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Definition: Homocysteine thiolactone is a five-membered cyclic thioester of amino acid homocysteine.
It is generated from homocysteine as a result of an error-editing reaction, principally, of methionyl-
tRNA synthetase. An elevated level of homocysteine thiolactone is associated with cardiovascular
diseases, strokes, atherosclerosis, neurological abnormalities, etc., presumably because it reacts to the
side chain of protein lysine causing protein damage and autoimmune responses. It is not only an
important metabolite but also a versatile building block for organic and bioorganic synthesis. This
entry contains data on the homocysteine thiolactone formation, metabolism, toxicity mechanism
in vivo, and the bioorganic chemistry applications as a powerful synthetic tool in polymer science,
sustainable materials development, and probes.
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1. Introduction: Homocysteine and Homocysteine Thiolactone Biological Formation
and Metabolism

Homocysteine (Hcy) is a non-protein amino acid that is an important risk factor for
arteriosclerosis, Alzheimer’s disease, cardiovascular disease, ischemic heart disease, stroke,
cancer, diabetic retinopathy, and diseases of the central nervous system in humans [1–12].
More than one hundred conditions are associated with raised concentrations of
Hcy [7,10,13,14]. Following Hcy discovery in 1932 by Vincent du Vigneaud, Hcy was
characterized as an important intermediate in methionine metabolism. However, only
after 40 years, the elevated level of Hcy in the blood (hyperhomocysteinemia) formed in
a pioneer theory, Hcy theory of arteriosclerosis and cardiovascular diseases, by Kilmer S.
McCully [1,2,15–17]. He noted that thromboembolic disease was a characteristic feature of
the inborn errors pointing to Hcy as a risk factor. The theory implicates hyperhomocys-
teinemia along with cholesterol as the key factors in the production of vascular disease and
arteriosclerosis in the general population.

Hcy takes part in many fundamental processes in the human organism. It is formed in
the methionine cycle as an intermediate by hydrolysis of S-adenosylhomocysteine to Hcy
and adenosine (Figure 1). Under normal conditions, approximately 50% of Hcy is remethy-
lated to form methionine. Two distinct routes exist for remethylation. The first reaction
is the vitamins-dependent remethylation by methionine synthase (MS). The N-5-methyl
tetrahydrofolate can donate a methyl group to Hcy in a reaction catalyzed by the vitamin
B12-dependent enzyme. The folate cycle also requires folic acid, vitamin B2 and B6, and
NADPH. The second reaction uses betaine as a methyl group donor for methionine synthe-
sis by enzyme betaine-homocysteine methyltransferase (BHMT). The reaction presumably
occurs in the liver, kidney, and lens, whereas the first vitamin-dependent route is found in
all tissues. The other possibility of Hcy irreversibly consumption is the transsulfuration
pathway. The first reaction is a condensation between Hcy and serine (Ser) leading to
cystathionine production by cystathionine β-synthase (CBS). The cystathionine is further
hydrolyzed to Cys and α-ketobutyrate by cystathionine γ-lyase (CSE). These two reactions
are catalyzed by the vitamin B6-dependent enzymes (CSE and CBS). The Hcy detoxification
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through the transsulfuration pathway occurs in the liver, kidney, small intestine, and lens.
Thus, the vitamins B and folate status play an important role in Hcy and its metabolites
balance within the cell and subsequently the plasma level circulation.
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Figure 1. Homocysteine (Hcy) metabolic pathway. SAM—S-adenosylmethionine; 
SAH—S-adenosylhomocysteine; MS—methionine synthase; BHMT—betaine-homocysteine me-
thyltransferase; MT—SAM-dependent methyltransferases; MAT—methionine adenosyltransfer-
ase; AHCY—S-adenosylhomocysteine hydrolase; CBS—cystathionine β-synthase; 
CSE—cystathionine γ-lyase; THF—tetrahydrofolate; N-5-CH3-THF—5-methyltetrahydrofolate; 
N-5,10-CH2-THF—N5,N10-methylenetetrahydrofolate; DHFR—dihydrofolate reductase; 
SHMT—serinehydroxymethyltransferase; MTHFR—methylentetrahydrofolate reductase. 

One option to obtain an elevated level (as high as 400–500 µmol/L) of Hcy is the 
mutations in the genes coding enzymes involved in Hcy or related metabolisms such as 
CBS, MS, BHMT, and MTHFR [18]. Vitamin B and folic acid deficiencies and an imbal-
anced diet may also lead to hyperhomocysteinemia [11,19]. Clinical trials show strong 
associations between low levels of folate, vitamin B12, and Hcy serum concentrations and 
various pathologies [11,20,21]. The most common among them are Alzheimer’s disease, 
Parkinson’s disease, autism, schizophrenia, bipolar disorder, vascular dementia, periph-
eral neuritis, and stroke. Therapy with multiple vitamins and folate might be one key to 
correct Hcy level [11,18,19,21], helping in several pathological conditions and also in 
pregnancy. However, different strategies to reduce plasma Hcy concentrations have 
reached inconsistent results [10,11,21]. For example, the same folic acid dose decreases 
the concentration of Hcy by 25–45% [11]. In most cases, lab results are more encouraging 
than clinical trials [21]. The failure of Hcy-lowering by folic acid and vitamins B6 and B12 
by clinical trials to reduce heart attacks and cardiovascular mortality, suggests that some 
changes are irreversible and highlights the need for additional research into the mecha-
nisms by which Hcy metabolites cause the disease [22,23]. 

