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Definition: Electronic textiles belong to the broader range of smart (or “intelligent”) textiles. Their
“smartness” is enabled by embedded or added electronics and allows the sensing of defined pa-
rameters of their environment as well as actuating according to these sensor data. For this purpose,
different sensors (e.g., temperature, strain, light sensors) and actuators (e.g., LEDs or mechanical
actuators) are embedded and connected with a power supply, a data processor, and internal/external
communication.
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functions; textile batteries; textile circuits; single-board microcontroller (SBM)

1. Introduction

While textiles have been used by humans since thousands of years, smart textiles have
only been developed during the last decades [1]. Usually, textiles are defined as “smart”
when they can respond to changes of environmental parameters, e.g., by changing their
color due to UV irradiation or by measuring vital signs and sending them to a smartphone
to enable the investigation of one’s fitness level. In many cases, such “smart” functionalities
are based on electronic components, defining them as electronic textiles or e-textiles.

Such e-textiles usually contain sensors, actuators, internal/external communication, a
power source, and finally a data processor [2]. Many of these parts were only made avail-
able during the last decades by inventions such as conductive polymers [3] or transistors,
often based on one or two fine metal wires coated by an organic semiconductor [4–6]. Other
parts, such as the data processor, cannot be transferred into textile structures, but due to
steady miniaturization are more and more able to be integrated into textile structures [7].
Many other electronic parts made their way from being added to textiles by sewing, to inte-
gration on the fabric level and more recently even on the yarn or fiber level [8]. Nowadays,
diverse levels of textile integration can be found in e-textiles, from wearable computers
with openly visible electronics, using textiles only to make the electronics wearable [9,10],
to fully integrated electronic functionalities [11,12].

With higher grades of integration of electronics into textiles, new challenges arise.
On the one hand, textiles are flexible and often even stretchable, which causes strong
mechanical influences on integrated electronics [13,14]; on the other hand, electronics
which cannot be removed need to be washable [15]. Other challenges are related to the
integration of batteries, power-packs, or solar cells which are usually either flexible or
elastic or have a high capacity and maximum current, but normally do not combine both
these properties [16–18].

Besides these technical challenges, sometimes problems occur due to high prices
or due to low acceptance by the target group [19], especially when designing e-textiles
measuring vital data to enable elderly people to live alone as long as possible, with the
security that in case of a medical emergency the e-textile will detect the dangerous situation
and call for help in time. In this situation, where an e-textile would be an ideal solution to
support vulnerable people, privacy protection is of the utmost importance to increase the
acceptance of the target group.
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Thinking about the measurements of vital signs, such as pulse or full ECG, breathing
frequency, or skin temperature, such parameters are not only important for people who
may experience medical emergency situations, but also for rehabilitation and for athletes
or people with physically strenuous jobs such as firefighters on duty [20–22].

In this entry, we concentrate on new technological approaches and give an overview
of some recent applications of electronic textiles.

2. Technological Approaches and Recent Applications in Electronic Textiles

As mentioned above, typical parts of e-textiles are sensors, actuators, internal/external
communication, a power source, and a data processor. All these parts have to be connected,
either by common flexible wires or by conductive yarns or coating. The next sub-sections
give a short overview of the aforementioned parts.

2.1. Conductive Yarns and Fabrics

As mentioned before, conductive polymers are highly interesting for the development
of conductive yarns and fabrics. One of the most often used conductive polymers is
PEDOT:PSS, which is a blend of poly(3,4-ethylenedioxythiophene) (PEDOT) with the
polyelectrolyte poly(styrenesulfonate) (PSS) [23]. Coating yarns or fibers with PEDOT:PSS
can result in flexible connection lines [24]. Washing, however, is still challenging and
regularly improved by diverse research groups [25,26]. Ryan et al., e.g., dyed silk with
PEDOT:PSS and found that core-shell structures were formed, with a PEDOT:PSS layer
fully surrounding the silk cores of the fibers, with nearly unchanged resistivity during
the first four washing cycles [27]. These PEDOT:PSS-dyed silk yarns could be used, e.g.,
to connect LEDs with a power supply (Figure 1a) or prepare a thermo-electric device
(Figure 1b,c) [27].

Encyclopedia 2021, 1, FOR PEER REVIEW 2 
 

 

tion and call for help in time. In this situation, where an e-textile would be an ideal solu-
tion to support vulnerable people, privacy protection is of the utmost importance to in-
crease the acceptance of the target group. 

