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Abstract: A COVID-19 smoker’s paradox was identified during the early days of the COVID-19
pandemic—many studies reported that smokers appeared to be protected against SARS-CoV-2
infections. Conversely, other studies added to the smoker’s paradox controversy with findings of
increased risk for COVID-19 in heavy smokers. Ciliary beat frequency (CBF) within the ciliated
epithelium of the nasal tract can be stimulated to a higher frequency and provide increased protection
against transient exposure to airway irritants. Smokers as well as non-smokers exposed to secondhand
tobacco smoke were found to have higher CBFs. However, with extended exposure to irritants,
persistent upregulated CBF can damage and remodel the epithelial layer with fewer protective cilia.
Additionally, mucociliary clearance (MCC), the innate defense mechanism of the respiratory system,
traps particles and pathogens within the mucous layer of the epithelium and propels them out of the
airways through ciliary activity. However, this mechanism becomes defective as disease progresses,
increasing susceptibility to viral respiratory infections. This paper proposes that a smoker’s paradox
associated with SARS-CoV-2 infection in COVID-19 patients may be mediated by upregulated
ciliary beating frequency and mucociliary clearance with transient exposure to tobacco smoke, and
downregulated CBF and MCC with extended exposure to tobacco smoke.
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1. Introduction

Tobacco use is associated with increased risk of infectious diseases of the respiratory
tract in a dose-dependent manner [1]. Over 250 of the more than 7000 chemicals in to-
bacco smoke are toxic or carcinogenic, and these substances irritate the human respiratory
airway passages. Tobacco smoke also alters the structure and function of immunological
mechanisms that defend against infection and disease. Although short-term exposure to
tobacco smoke stimulates innate immune cell function in macrophages, neutrophils, and
inflammatory mediators, long-term exposure damages and inhibits production of these
cells. Furthermore, the functions of adaptive immune cells such as B-cells and T-cells are
also impaired by smoking, and antibody production is reduced.

Risks of viral infections of the upper respiratory tract are generally increased by
smoking [1]. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus
that causes COVID-19, binds to angiotensin-converting enzyme 2 (ACE2) [2], and ACE2
expression is upregulated in the airway epithelium of smokers [3]. Yet, a COVID-19
smoker’s paradox was identified during the early days of the COVID-19 pandemic—many
studies reported that smokers appeared to be protected against SARS-CoV-2 infection,
and researchers suggested plausible therapeutic effects of nicotine and nitric oxide from
smoking [4]. For example, pro-inflammatory cytokines involved in the cytokine-storm
syndrome in severe COVID-19, such as tumor necrosis factor, interleukin 1, and inter-
leukin 6, are inhibited by nicotine. Additionally, nitric oxide helps maintain airway dilation
and filtration.
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Studies in various countries have shown low rates of smokers hospitalized with
COVID-19, including in China [5,6], Israel [7], United Kingdom [8], and Italy [9,10]. How-
ever, reported findings in many of these studies were criticized for having “methodological
flaws” and drawing “hasty conclusions” [11]. Research design issues include selection
bias from participants’ inaccuracies in self-reporting smoking, and the need to confirm
tobacco smoke exposure using reliable biomarkers. Researchers should also quantify lev-
els of tobacco smoking—e.g., light smoking (1–5 cigarettes per day) and heavy smoking
(>20 cigarettes per day) [12].

Adding to the smoker’s paradox controversy, other studies reported increased risk
for COVID-19 in heavy smokers [13–16]. Nevertheless, controversies persist and the issue
remains unsettled. For example, a cross-sectional national study of 6857 participants in
Italy, published in April 2021, continued to confirm a dose-dependent association between
smoking and negative results from nasopharyngeal tests for SARS-CoV-2 [17]. The re-
searchers arrived at their findings after “taking into account a wide number of potential
confounding factors” which were overlooked in earlier studies. Clearly, controversial find-
ings of smoking and COVID-19 indicate a need for further investigations of the underlying
causative mechanisms that may explain the paradoxical findings.

The present paper presents the author’s unique perspective and insights into the
COVID-19 smoking paradox. Using a grounded theory method to review the research
literature [18], the author synthesized research findings into a novel theory that explains
potential causative biomedical mechanisms relating a smoker’s paradox to SARS-CoV-2
infection. The author’s proposed theory may be useful for generating testable hypotheses
in future biomedical research on this subject. The following sections of the paper describe
relevant pathophysiological and immunological mechanisms of the nasal immune system.

2. Ciliated Epithelium

The human respiratory tract is lined throughout with a protective ciliated epithelium,
interspersed with goblet cells that secrete a layer of mucus, as shown in Figure 1. Submu-
cosal glands also secrete a protective airway surface liquid (ASL) across the epithelium [19].
Respiratory cilia are motion-producing hair-like structures that project from the apical
membranes of epithelial cells in groups of 200–300 cilia per cell [20]. The cilium structure
consists of nine microtubule doublets surrounding two central single microtubules [21].
Ciliary beating occurs in synchronized metachronal waves, regulated by calcium. The en-
ergy for the cilium stroke is hydrolyzed from ATP by dynein, a protein lying between the
microtubule doublets which acts as a motor, putting force on the microtubules and causing
the cilium to bend [22].

Zhou et al. found that ciliary beat frequency (CBF) within the ciliated epithelium of
the nasal tract is approximately 7–8 Hz at room temperature—importantly, the CBF can
be stimulated to a higher frequency and provide increased protection against transient
exposure to irritants [23]. For example, compared to nonsmokers, smokers as well as non-
smokers exposed to secondhand tobacco smoke were found to have higher CBFs. The CBF
in heavy smokers averaged over 8.5 Hz. However, with extended exposure to irritants,
persistent upregulated CBF can predispose one to “the emergence of adverse health effects
and chronic respiratory disease”, including neoplasms.