Genetic abnormalities and vitamin deficiencies explain only a part of Hcy-associated 
pathologies [12]. One of the explanations is that Hcy metabolism interacts with complex 
biochemical pathways involving the cooperation of multiple enzymes and producing 

Figure 1. Homocysteine (Hcy) metabolic pathway. SAM—S-adenosylmethionine; SAH—S-adenosyl
homocysteine; MS—methionine synthase; BHMT—betaine-homocysteine methyltransferase; MT
—SAM-dependent methyltransferases; MAT—methionine adenosyltransferase; AHCY—S-adenosyl
homocysteine hydrolase; CBS—cystathionine β-synthase; CSE—cystathionine γ-lyase; THF—
tetrahydrofolate; N-5-CH3-THF—5-methyltetrahydrofolate; N-5,10-CH2-THF—N5,N10-methy
lenetetrahydrofolate; DHFR—dihydrofolate reductase; SHMT—serinehydroxymethyltransferase;
MTHFR—methylentetrahydrofolate reductase.

One option to obtain an elevated level (as high as 400–500 µmol/L) of Hcy is the
mutations in the genes coding enzymes involved in Hcy or related metabolisms such as
CBS, MS, BHMT, and MTHFR [18]. Vitamin B and folic acid deficiencies and an imbal-
anced diet may also lead to hyperhomocysteinemia [11,19]. Clinical trials show strong
associations between low levels of folate, vitamin B12, and Hcy serum concentrations and
various pathologies [11,20,21]. The most common among them are Alzheimer’s disease,
Parkinson’s disease, autism, schizophrenia, bipolar disorder, vascular dementia, peripheral
neuritis, and stroke. Therapy with multiple vitamins and folate might be one key to correct
Hcy level [11,18,19,21], helping in several pathological conditions and also in pregnancy.
However, different strategies to reduce plasma Hcy concentrations have reached inconsis-
tent results [10,11,21]. For example, the same folic acid dose decreases the concentration of
Hcy by 25–45% [11]. In most cases, lab results are more encouraging than clinical trials [21].
The failure of Hcy-lowering by folic acid and vitamins B6 and B12 by clinical trials to reduce
heart attacks and cardiovascular mortality, suggests that some changes are irreversible and
highlights the need for additional research into the mechanisms by which Hcy metabolites
cause the disease [22,23].

Genetic abnormalities and vitamin deficiencies explain only a part of Hcy-associated
pathologies [12]. One of the explanations is that Hcy metabolism interacts with complex
biochemical pathways involving the cooperation of multiple enzymes and producing
various molecules that are essential biochemical steps for cell survival. For example, Hcy
increases tau protein damage via several possible mechanisms [21,24]: cyclin-dependent ki-
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nase 5 (cdk5) activation and inactivation of protein phosphatase 2A (PP2A); 20S proteasome
inactivation; caspase3 activation and increased C-terminal truncated tau by caspase. Tau is
a microtubule-associated protein present in the cytoskeleton of neuronal cells and helps
maintain neuronal cell integrity. This process leads to tau phosphorylation, truncation,
oligomerization, and toxic aggregates formation [24]. Despite the widespread involve-
ment of Hcy in these pathways, it remains relatively unclear exactly how Hcy leads to the
formation of toxic tau species and neuronal death.

Many metabolic, hormonal, and epigenetic factors interact with Hcy metabolism. One
of the most important examples is reduced synthesis of SAM. SAM is used as a universal
methyl donor not only in a variety of biosynthesis of different compounds (phospholipids,
proteins, nucleic acids, etc.) but also in epigenetic modulations (Figure 1) [22]. Therefore,
the Hcy level affects epigenetic regulation and leads to alterations in gene expression via
DNA methylation, histone modification, changing chromatin structure, and the action of
non-coding RNA [22,23,25,26]. How Hcy affects gene expression in experimental animals
depends on many factors, including diet, mutations, and vitamin status. Dysregulation
in methylation status is among the central mechanisms that explain the negative effect
of high Hcy levels related to vascular diseases and brain disorders. Moreover, hyper-
homocysteinemia disrupts the blood-brain barrier in humans which can lead to various
pathologies [9].