Thinking about the measurements of vital signs, such as pulse or full ECG, breathing 
frequency, or skin temperature, such parameters are not only important for people who 
may experience medical emergency situations, but also for rehabilitation and for athletes 
or people with physically strenuous jobs such as firefighters on duty [20–22]. 

In this entry, we concentrate on new technological approaches and give an overview 
of some recent applications of electronic textiles. 

2. Technological Approaches and Recent Applications in Electronic Textiles 
As mentioned above, typical parts of e-textiles are sensors, actuators, inter-

nal/external communication, a power source, and a data processor. All these parts have 
to be connected, either by common flexible wires or by conductive yarns or coating. The 
next sub-sections give a short overview of the aforementioned parts. 

2.1. Conductive Yarns and Fabrics 
As mentioned before, conductive polymers are highly interesting for the develop-

ment of conductive yarns and fabrics. One of the most often used conductive polymers is 
PEDOT:PSS, which is a blend of poly(3,4-ethylenedioxythiophene) (PEDOT) with the 
polyelectrolyte poly(styrenesulfonate) (PSS) [23]. Coating yarns or fibers with PE-
DOT:PSS can result in flexible connection lines [24]. Washing, however, is still challeng-
ing and regularly improved by diverse research groups [25,26]. Ryan et al., e.g., dyed silk 
with PEDOT:PSS and found that core-shell structures were formed, with a PEDOT:PSS 
layer fully surrounding the silk cores of the fibers, with nearly unchanged resistivity 
during the first four washing cycles [27]. These PEDOT:PSS-dyed silk yarns could be 
used, e.g., to connect LEDs with a power supply (Figure 1a) or prepare a thermo-electric 
device (Figure 1b,c) [27]. 

 
Figure 1. PEDOT:PSS-dyed silk yarns used to (a) contact an LED with a power supply; (b,c) pre-
pare a thermoelectric device in connection with silver wires. From [27]. 

Figure 1. PEDOT:PSS-dyed silk yarns used to (a) contact an LED with a power supply; (b,c) prepare
a thermoelectric device in connection with silver wires. From [27].

Other groups coated silk [28], cellulose [29], poly-paraphenylene terephthalamide [30],
or cotton [31] with PEDOT:PSS, also aiming at preparing washable, abrasion resistant
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conductive yarns. Besides, it is also possible to coat single fibers or nanofiber mats [32]
with PEDOT:PSS as well as directly prepare PEDOT:PSS fibers by wet-spinning [33].

Besides PEDOT:PSS, other conductive polymers can be used to prepare conduc-
tive coatings or intrinsically conductive fibers. Typical other materials are polyaniline
(PAni) [34,35] and polypyrrole (PPy) [36].

A much older method of embedding conductive materials into electronic textiles is
the integrating of conductive metals through twisting metal wires or metal fibers into
fiber yarns or metal coatings [37]. Such metal wires or fibers can be quite thin, down to
approximately 1 µm, and are thus flexible enough for integration into yarns and textile
fabrics [38]. Metal wires even allow for soldering or ultrasonic welding at their intersections
to establish conductive fiber networks or circuits [39,40]. Finer fibers, typically from
stainless steel, show high flexibility [41], but can nevertheless be destroyed by abrasion,
especially during washing [42]. One of the ways to overcome this problem is through
optimizing the twisting and plying of the yarn [43].

Besides these full-metal fibers and wires, there are many metal-coated polymer fiber
yarns commercially available, and ongoing research aims to optimize conductivity and
longevity. Gurarslan et al., e.g., prepared silver nanowires (Figure 2b) and drop-casted
them onto knitted wool fabrics (Figure 2a) which were then used as pressure sensors and
other capacitive sensors [44]. Coatings with silver nanoparticles can also be applied by
electroless plating [45].
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Figure 2. Scanning electron microscopy (SEM) images of (a) wool fabric after coating with Ag
nanowires; (b) Ag nanowires synthesized according to the polyol method. From [44].