Relatedly, temporary ciliostasis of airway epithelial cells, in which cilia become motion-
less, was induced in vitro when treated with 2% sodium chloride [24]. Ciliostasis allowed a
two- to three-fold increase in infection of the treated cells with influenza A virus, compared
to cells with functioning cilia—thereby demonstrating the importance of cilia activity in
inhibiting viral infection. Moreover, the paralyzing effect of sodium chloride on the ciliated
epithelium of the respiratory tract could be a causative factor in the nutritional immunology
of COVID-19 and SARS-CoV-2 infection [25].
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The connection between MCC and SARS-CoV-2 infection implies that smokers with 
upregulated CBFs, based on the findings of Zhou et al. [23], are more likely to have in-
creased MCC. This, in turn, would explain smokers’ increased odds of negative results 
from nasopharyngeal tests. An exception would occur in those smokers with more severe 
and chronic underlying respiratory diseases where the ciliated epithelium is dysfunc-
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Figure 1. Ciliated epithelium of the respiratory tract.

In addition to impaired function from exposure to irritants, ciliated cells are vulnerable
to injury and death from exposure to inflammatory mechanisms and infectious agents
and their products, which can remodel the epithelial layer with fewer protective cilia and
greater mucous secretion [23]. For example, smoking can cause airway epithelial barrier
dysfunction [26], and smokers were found to have greater nasal epithelium thickness and
hyperplasia of mucous-secreting goblet cells [27]. The present paper proposes that the
distinction between innate protective responses and chronic pathophysiological changes
within the ciliated epithelium may mediate paradoxical findings of SARS-CoV-2 infection
associated with transient and extended exposures to tobacco smoke.

3. Mucociliary Clearance and SARS-CoV-2 Infection

Mucociliary clearance (MCC) is the innate defense mechanism of the respiratory
system [28]. Particles and pathogens trapped within the mucous layer of the epithelium are
propelled out of the airways by beating cilia. However, this mechanism becomes defective
as disease progresses, with increasing susceptibility to respiratory infections involving
viruses such as coronavirus, influenza, and rhinovirus [20]. For example, MCC was delayed
in patients infected with SARS-CoV-2 compared to healthy people [29]. The researchers
found that clearance time measured using a saccharine test was approximately 15.5 min
in infected people, compared to 9.5 min in healthy people. Other studies have found
that levels of ACE2 that binds with SARS-CoV-2 were more highly expressed in the nasal
epithelial cells, compared to reduced levels of ACE2 expressed in the more distal bronchial
epithelial cells of the lower respiratory tract [30].

The connection between MCC and SARS-CoV-2 infection implies that smokers with
upregulated CBFs, based on the findings of Zhou et al. [23], are more likely to have
increased MCC. This, in turn, would explain smokers’ increased odds of negative results
from nasopharyngeal tests. An exception would occur in those smokers with more severe
and chronic underlying respiratory diseases where the ciliated epithelium is dysfunctional
and no longer protective against the accumulation of pathogens in the nasopharyngeal
tract. This would explain increased risk of COVID-19 in heavy smokers.

Figure 2 shows how ciliary beat frequency and mucociliary clearance is proposed
to mediate the association of tobacco smoke exposure with SARS-CoV-2 nasopharyngeal
infection. Depending on whether tobacco smoke exposure is transient or extended, the
association between smoking and SARS-CoV-2 nasopharyngeal infection is proposed to
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either decrease or increase infection, consistent with the smoker’s paradox in COVID-19.
Specifically, transient exposure to tobacco smoke upregulates CBF and MCC responses, and
reduces SARS-CoV-2 nasopharyngeal infection. By contrast, extended exposure to tobacco
smoke damages the ciliated epithelium and downregulates CBF and MCC responses, which
increases SARS-CoV-2 nasopharyngeal infection.
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Figure 2. Ciliary beat frequency and mucociliary clearance may mediate the association of tobacco
smoke exposure with SARS-CoV-2 nasopharyngeal infection. Transient exposure to tobacco smoke
upregulates CBF and MCC responses, and reduces SARS-CoV-2 nasopharyngeal infection. Extended
exposure to tobacco smoke downregulates CBF and MCC responses, and increases SARS-CoV-2
nasopharyngeal infection.

Importantly, nasopharyngeal infections may not always correlate with COVID-19
symptoms, as seen, for example, in asymptomatic SARS-CoV-2 infections [31], and also
in post-acute COVID-19 syndrome, in which disease symptoms persist after the nasopha-
ryngeal viral infection has subsided [32]. Therefore, although the smoker’s paradox may
appear to provide protection based on negative test results of SARS-CoV-2 infection, sys-
temic adverse effects of smoking likely continue to detract from the smokers’ overall health
status, even with transient or secondhand exposure to tobacco smoke [33]. This could
increase the smoker’s susceptibility to symptoms and health risks associated with COVID-
19, including comorbidities such as heart disease and stroke [34]. It should be repeatedly
emphasized that smoking increases risks for COVID-19 and other diseases, regardless of a
negative SARS-CoV-2 test.

4. Conclusions

This paper used a grounded theory method to synthesize evidence supporting a
biomedical theory that explains controversial findings of a smoker’s paradox in COVID-19.
Transient exposure to tobacco smoke associated with reduced SARS-CoV-2 infection in
COVID-19 patients may be mediated by upregulated ciliary beating frequency and greater
mucociliary clearance, which increases innate immune protection. On the other hand,
downregulated CBF and MCC due to damage to the ciliated epithelium from extended
exposure to tobacco smoke reduces innate immune protection and increases SARS-CoV-2
infection. More studies are needed to investigate smokers’ susceptibility to COVID-19 and
SARS-CoV-2 infection.
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