Approximately 10% of the total daily cellular production of Hcy that is not metabolized
within the cell is exported to the plasma. Under normal conditions, the total plasma
content of Hcy varies from 3–5 to 15 µM. An elevated plasma level of Hcy is known
as hyperhomocysteinemia (in urea homocystinuria). The ranges of Hcy elevated levels
in plasma have been referred to as mild (16–30 µM), moderate (31–100 µM), or severe
(>100 µM). Moderate hyperhomocysteinemia was found in subjects with impaired renal
function and with end-stage renal disease. Patients with genetic abnormalities and inborn
errors of Hcy metabolism usually have severe hyperhomocysteinemia (Figure 2) [5].
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proteins are beyond this entry.
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When measuring “total Hcy”, it is important to measure all forms of Hcy to get true
results of the Hcy status. However, only four forms of Hcy make up the “total Hcy”
using a standard commercial Hcy kit. Among them are homocysteine (Hcy), Hcy mixed
disulfides, and S-homocysteinylated proteins (Figure 2). Using the standard kit procedure,
a reducing reagent is added to the sample to form free Hcy amino acid from the latter
three metabolites with straightforward Hcy identification by various methods. Under
physiological conditions, less than 1% of total Hcy is present in a free reduced form. About
15% has been found in different oxidized forms (Hcy-S-S-Hcy, Hcy-S-S-Cys). However,
the majority of plasma total Hcy (~80%) is S-homocysteinylated and N-homocysteinylated
proteins. The precursor of the main fraction as N-homocysteinylated proteins is cyclic
thioester, homocysteine thiolactone (HTL) (Figure 3). Because of the structural similarity to
methionine, Hcy can be recognized and activated by methionyl-tRNA synthetase (and some
other aminoacyl-tRNA synthetases [27,28]). It can form activated derivative Hcy~AMP
and then catalyzes an intramolecular thioester bond formation in a reaction between the
side-chain—SH group and activated carbonyl group of Hcy, affording HTL (Figure 3). Hcy
editing prevents its access to the genetic code and occurs at the synthetic/editing catalytic
module of the enzyme which contains a thiol-binding site. Hcy is not transferred to tRNA,
and it is not incorporated into protein. All organisms edit Hcy by the conversion into
HTL [28,29]. The energy of the anhydride/macroergic bond of Hcy~AMP is conserved in
the thioester bond of HTL.
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For many years and to date, many studies are undertaken to understand Hcy metabolism
and the mechanisms of its toxicity. Several main pathways of Hcy toxicity have been dis-
cussed in the literature: (1) protein modification (S- and N-homocysteinylation); (2) oxida-
tive stress induction; and (3) excitotoxicity (nerve cells suffer damage or death). There are
many Hcy metabolites such as homocysteic acid, homocysteine sulfinic acid, homocysteine,
and S-homocysteinylated proteins that are beyond this entry (Figure 2) [30]. This entry is
intended to be a summary of several pieces of evidence of the homocysteine thiolactone
(HTL) theory of Hcy toxicity. Several studies [5,30–37] have found that HTL elevated level
is associated with pathological conditions such as atherosclerosis and neurodegenerative
diseases, vascular damage in diabetic patients, and cardiovascular disease. Due to the
high reactivity of HTL, its discovery in living cells and the Hcy theory of arteriosclerosis
and cardiovascular diseases lead to intensive investigations of its possible reactions with
proteins (Figure 4).

HTL is a stable thioester in water solution (pH = 7.4, a half-life of ~24–30 h) [33,34], with
facile reactions at its amino and activated-carboxyl group, respectively. As electrophile,
it reacts with several types of nucleophiles in vivo: amines (protein lysine side chains,
Figure 4, N-homocysteinylation) and hydroxyl or water (hydrolysis). The amino group
of HTL reacts with the aldehyde group of pyridoxal phosphate (vitamin B6) forming
tetrahydrothiazine [38]. Similar to the condensation of HTL with pyridoxal phosphate, Hcy
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reacts with pyridoxal phosphate yielding tetrahydrothiazine [38]. The facile formation of
stable tetrahydrothiazines raises one more possible mechanisms of inactivation of pyridoxal
phosphate by Hcy and HTL in vivo. On the other way, the facile formation of metabolically
inactive tetrahydrothiazine may contribute to the elimination of harmful high reactive
metabolites (HTL) from the human body.
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Similar to other harmful products of normal metabolism, HTL is also eliminated by
urinary excretion [30,31]. HTL concentrations in urine vary from 10 nM to 500 nM (3–30%
of total urinary Hcy) and are 100-fold higher than in plasma [30]. Renal excretion removes
a large amount of HTL that would otherwise cause protein N-homocysteinylation. The
remainder of the HTL is metabolized by two major pathways: (1) enzymatic hydrolysis to
Hcy (bleomycin hydrolase, paraoxonase 1, Figure 3 [39]); (2) reaction with the side chain of
protein lysine forming N-homocysteinylated proteins (Figure 4). Bleomycin hydrolase and
paraoxonase 1 protect the organism against neurotoxicity induced by HTL. However, under
organism disorder presented above, kidney disorders, and chronic hyperhomocysteinemia,
there is an elevated level of HTL and N-homocysteinylated proteins. In healthy humans,
plasma HTL concentration is usually ranged from one to five nM (sometimes to 35 nM)
and increases when remethylation or transsulfuration reactions are impaired by genetic
alterations of enzymes, vitamin deficiency, or other metabolism disorders [30–32,37]. When
methionine synthase activity is inhibited by folate or vitamin B12 deprivation, almost all
Hcy converts into HTL. Plasma HTL concentration is elevated in humans with MTHFR
(methylenetetrahydrofolate reductase) and CBS deficiency, and can be up to 7 mM and,
rare, to the 50 mM in patients with coronary artery disease [30–32].