A gold coating was applied on a weft-knitted polyester fabric with polyurethane
backing, using electroless nickel immersion gold plating, a technique which is known from
printed circuit board fabrication [46]. In this way, Wu et al. could prepare a strain sensor
with a high washing resistance as well as, combined with PEDOT:PSS as a front electrode
and a different intermediate layer, a stretchable electroluminescent fabric [47]. Electroless
plating was also used for coating cellulose or polyester fibers with Cu [48,49], while zinc
was applied on stainless steel yarns by electrodeposition [50].

Generally, for most pure metal wires and full-layer metal coatings on fibers, it needs to
be considered that neither wires nor metal coatings are stretchable [51]. This is why some
authors suggest using a pre-stretched state for coating and the relaxed state as the “normal”
state, leading to buckling of the coating [52], coil formation in only partly bonded metal
coatings [53], or similar deformation which should not significantly damage the conductive
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parts [54]. One such possibility is depicted in Figure 3, showing a 3D conductive network
on a stretchable substrate [53].
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Finally, another class of conductive fibers and coatings is based on different shapes
of carbon. Generally, graphite, graphene, and carbon nanotubes belong to the sp2 carbon
materials, all showing (in-plane) conductivity. While graphite is a bulk (3D) material,
graphene consists of exfoliated layers (2D), and carbon nanotubes can be imagined as
rolled graphene layers (1D) [55].

Graphite belongs to the typical materials which are often used for textile coatings,
e.g., in the form of graphite flakes which can be embedded in different binders and
applied as conductive coatings on textile fabrics [56–58]. Graphene, graphene oxide (GO),
and reduced graphene oxide (rGO), however, are investigated much more often [59–61].
Karim et al. reported on an up-scalable method to produce rGO-coated textiles in a
continuous process [62]. rGO is, on the one hand, especially interesting since it shows good
washing resistance [63]; on the other hand its conductivity is relatively low due to chemical
modifications during the reduction [64] which makes it unsuitable for some applications.

Graphene coatings, on the other hand, result in a low sheet resistance, but are usually
not very stable when washed. Afroi et al. developed an up-scalable method, based on
microfluidization to exfoliate concentrated graphene dispersions in water, to coat textile
fabrics through padding and subsequent compression rolling, before the coated textile
was encapsulated by screen-printing, making it washing-resistant [65]. Cui and Zhou
instead used the dip-coating of graphene and multi-wall carbon nanotubes to prepare
washing-resistant coatings on cotton fabrics, which were fixed by the formation of covalent
networks in the coating layer [66].

It should be mentioned that carbon black, another shape of carbon, is mostly used in
combination with carbon nanofibers [67] or conductive polymers [68] to build percolation
paths in spite of the small, mostly round shape of the carbon black particles, but can
also be embedded in a non-conductive binder [69]. Generally, diverse combinations of
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polymeric, metal, and carbon-based conductors are used for different applications, aiming
at combining their respective advantages. Table 1 gives an overview of the typical sheet
resistances (in Ω), linear resistances (in Ω/cm), or resistivities (in Ω cm) (depending on
the geometry and measurement method, as given in the respective paper) of some of the
conductive fibers and textiles described here, with clearly varying orders of magnitude
depending on the desired applications.

Table 1. Resistances given in the aforementioned literature. PET: poly(ethylene terephthalate); PES:
polyester.

Conductive Material Resistivity/Sheet
Resistance/Linear Resistance Ref.

PEDOT:PSS on synthetic leather 1.6 Ω [23]
PEDOT:PSS on PET non-woven 3.2 Ω [23]
PEDOT:PSS-coated silk thread 0.1 Ω cm [24]

Ag-coated silk thread 0.01 Ω cm [24]
Ag nanowire/PEDOT:PSS-coated silk yarn 3 × 10−3 Ω cm [28]

Ag nanowire/PEDOT:PSS-coated cellulose yarn 5.5 × 10−3 Ω cm [29]
PEDOT:PSS-coated nanofiber mat 130 Ω [32]

PAni/PVP electro-spun nanofiber mats 60 Ω cm [34]
PAni/PVP electro-spun nanofiber yarn 2.4 × 103 Ω cm [34]

PAni-coated PET yarn 80 Ω/cm [35]
Acidified and annealed stainless steel yarn 0.7–1.8 Ω/cm [43]

Ag nanowire-coated wool knitted fabric 2.7 Ω/cm [44]
Ag nanoparticle-coated mercerized cotton 0.2 Ω [45]

