen-containing
C-type lectins, or collectins, expressed constitutively by pneumocytes [22]. They are in-
volved in the clearance of sharply seasonal respiratory viruses [23,24], ones proposed to
elicit disease by engaging TLR4 [2]. More specifically, SP-A and -D have affinities for viral
fusion proteins [25], e.g., the SARS-CoV-2 spike proteins [26,27].

Although both SP-A and SP-D have roles in defense against respiratory viruses, avail-
able evidence prioritizes SP-D in the defense against coronaviruses [28–30]. As examples
of that priority, SP-D binds the SARS-CoV-1 spike protein with higher affinity than does
SP-A [28]. That binding, in turn, promotes the recognition of SARS-CoV-1 by dendritic
cells [28]. SP-D also binds the spike protein of SARS-CoV-2, preventing cellular entry and
replication [29,30]. Importantly, SP-D binds TLR4 [31] and can alter its interaction with
pathogen-derived ligands [32], including, perhaps, the SARS-CoV-2 spike protein [33].
Consistent with these findings, SP-D directs TLR4-mediated inflammation [34]. Finally,
SP-D regulates the expression of pulmonary surfactant phospholipid [35], anionic species of
which modulate interactions between pathogen-derived ligands and TLR4 [36]. Given the
roles of SP-D in modulating pathogen-directed TLR4 signaling and the role, proposed here,
of TLR4 activation in COVID-19, it comes as no surprise that lung biopsies of COVID-19
patients show hypertrophy and hyperplasia of type II pneumocytes [37], cells responsible
for SP-D production and recycling.

Because SP-D is such a key player, it is reasonable to propose COVID-19 severity
depends on SP-D availability relative to the load of SARS-CoV-2: a low dose of virion is
readily neutralized, yielding the asymptomatic state, whilst a high dose of virion—one in
excess of SP-D availability—is not neutralized, yielding the symptomatic state. Persons
with low ambient levels of SP-D, i.e., smokers [38], the obese [39], or the pregnant [40],
should be most susceptible to severe COVID-19 [41–43]. Moreover, because youths have
larger intracellular and alveolar surfactant pools, as well as a much higher rate of SP-D
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recycling compared to the elderly [44], advanced age, too, should be a risk factor for disease
severity [45].

Regarding SP-D availability, the use of steroids to treat COVID-19 [46] is also note-
worthy: the critically ill benefit most, with a trend toward harm in those less sick [47].
Interestingly, steroids upregulate SP-D production [48]. Even as corticosteroid increases
SP-D levels, insulin reduces them [48], providing rationale for diabetes as a risk factor for
severe COVID-19 [49].

One can imagine that, under homeostatic conditions, the ambient level of SP-D ac-
commodates both respiration and innate immune function. However, if, for example, a
SARS-CoV-2 ‘dose’ is a large one, the availability of SP-D increases commensurately to
accommodate the viral threat. The physiological response, then, is a function of both viral
burden—exogenous and endogenous—and surfactant availability, Figure 1.
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An abrupt increase of pulmonary surfactant within alveoli affects oxygenation, so
symptomatic individuals tend toward ‘happy hypoxia’ if the compensatory response is
overexuberant. In contrast, if the surfactant response is inadequate, viral activation of TLR4
continues unabated, resulting in cytokine storm and, ultimately, acute respiratory distress
syndrome (ARDS). Interestingly, SARS-CoV-2-induced ARDS is attended by increased
vascular permeability, with deposition of fibrin in alveolar spaces [50]. It is tempting to
speculate that fibrin(ogen), a ligand of TLR4 [51], competes with virions for that receptor,
thereby mitigating viral infectivity. However, because many SARS-CoV-2 patients in ARDS
progress to pulmonary fibrosis [52,53], such a measure, if operative, is costly.
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Not only serologic, but also radiographic, findings implicate abnormal levels of
pulmonary surfactant in severe COVID-19. The rare entity, pulmonary alveolar proteinosis
(PAP), involves the impaired clearance of surfactant from pulmonary epithelium [54]. A
characteristic feature is the computed tomographic finding of interlobular septal thickening
in a ‘crazy paving’ pattern [54]. This finding is also characteristic of COVID-19 [55].
Although the mechanisms responsible may be different, the net result in both cases is the
increased deposition of surfactant on pulmonary epithelium. That increased deposition, in
turn, affects surface tension, the consequences of which are consolidation and decreased
oxygenation, manifesting as dyspnea and hypoxia.

4. Closing

Just as does treatment of PAP, treatment of severe COVID-19 should address disease
pathology where it occurs, on the environmental-facing surface of pulmonary epithelium.
Symptomatic COVID-19 due to unmitigated TLR4 activation might be best treated using
nebulized materials, e.g., recombinant surfactant proteins or, perhaps, TLR4 antagonists or
even the C-terminus of the fibrinogen γ-chain [56–59]. Because severe hypoxia associated
with COVID-19 may be derived from either of two mechanisms, therapy should be tailored
accordingly. For the non-inflammatory hypoxic state, due to upregulated surfactant pro-
duction and the accumulation of virion–surfactant protein aggregates, serial whole lung
lavage might prove therapeutic. Although such therapy has not yet been standardized
for PAP, various protocols are well-tolerated and routine treatment for the condition [54].
Because critically ill COVID-19 patients might not tolerate whole lung lavage, their therapy
could proceed incrementally, via the sequential decontamination of individual lobes. Those
whose pulmonary function has already been circumvented by extracorporeal membrane
oxygenation might be suited for more aggressive lavage therapy. For the inflammatory
hypoxic state involving unmitigated TLR4 activation and ARDS, lavage fluid could be
supplemented with viral binding agents or TLR4 antagonists. Differentiating between the
two states should be possible by quantifying downstream markers of TLR4 activation, such
as IL-6 [60], the plasma levels of which have prognostic value [61]. Because the pathophys-
iology of other sharply seasonal viruses relates to TLR4 engagement, their therapies might
exploit similar approaches.
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