HTL is much more toxic than Hcy and induces cell apoptosis at low concentrations [31].
The extent of apoptosis in HUVEC cells treated with 200 µM HTL and Hcy corresponds
to 30% and 1% of apoptotic cells, respectively. Treatments with HTL are known to cause
toxicity in experimental animals [30,31]. For example, an animal diet supplemented with
HTL causes lethality, growth retardation, developmental abnormalities, atherosclerosis,
and arterial thrombosis. [30]. Previous studies on the effect of L- and D-stereoisomers of
HTL have demonstrated the same compound toxicity to rat embryos. In contrast, L-Hcy is
toxic to rat embryos, whereas D-Hcy is not [33]. The lack of toxicity of D-Hcy is consistent
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with the stereoselectivity of methionyl-tRNA synthetase, whose active site binds only L-
Hcy and produces L-HTL. A possible explanation for this might be that both stereoisomers
of HTL can chemically react with protein Lys residues. In addition, HTL can easily diffuse
through the cell membrane (and maybe also nucleus) due to the most molecules’ neutral
charge in vivo because of the relatively low amino group pKa value (~7.1) [40]. Therefore,
HTL can easily modify plasma proteins leading to different disorders.

The protein N-homocysteinylation process usually occurs on hyper-reactive lysine
species in proteins which prevent natural protein lysine residues modification. It can
affect epigenetic regulation of gene expression (prevents acetylation and methylation of
histone Lys residues) and biogenesis of collagen (prevents pyridinoline cross-link forma-
tion) [31]. DNA and histone modifications have been identified to have a crucial role in
the progression of many disorders/diseases such as atherosclerosis, stroke, Alzheimer’s
disease, and cancer [22]. Hcy has a wide range of biological effects and pathophysiolog-
ical changes associated with its possible metabolites. As mentioned above, the vitamin
efficiency clinical trials suggest that some diseases are associated with some irreversible
changes, and cannot be explained by the simple level of total Hcy. Moreover, total Hcy is a
four-component marker (Figure 2), which nevertheless does not include HTL, SAM, and
N-homocysteinylated proteins. The changes in gene expression caused by Hcy metabolites
allow in identifying biological pathways and human diseases [41]. It was found that genes
affected by HTL, N-homocysteinylated proteins, and Hcy were significantly enriched in
30, 13, and seven molecular pathways, respectively. Only five common pathways were
enriched in genes affected by all three metabolites: lipid, fatty acid, and steroid metabolism;
blood coagulation; wound healing; cysteine and methionine metabolism; sulfur amino acid
biosynthesis. These findings suggest that toxic Hcy metabolites up-regulate the expression
of genes involved in the removal of Hcy excess [41]. N-homocysteinylated proteins and
Hcy did not overlap the majority of HTL-affected pathways. Among the top-five HTL path-
ways are chromatin organization, one-carbon metabolism, lipid localization, lipoprotein
metabolic processes, and lipid and fatty acid transport. Moreover, chromatin organization
was the top molecular pathway affected by the HTL level [41]. Notably, the histone-related
genes were not influenced by Hcy or N-homocysteinylated proteins. N-homocysteinylated
proteins affected six diverse pathways: organic acid biosynthetic process, focal adhesion,
biological oxidations, endothelial cell differentiation, epithelial cell differentiation, and
plasma lipoprotein particle remodeling. Two pathways as aspartate family amino acid
metabolic process and seleno amino acid metabolism were associated with Hcy [41]. Pre-
sented results suggest that HTL and N-homocysteinylated proteins, rather than Hcy, cause
changes in gene expression for the majority of genes and biological pathways. According
to this data [41], a specific Hcy metabolite is mostly associated with a specific disease
(Table 1).

Table 1. Diseases and disorders are mostly associated with Hcy metabolites according to work [41].