Electroless Cu-plated (<100 nm) membrane 3.5 Ω [48]
Electroless Cu-plated PET 2-ply yarn 0.2 Ω/cm [49]

Carbon nanotube-wrapped rubber fiber
(strain-dependent) 26 Ω/cm–2 kΩ/cm [52]

PAN/graphite coatings on cotton woven fabrics 400–1000 Ω/cm [57]
Graphene oxide-coated cotton fabric 92 kΩ [59]

Reduced graphene oxide-coated PES fabric 11 kΩ [60]
Inkjet-printed reduced graphene oxide on cotton 2 kΩ [61]

Silver inkjet ink printed on cotton 1.2 Ω [61]
Graphene pad-dry-cure-coated cotton fabric 12 Ω [65]

Drop-casted PAni/carbon black on cotton fabric 500 Ω [68]

2.2. Textile Sensors

The aforementioned conductive materials are necessary in all e-textiles. However,
diverse other materials, e.g., semiconductors, have to be added for different purposes.
Usually, many materials are combined, e.g., in the form of subsequent coating layers on
textile fabrics or around yarns or fibers. Here, some examples for textile-integrated sensors
are described, giving an overview of which sensors can already be produced based on
textile fabrics, yarns, or fibers, besides the already existing possibility of integrating small
rigid sensors into fabrics or yarns.

The simplest sensors are based on pure conductive yarns or layers with different
shapes and functions. Knitted fabrics with partly conductive yarns, e.g., can be used as
elongation sensors and thus as breathing sensors [70], however, with the signal being
superposed by a slow change of the resistance with time (the wearing out of the knitted
fabric) [71]. Yarn-based elongation sensors, prepared by carbon-coated fibers wrapped
around a polyester/elastic fiber core, were also found to be suitable as breathing sen-
sors [72]. Embedding Ag nanoparticles in a stretchable fiber enabled the producing of a
durable strain sensor with a large sensing range which was used in a glove to control a
robot hand [73]. The integration of a strain sensor from carbon black in a thermoplastic
elastomer was used to prepare a body posture registering shirt (Figure 4) [74].
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Fibers coated with carbon nanotubes (CNTs) were found to be suitable temperature
sensors since their resistance was nearly unchanged by the repeated bending of fibers, as
opposed to conductive carbon coatings [75]. A CNT screen-printed electrode array was
sandwiched between a silk fabric and a nylon fabric to form a triboelectric nanogenerator
(TENG) which was found to be washable and could be used as a self-powered touch sensor
or gesture sensor for human–machine interaction (HMI) [76]. ECG measurements can be
performed using different conductive textiles as electrodes [77–79]. Even an NH3 sensor
was produced by a gold/CNT/gold structure, with the CNTs being coated on a cotton
yarn, based on the NH3 being a strong reducing agent and thus eliminating the majority
of the holes in the CNTs, which resulted in a decrease in resistivity [80]. Polypyrrole and
several other conductive polymers also respond to diverse gases in their environment and
some can be made more sensitive through the chemical modification of the conductive
layer [81–83].

More parameters can be detected by combining parts with different physical properties.
In the simplest form, a parallel plate capacitor can be created by sandwiching a non-
conductive textile or compressive foam with two conductive textiles layers, in this way
preparing a pressure sensor which can, e.g., be used for gait analysis [84] or an elongation
sensor usable as a breathing sensor [85]. Poly(vinylidene fluoride) (PVDF), e.g., has
piezoelectric and pyroelectric properties, i.e., it responds also to temperature changes by
producing an electrical charge. The latter can be used for the detection of the presence of a
human [86], but has also been developed further for use in heartbeat and respiratory signal
detection [87–89].

Piezoelectric materials like PVDF can generally not only be used as sensors, but
can even harvest electrical energy when the piezoelectric textiles are compressed or
bent [90–93].

Lactate and glucose sensors were prepared by the electrochemical deposition of
platinum nanospheres on nitrogen-doped carbonized silk and the drop-casting of a lactate
oxidase or glucose oxidase/chitosan solution on these Pt/silk electrodes. Sensors for Na+

and K+ ions were produced by adding ion selective membranes to PEDOT:PSS-coated
working electrodes. Ascorbic acid and uric acid, as typical health-related biomarker
molecules, were directly detected using the carbonized silk working electrode. Figure 5
depicts some of the sensor responses, showing the desired selectivity of the sensors [94].
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Generally, diverse physical and chemical sensors can be prepared by combining con-
ductive materials with other materials, such as semiconductors, dielectrics, non-conductive
spacers, etc. [95], as long as coating them on flexible, open-pore textile substrates is possible
and the necessary materials are not toxic.

