Metrology, Volume 1, Issue 1 (September 2021) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Review
An Overview of Acoustic Impedance Measurement Techniques and Future Prospects
Metrology 2021, 1(1), 17-38; https://0-doi-org.brum.beds.ac.uk/10.3390/metrology1010002 - 11 May 2021
Viewed by 375
Abstract
In order to progress in the area of aeroacoustics, experimental measurements are necessary. Not only are they required for engineering applications in acoustics and noise engineering, but also they are necessary for developing models of acoustic phenomenon around us. One measurement of particular [...] Read more.
In order to progress in the area of aeroacoustics, experimental measurements are necessary. Not only are they required for engineering applications in acoustics and noise engineering, but also they are necessary for developing models of acoustic phenomenon around us. One measurement of particular importance is acoustic impedance. Acoustic Impedance is the measure of opposition of acoustical flow due to the acoustic pressure. It indicates how much sound pressure is generated by the vibration of molecules of a particular acoustic medium at a given frequency and can be a characteristic of the medium.The aim of the present paper is to give a synthetic overview of the literature on impedance measurements and to discuss the advantage and disadvantage of each measurement technique. In this work, we investigate the three main categories of impedance measurement techniques, namely reverberation chamber techniques, impedance tube techniques, and far-field techniques. Theoretical principles for each technique are provided along with a discussion on historical development and recent advancements for each technique. Full article
Show Figures

Figure 1

Article
Accurate Measurements of a Wavelength Drift in High-Temperature Silica-Fiber Bragg Gratings
Metrology 2021, 1(1), 1-16; https://0-doi-org.brum.beds.ac.uk/10.3390/metrology1010001 - 14 Apr 2021
Viewed by 362
Abstract
Fiber Bragg gratings (FBG) are extensively used to perform high-temperature measurements in harsh environments, however the drift of the characteristic Bragg wavelength affects their long-term stability resulting in an erroneous temperature measurement. Herein we report the most precise and accurate measurements of wavelength [...] Read more.
Fiber Bragg gratings (FBG) are extensively used to perform high-temperature measurements in harsh environments, however the drift of the characteristic Bragg wavelength affects their long-term stability resulting in an erroneous temperature measurement. Herein we report the most precise and accurate measurements of wavelength drifts available up to date on high-temperature FBGs. The measurements were performed with a set of packaged π-phase-shifted FBGs for high wavelength resolution, in caesium and sodium pressure-controlled heat pipes for stable temperature environment and with a tunable laser for stable wavelength measurements with a 0.1 pm resolution. Using this dataset we outline the experimental caveats that can lead to inconsistent results and confusion in measuring wavelength drifts, namely: influence of packaging; interchangeability of FBGs produced under identical conditions; birefringence of π-phase-shifted FBGs; initial transient behaviour of FBGs at constant temperature and dependence on the previous thermal history of FBGs. In addition, we observe that the wavelength stability of π-phase-shifted gratings at lower temperature is significantly improved upon by annealing at higher temperature. The lowest value of the wavelength drift we obtain is +0.014 pm·h1 at 600 °C (corresponding to +0.001 °C·h1) after annealing for 400 h at 1000 °C, the longest annealing time we have tried. The annealing time required to achieve the small drift rate is FBG-specific. Full article
Show Figures

Figure 1

Back to TopTop