Hcy Metabolite Disease and Disorders

Hcy, HTL, and
N-homocysteinylated proteins

Cancer, cerebrovascular disease, ischemic disease,
atherosclerosis, coronary and congenital heart diseases,

Alzheimer’s disease, and neural tube defects
Hcy Amino acid and lipid metabolism

HTL
Cardiovascular disease, myocardial infarction, dyslipidemia,

deep vein thrombosis, venous thromboembolism, stroke,
cardiac infarction, skeletal, and muscular systems

N-homocysteinylated proteins Cardiovascular disease, metabolic disease, neurological
disease, dermatological disease, and placental abruption

N-homocysteinylated proteins are a significant component of Hcy metabolism in
humans. The major N-homocysteinylation targets include human hemoglobin, human
serum albumin (HSA), and γ–globulin. Among other targets are antitrypsin, transferrin,
fibrinogen, low- and high-density lipoproteins (LDL and HDL, respectively), cytochrome c,
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and histones (Table 2). Despite N-homocysteinylated proteins represent ~0.5–13 µM linked
Hcy in healthy human plasma (the results highly depend on the quantification method
and patients’ conditions [31,34,40]), this process impairs or alters the protein’s function,
proteolysis stability, oligomerization possibility, aggregation, amyloid transformation,
etc. [30–32] (Table 2). Protein N-homocysteinylation leads to the formation of a new
thiol group (Figure 4), which influences protein’s susceptibility to oxidation, increases
intramolecular disulfide bond formation, and multimerization. Taking into account the
fact that in humans about 70–80% of circulating Hcy is linked to blood proteins, the N-
homocysteinylated protein aggregates can be extremely toxic and should be considered as
a risk factor of conformational diseases. Table 2 presents some examples of the harmful
influence of HTL modification on protein functions. For example, HSA with mostly α-
helical secondary structure undergoes N-homocysteinylation, loses helical content, forms
oligomers, and converts to amyloid-like β-sheet structures [31,42]. Recently [43], it was
shown that HSA forms reversible dimers in water solution. N-homocysteinylation of
HSA influences the dimerization process, accelerates it to various much stable structures.
Dimer formation seems to have allosteric effects on HSA and could influence the many
physiological functions of HSA. Considering that HSA is the most abundant protein and an
important hub where many physiological processes, pathologies, and therapeutics intersect,
N-homocysteinylation leads to unimaginable consequences that require additional study.
Moreover, N-homocysteinylation decrease the proteolytic degradation efficiency of HSA by
trypsin and chymotrypsin [44]. Combined with a high half-life N-homocysteinylated HSA
time (~20 days) and the possibility to form free radicals [45], the protein can be extremely
toxic to the organism.

Table 2. Protein N-homocysteinylation: examples and functional consequences [5,30,31,46].

Protein Function Effect of N-Homocysteinylation

Hemoglobin
Myoglobin Oxygen transport Oxidative damage, aggregation

Albumin

Transport of metabolic
products, fatty acid, etc.;
maintenance of the blood

within the vascular system

Structural changes, influence the
function of Cys-34, susceptibility to

proteolysis, binding properties,
increase oligomer formation, amyloidal

transformation
γ–globulin Antibodies Aggregation

Fibrinogen Precursor of fibrin Aggregation, fibers thinner and more
resistant to fibrinolysis

Trypsin Cleavage of amide bonds of
Arg and Lys

Partly or complete inactivation,
complete inactivation when ~88% Lys

residues modified
Cytochrome c Electron transport Oxidative damage, aggregation

RNase A RNA hydrolysis Aggregation
Crystallin Eye structural protein Aggregation

Histones Create structural units with
DNA, DNA packing

Prevent epigenetic regulation, changes
in gene expression

Methionyl-tRNA
synthetase

Aminoacylation of tRNAMet

with methionine
Complete inactivation when ~33% Lys

residues modified

Tau Stabilization of neuronal
microtubules

Altered tubulin-binding resulting in
enhances self-association and

aggregation

Prion Cell signaling, neuritogenesis,
neuronal homeostasis

Aggregation and amyloid
transformation

Some pathology associated with hyperhomocysteinemia is also linked to oxidative
stress. Aberrant Hcy metabolism leads to redox imbalance according to two possible
mechanisms. Homocysteinylation of proteins affects the function and activity of dif-
ferent enzymes, such as superoxide dismutase, catalase, or glutathione peroxidase. By
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itself, N-homocysteinylation leads to the formation of thiols groups which change the
redox status of the protein. The presented process can increase the formation of reactive
oxygen and nitrogen species, followed by biopolymers oxidation. Oxidative damage
caused by N-homocysteinylation was demonstrated for HSA, hemoglobin, myoglobin,
and cytochrome c [31]. Recently [45], it was found that Hcy residue in protein under
physiological conditions can form thiyl radical (Figure 4). Interestingly, it is possible ki-
netically favored intramolecular hydrogen atom transfer and formation of αC radicals
promote carbonyl formation, multiple fragmentation products, and protein cross-links [45].
Another confirmation of the importance of the processes is that the blocking of the α-
amino group of HTL inhibits the αC radicals formation and HSA oligomerization [47].
For HSA, major plasma protein, αC radicals formation in vitro occurs at physiological
temperature, 37 ◦C, without the addition of active oxygen forms or free-radical initiator
systems [45]. The same αC radical formation was also found for the Nε-Hcy-Lys isopeptide
which was discovered in human plasma and can be formed by proteolytic degradation
of N-homocysteinylated proteins (Figure 4). However, the function of isopeptide and its
metabolism is still not known.