2.3. Textile Actuators

Besides LEDs, electroluminescent displays or heated conductive lines which some-
times are also regarded as actuators, actuators usually transform energy of any form into a
motion [96]. One of the large fields in which textile actuators are used is soft robotics [97,98].
Many soft robotic devices contain textile fabrics, however, they work pneumatically or
hydraulically, i.e., textile fabrics are only a small part of them [99–101].

Nevertheless, it is also possible to prepare actuators that are fully textile. Piezoelectric
fibers or yarns, e.g., can not only be used as pressure or elongation sensors, but on the other
hand can be forced to stretch or compress through the application of a voltage [37,102,103].

Shape memory polymers (SMPs) can be deformed and “remember” their original
shape when an external stimulus, usually heat, is applied [104–106]. While such SMP fibers
could be spun unambiguously and integrated in diverse textile fabrics, it is also possible
to integrate shape memory alloys (SMAs) into fabrics. In the simplest application, such
shape memory fibers can be integrated into clothes that do not need ironing [107]; in more
sophisticated applications, shape memory textile composites, including woven or other
textile fabrics, can be used as actuators [108–111].

Quite a simple mechanism of actuating is given by thermal expansion and contraction,
similar to bi-metal stripes. Here, it must be taken into account that opposite to bi-metals,
textile fabrics glued together along the whole contact area are usually less rigid and may
thus show different buckling behavior as a bi-metal. Nevertheless, CNT-based actuators
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especially enable large tensile stroke during heating and are thus well-suited for diverse
textile applications [112].

CNTs can also be the base for elastomer actuators which are electro-thermally
driven [113,114]. This means that a hybrid-coiled yarn muscle, e.g., one prepared from
CNT fiber bundles coated by an elastomer-methanol composite, can be actuated by a small
voltage (Figure 6) [115].
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Besides these examples, diverse other actuators can be integrated into textile fabrics,
yarns, or fibers, stimulated by different physical or chemical parameters.

2.4. Internal and External Communication by E-Textiles

While communication inside textile fabrics mostly occurs via conductive lines, partly
in the form of sophisticated textile circuits [116,117], external communication is usu-
ally performed wirelessly. Besides the radio-frequency identification (RFID) or other
transmitter/receiver chips, an antenna is necessary which can be produced in a textile
manner [118–120].

Hertleer et al., e.g., produced a textile antenna especially for the 2.4–2.4835 GHz
bandwidth, typically used for industry, science, and medicine, by gluing a conductive
fabric onto flexible foam, sandwiched between two textile layers [121].

To prepare ultra-wideband (UWB) antennae, Osman et al. embedded thin copper tape
between two jean fabrics, in this way creating a bendable antenna with textile haptics [122].
Klemm and Tröster used a triple-metallized nylon fabric (Ni/Cu/Ag) on an acrylic fabric
as a dielectric, connected with microstrip or coplanar feeding lines, to prepare UWB
textile antennae [123]. Generally, different degrees of integration exist, from gluing the
combination of patch antenna and dielectric substrate onto the clothing to directly using
the clothing as a dielectric substrate (Figure 7) [124].

One of the factors that has to be considered when preparing textile antennae is their
crumpling behavior [125,126]. Bai and Langley found strong deviations of the reflection
coefficient when their dual-band, coplanar waveguide-fed antenna, produced by mounting
a conductive fabric onto a flexible felt substrate, was crumpled to 10 mm depth, while the
original length of 55 mm was reduced to 22 mm. Nevertheless, they concluded that the
antenna’s performance would still be acceptable for some applications [127]. Ferreira et al.
produced a rectangular microstrip textile patch antenna for 2.4 GHz from copper/nickel
integrated in polyester fibers with denim as the substrate. They found a decrease in the
overall gain when bending the antenna and a shift of the resonance frequency to higher or
lower frequencies, depending on the bending orientation [128].
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Another important parameter is the geometrical precision with which an antenna
can be produced [129]. Kiourti et al. reported on an embroidery process, applying special
conductive yarn, to reach a precision of 0.1 mm, making the accuracy similar to printed
antennae or circuit boards [130].