N-homocysteinylated proteins exhibit biological responses, including cytotoxicity, im-
mune activation (anti-N-homocysteinylated proteins IgG antibodies), and atherothrombo-
sis [31,48]. Anti-N-homocysteinylated protein autoantibodies can be beneficial by clearing
damaged proteins from circulation. However, the autoantibodies can be harmful when
they form the antigen–autoantibody complex with N-homocysteinylated protein on the
vascular endothelium. The macrophages will bind to the complex and digest it, causing
damage to the vascular wall and tissue damage. If this process were to occur in brain
vasculature, it would result in cognitive domain-specific outcomes depending on which
brain region was damaged [48]. Thus, anti-N-homocysteinylated protein autoantibodies
can impair functional, but not structural, aspects of cognition [48]. The authors [48] suggest
anti-N-homocysteinylated protein autoantibodies as a risk factor for cognitive impairment.

Several lines of evidence have shown that HTL and N-homocysteinylated proteins
could be causal factors for many various disorders and diseases. Human plasma con-
tains 0.1–13 µM N-homocysteinylated protein, which represents up to 25% of total plasma
Hcy [34]. Protein N-homocysteinylation increases significantly in CBS- and MTHFR-
deficient patients as up to 30-fold [30]. Folic acid and vitamin B deficiency diet in-
creases the level of N-homocysteinylated proteins [30,40]. Plasma concentrations of N-
homocysteinylated proteins are correlated with total Hcy which allows various factors to
influence it. It is not surprising, that protein N-homocysteinylation is partly reversibly mod-
ifiable by a diet [30]. For example, plasma N-homocysteinylated protein levels increased
11.6-fold in mice fed a high-methionine diet for 2 weeks, compared with animals fed a
normal diet [30]. After two weeks, the increase in total Hcy, HTL, and N-homocysteinylated
protein were 36-, 14-, and 12-fold, respectively. Replacing the diet to normal for two weeks,
the level total Hcy and HTL returned almost to the control/started concentrations. How-
ever, the concentration of N-homocysteinylated proteins remained twice the control [30].
According to these results, the total Hcy and HTL levels in healthy patients can be decreased
quite quickly. To normalize the level of N-homocysteinylated proteins, much more time is
required. Over this time, some irreversible changes may occur. The long-lasting proteins
may contain considerably higher degrees of N-homocysteinylation which may result in
unexpected change. These results can explain the failure of Hcy-lowering clinical trials
using vitamin B supplementation on total Hcy level in cardiovascular disease. However,
the exact mechanism of the clinical trials’ inconsistent results by folic acid and vitamin B
supplementation requires additional extended research.

Homocysteinylation represents an emerging class of protein modifications that ex-
tremely affect protein function. However, it is still not known the mechanisms involved
in N-homocysteinylated protein contribution to the cellular response. Hcy and HTL
metabolism is an insufficiently explored area that alters our understanding of the etiology
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and pathogenesis of the disease. However, the clinical Hcy test does not identify HTL and
N-homocysteinylated protein levels, making it difficult for clinical data analysis.

2. Homocysteine Thiolactone Building Blocks as Potential Precursors for Materials
and Probes

Thiolactones are an interesting class of compounds that gained much attention within
the last decade in several research fields [47,49–56]. Especially, homocysteine thiolac-
tone (HTL, Figure 3), a five-membered cyclic thioester of Hcy, plays an important role
in polymer material syntheses, such as hydrogels, polyurethanes, and functional hybrid
materials [49–52]. The derivative N-acetyl HTL, also known as a citiolone, is a commer-
cial compound that was introduced as a thiolating agent for proteins, antioxidants, and
mucolytic drugs.

HTL exhibits dual amino and thioester properties. Therefore, it is susceptible to both
nucleophilic and electrophilic attacks. One of the important “electrophilic” transformations
is the reaction with aldehydes [38]. The nucleophilic attack is possible by various types
of compounds: amines, alcohols, water, etc. HTL is stable in neutral pH. However, under
alkali conditions, it is possible a hydrolysis side reaction and acylation of the amino group of
one HTL by another HTL molecule most probably via an intermediate homocysteinyl-HTL
with the formation of 2,5-diketopiperazine of Hcy (Figure 5) [47,57]. Upon oxidation of 2,5-
diketopiperazine a disulfide polymer, as well as an aromatic compound, might result [45,57].
The presented reactions should keep in mind planning the synthesis procedures with HTL
compound. Due to HTL instability, high reactive electrophile (acid halides, activated
carboxylic acids, etc.) is required to obtain an efficient reaction with the amino group.
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Nature has produced thiol groups as one of the most important bridging structures in
peptides and proteins because of the easy interconversion between thiols and disulfides and
as an essential group facilitating numerous physiological processes. The thiol ionization
state governs thiol nucleophilicity and redox susceptibility, thereby facilitating the unique
functions: (1) nucleophilic and redox catalysis; (2) structural stabilization and allosteric
regulation; (3) metal coordination and drug binding [58–61]. Thiol groups and disulfides
have important roles in the stability, solubility, and activity of proteins. On the other
hand, some non-native disulfide bonds in proteins are a result of altered in vitro or in vivo
conditions which influence protein stability, function, and oligomerization properties [61].
The thiol group oxidation state (R-SH, R-S-S-R, R-S-OH, R-SO2H, R-SO3H) plays a key role
in the regulation of function or activity of a diverse set of proteins, which are involved in
diverse cellular functions [58,60]. It can be called ‘thiol switches’, cysteine residues that are
reversibly oxidized to transiently change the functional properties of their host proteins [58].
For example, a thiol located on the protein surface may engage in generating disulfide-
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linked dimers with altered activity. On the other way, a thiol may form a disulfide with
glutathione, thus altering the protein surface and its interaction with other molecules [58,60].
The global glutathione and glutathione-disulfide ratio are thought to play a key role in
maintaining the reduced state of cellular molecules [60]. Thiols have also become the
biochemical targets for NO and therefore take part in signaling processes in a cell [60]. In
this way, the thiolation of synthetic polymers opens up a great area of natural-like functional
polymers, also known as thiomers, applications [50,52]. Transferring the crucial biological
role makes thiomers a versatile tool for drug delivery, enzyme inhibition, diagnostics,
etc. Moreover, it is suitable to increase the number of chemically different functionalities
into one polymer chain. However, the introduction of multiple functional groups per
polymer chain is a hard feature. Thiolactones are highly reactive compounds that can be
a handle tool for the polymers’ back-bone modification. The thiolactone ring-opening,
resulting in the release of a free sulfhydryl group, can be achieved by the means of a
wide variety of nucleophiles in an orthogonal way. For example, under basic conditions
mainly by combining hydrolysis (or alcoholysis) and in situ S-alkylation is the key step
in the synthesis of Hcy derivatives. HTL, as such a valuable thiol precursor, potentially
resolves the problem of limited reactive, unpleasant smelly, poor shelf life (due to oxidation
reactions) thiol compounds. One of the modern approaches is to use the reaction mixture
of an amine, a thiolactone, and a thiol ‘scavenger’ [52] (Figure 6). First of all, no atoms
are wasted as thiolactone chemistry results in 100% atom-efficient conjugation. The first
residue (R1) originates from the used amine during the ring opening, while a second entity
(R2) can be introduced via the subsequent thiol reaction (Figure 6). The reaction can be
done in a two-step procedure, with intermediate purification, the use of different solvents,
and temperature conditions. The other possibility is to modify the thiol group in situ.
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Indeed, as in the presented approach (Figure 6), the use of modified amines to open the
thiolactone ring allows for the introduction of additional features into the polymer chains.
However, the presence of only two types of incorporated R1 and R2 residues are limited the
polymer design. Therefore, for the versatile platform production for functional materials,
the solid-supported thiolactones approach could be suitable [52] (Figure 7). Immobilization
of a thiolactone moiety on a heterogeneous carrier/polymer and subsequent aminolysis
and follow-up thiol-click reactions enable programmed distribution of various functional
groups along the polymer backbone (Figure 7) [52]. The presented coupling strategy
for the controlled generation of sequence-defined multi-functionalized oligomers under
protective-group free conditions breaks a new era in the preparation of functionalized
peptoids, via thiolactone-based chemistry.

The thiolactone-based approach is suitable for natural polymers, like proteins, mod-
ification via N-homocysteinylation reaction under physiological conditions. Using N-
substituted HTL derivatives, it is possible to obtain conjugates for 19F-MRI [47,53] or
1H-MRI [56,62] based on human serum albumin (HSA) protein (Figure 8). HSA typical
concentration in human serum is high, 0.5–0.8 mM, and it shows robust structure and
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properties in the face of chemical modification. Being one of the most abundant proteins
in human plasma, albumin plays a crucial role in osmotic pressure, various molecules
and ions transporting and maintaining of colloid of the blood [63,64]. It is responsible for
accumulation in many types of cancer and, therefore, can be used as an optimal platform
for cancer diagnostics [64,65]. There is various hypothesis converged that enhanced per-
meability and retention (EPR) effect and binding with receptors (ex. SPARC, gp60, FcRn)
providing a sufficient level of accumulation of HSA in the cancer cells [66,67].
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To obtain 19F- and 1H-MRI albumin-based contrast agents as active reagent fluorine
and nitroxides HTL derivatives were used [47,53,56,62] (Figure 8). 19F-MRI is a toxic metal-
free approach with great potential and essentially no background signals in tissue [68].
However, such techniques require a high dose of the contrast agent and use imaging
protocols and equipment that are not currently common in the clinic at the moment.
Organic radical contrast agents have the same MRI mechanism as classical Gd-based
contrast agents. However, their use is limited due to the rapid reduction reactions in vivo
to diamagnetic compounds. Sterically-hindered nitroxides have much slower rates of
reduction and recently were shown for such “unusual” applications as MRI [56,69–73].
Nitroxide spin-labels have been classically used for two spin-labeled molecules complex
investigations (distance measurement) by pulsed dipolar spectroscopy (PDS) methods of
electron paramagnetic resonance (EPR), PELDOR (also known as DEER) method [43,74–78].