Besides these special challenges of antennae, the common problem of washability also
has to be taken into account since textile antennae, as well as textile connection lines, are
not separated from the fabric before washing [131]. Scarpello et al. suggested covering the
conductive screen-printed antennae on the cotton/polyester substrate with a breathable
thermoplastic polyurethane (TPU) layer by ironing. In this way, not only did washing
only cause small changes, but the surface roughness was also reduced, thus increasing
conductivity and efficiency [132].

2.5. Textile Power Supply

Supplying power to an e-textile is one of the most complicated tasks and thus is under
intense investigation by a diverse number of groups recently. Besides batteries, energy can
also be stored in supercapacitors which can often be integrated into textiles more easily
than batteries, since supercapacitors can be based on carbon nanotubes or composite yarn
fiber electrodes, while lithium ion batteries need rigid active materials like lithium ion
phosphate and graphite, and alternatives often use highly toxic organic solvents [133–135].

Recently, Yong et al. reported on a textile power module which combined a ferroelectret-
based biomechanical energy harvester with a solid-state supercapacitor, both integrated
into a woven cotton fabric. In their study, they reached output voltages of around 10 V
and power densities of nearly 1 µW/cm−2 by a compressive force of 350 N, while the
supercapacitor showed a capacitance of 5.55 mF/cm−2 [136].

Gao et al. produced a solar cell/supercapacitor hybrid device on an activated cotton
woven fabric. They prepared flower-like cobalt/aluminum-layered double hydroxide
nanoarrays on cotton through a hydrothermal method to produce the positive electrode.
The cotton fibers were coated with conductive graphene by dip-coating to create the
negative electrode (Figure 8). Separated by a solid state electrolyte, this supercapacitor
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reached a high working potential of 1.6 V, a good energy density of 55 Wh/kg, and a power
density of 5.4 kW/kg [137].
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Other research concentrated on batteries, e.g., those produced by screen printing and
activated by water [138], by coating LiFePO4 and Li4Ti5O12 on a Ni-coated woven polyester
fabric as the cathode and the anode, respectively [139], or by producing lithium-sulfur
batteries on activated cotton textiles coated with rGO [140].

As these few examples already show, there is a broad range of physical principles used
for energy storage, including batteries, supercapacitors, and pseudo-capacitors [141–143],
based on different electrochemical processes. The research area of textile power supplies in
particular necessitates strongly interdisciplinary research to enable the combining of new
ideas from a physical/chemical point of view with the textile engineering necessary for
realization.

2.6. Data Processing in Textiles

Data processing, as mentioned before, cannot be transferred into textile structures, but
necessitates that pure or single-board microcontrollers are embedded in textile fabrics or
attached onto them [7]. While single transistors can nowadays be produced based on textile
fabrics and used for transistor-based sensors [144–146], transferring a full microcontroller
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into textile form is at the current state of technology unimaginable. Hence, this part of the
e-textiles will most probably remain as the last non-textile element for a long time.

2.7. Methods to Apply Conductive and Other Layers on Textile Fabrics, Yarns and Fibers

Besides coating processes which use typical textile technologies, such as coating with
a doctor blade or dip-coating [66,137], other methods used to apply conductive and other
layers are screen-printing [65,76,132,138] or inkjet printing [61,69].

Other methods include vapor-processing techniques, such as chemical vapor depo-
sition [147–149] or atomic layer deposition [150–152]. With these methods, very fine and
thus typically very flexible layers can be deposited on textile fabrics or around fibers.

3. Conclusions and Prospects

Electronic textiles can be used for a broad range of applications, from health moni-
toring and monitoring the vital signs of athletes to soft robotics, and from gas sensors to
piezoresistive sensors monitoring windmill blades. Generally, since we as humans are
normally surrounded by textiles, most applications of e-textiles are related to humans, sup-
porting us in different situations, making the use of electronic devices easier by integrating
them fully or partly into garments or just adding new functionalities due to design aspects.

It should not be forgotten that the deeper electronic functions are integrated into
textiles the more challenging the development is, since experience from rigid electronics
can only partly be transferred. Nevertheless, the research and development of electronic
textiles are steadily advancing so that new functionalities can regularly be expected to
become available, making electronic textiles more and more useful in our daily lives.
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