HSA harbors 59 lysine residues, which also can be used for covalent conjugation.
However, N-homocysteinylation of HSA by HTL and its N-substituted derivatives is a
site-specific process that involves predominantly only “high-reactive” lysine residues
which were mentioned above. Only five Lys residues (Lys-4, 12, 137, 212, 525) of HSA
are susceptible to N-homocysteinylation by HTL in vivo [79–81]. It is known that Lys-525
is a predominant site of N-homocysteinylation in vivo and in vitro, whereas Lys-137 and
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Lys-212 are minor in vivo sites [80,81]. Surprisingly, many additional Lys residues were
modified by N-substituted HTL derivatives in vitro: Lys-573/564, 564, 560, 519, 475, 466,
444, 439/436, 436, 432, 413, 351, 323/317, 274, 225, 205, 199, 195, 190, 181, 162, 159, 93,
73, and 64 [54,56,80]. Various factors, including pKa and fractional accessible surface area
(ASA), can help explain the sites of modification. Lys residues with low pKa values should
be unprotonated, and hence more active to nucleophilic substitution. Side-chains with
high ASA values are more accessible to the reaction. For example, Lys-525 has the lowest
calculated pKa among the residues usually N-homocysteinylated.

N-homocysteinylation of HSA by HTL causes protein damage, increases the radical
formation and oligomer formation. On the contrary, acylation of HSA by N-substituted HTL
derivatives leads to not-so-significant changes in α-helical and β-sheet content and inhibits
aggregation and radical formation [47]. The safety of HSA conjugates was confirmed by the
standard toxicity test, MTT test. The incubation of the cells with conjugates did not result
in any significant reduction in cell viability [47,56]. Therefore, the presented provident
protocol [47,53,62] is suitable for biopolymers modification via thiolactone technology for
different applications. It should be noted, that the N-nitroxide HTL derivative can also
be used for site-selective spin-label introduction to the protein for biopolymer complexes
investigation by PELDOR.

Using the N-substituted HTL derivative, it is possible to obtain the HSA conjugates
with one type of residue/reporter group. However, by nucleophilic ring-opening of the
HTL, a latent thiol functionality is produced. The two-step technology of polymer syn-
thesis (Figure 7), with intermediate purification, can be used for the HSA conjugates
synthesis [54,55]. The procedure consists of protein lysine side chain amino group acy-
lation by N-substituted HTL derivatives with subsequent SH-group modification using
maleimide derivatives of anticancer drugs (Figure 8). According to the procedure, two
agents for theranostics (therapy + diagnostics) based on HSA were synthesized. The effi-
ciency of HSA conjugates was confirmed by the MTT test and animal experiments [54,55].
Finally, the established two-step optimized interactive protocol is appropriate for HSA
multi-modification yielding functional construction for theranostics.

3. Conclusions and Prospects

Homocysteine thiolactone (HTL) is an important human organism metabolite and a
versatile tool for functionalized artificial polymers synthesis and biopolymers modification.
Thiolactone is sensitive towards ring-opening in the presence of amines, including protein
lysine residues amino group, and generally serves as thiol precursors in these conditions;
forming thiol function offering extensive biological properties and opens the possibility
for further modification reaction. Therefore, it will lead to a lot of applications in many
areas such as polymer synthesis, material science, and pharmacology. The unique proper-
ties of the thiolactone building block for double in situ modification and proposed mild
conjugation protocols, involving proteins, will attract researchers worldwide to contribute
such experience in their research area. However, biomolecules modification by HTL and its
derivatives is a vast field of research because thiols are involved in almost all physiological
processes. Moreover, protein modification by HTL (N-homocysteinylation) by itself is a
feature area that is extremely connected with many pathological processes. Elucidation
of mechanisms of HTL and N-homocysteinylated proteins toxicity is crucial for the pre-
vention and treatment of major human diseases, including dementia and brain disease,
atherosclerosis, osteoporosis, cancer, and pregnancy complications. The experts on the
interphase between life sciences and chemistry are required to open the sources of such a
strong and rapidly developing area with broad prospects.
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