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Abstract: According to the existing paradigm, helium atoms and helium-like ions (hereafter, heliumic
systems) in a relatively weak external static electric field do not exhibit the linear Stark effect—in
distinction to hydrogen atoms and hydrogen-like ions. In the present paper we consider the classical
dynamics of a muonic-electronic heliumic system in Rydberg states–starting from the concept from
our previous paper. We show that there are two states of the system where the averaged electric
dipole moment is non-zero. Consequently, in these states the heliumic system should exhibit the
linear Stark effect even in a vanishingly small electric field, which is a counter-intuitive result. We also
demonstrate the possibility of controlling the overall precession of the electronic orbit by an external
electric field. In particular, we show the existence of a critical value of the external electric field that
would “kill” the precession and make the electronic orbit stationary. This is another counter-intuitive
result. We calculate analytically the value of the critical field and show that it is typically smaller or
even much smaller than 1 V/cm.

Keywords: dynamics of muonic-electronic helium atoms; dynamics of muonic-electronic heliumlike
ions; Rydberg states; linear Stark effect; electrically-controlled precession of the electronic orbit

1. Introduction

According to the existing paradigm, helium atoms and helium-like ions in a relatively
weak external electric field do not exhibit the linear Stark effect—in distinction to hydrogen
atoms and hydrogen-like ions (see, e.g., the textbooks [1,2]). It is well-known that the linear
Stark effect in hydrogenic systems (atoms and ions) is due to the fact that the overwhelming
majority of states of these systems are characterized by a non-zero value of the averaged
electric dipole moment. “Averaged” here refers to the averaging over the unperturbed
wave functions in the quantum formalism or over the unperturbed orbit in the classical
formalism (the latter being appropriate for Rydberg states).

As for heliumic systems (helium atoms and helium-like ions), according to the existing
paradigm, the electric dipole moment vanishes under such averaging. If so, there should
be no linear Stark effect for heliumic systems—even for Rydberg states, where one of the
electrons is highly-excited while the other electron is not. In the latter case, in classical
formalism the elliptical (in the first approximation) orbit of the Rydberg electron undergoes
a precession—because at relatively small distances the effective potential for the Rydberg
electron differs from the Coulomb potential of the effective nuclear charge (Z − 1), where Z
is the actual nuclear charge. While the elliptical orbit is characterized by a non-zero electric
dipole moment, it vanishes after averaging over the precession.

In the present paper we consider the classical dynamics of muonic-electronic heliumic
system in Rydberg states—starting from the concept from our previous paper [3]. We
show that there are two states of the system where the averaged electric dipole moment is
non-zero. Consequently, in these states the heliumic system should exhibit the linear Stark
effect even in a vanishingly small electric field.
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We also demonstrate the possibility of controlling the overall precession of the elec-
tronic orbit by an external electric field. In particular, we calculate the critical value of the
external electric field that would “kill” the precession and make the electronic orbit stationary.

We present the classical description of the considered phenomena: in terms of various
kinds of precessions of the elliptical orbit of the electron (though we also give quasiclassical
counterparts of the corresponding formulas). Of course, precessions of the orbit are purely
classical phenomena. The linear Stark effect also has classical roots, as it is well-known
since at least 1923—see, e.g., Born book [4] of 1923, as well as book [5] (problem 2.32) and
book [6].

2. Setup and New Results

Since the present paper is the further development of the results from our previous
paper [3], we have to start from the setup from paper [3]. We consider classically the
following three-body atomic system: a nucleus of the charge Z and of the mass Mnucl, a
muon in a circular Rydberg state (i.e., revolving in a circular orbit of the radius Rµ), and
an electron in an elliptical Rydberg state (i.e., revolving an elliptical orbit of the major
semiaxis Re). Here:

Re � Rµ (1)

It is well-known that for atomic systems in Rydberg states, the classical (or quasiclassi-
cal) description is appropriate. Quasiclassical counterparts of the orbital sizes Re and Rµ

are the corresponding principal quantum numbers:

ne =

[
(Z− 1)Re

a0

]1/2
, nµ =

[
ZRµmµr

a0mer

]1/2
(2)

where a0 is the Bohr radius. Here:

mµr =
mµ(me+Mnucl)

(me+mµ+Mnucl)
(3)

and:

mer =
me(mµ+Mnucl)

(me+mµ+Mnucl)
(4)

are the reduced masses of the muon and of the electron, respectively; me and mµ are the
electron and muon masses, respectively (mµ/me = 206.8).

The electronic motion can be considered as the slow subsystem, while the motion of
the muon and of the nucleus can be considered as the rapid subsystem under the condition:

Rµ

Re
�
(

me

mµ

)1/3[ Z
(Z− 1)

]1/3
(5)

Under this condition, the electron revolves over its elliptical (in the first approximation)
orbit with a frequency that is much higher than the frequency of the rotation of the
muon and the nucleus (about their center of mass). The quasiclassical counterpart of the
condition (5) is:

nµ

ne
�

(
mµrZ2

)1/3

[
mer(Z− 1)2

]1/3 (6)

The averaging over the rapid subsystem (required by the analytical method of sepa-
rating rapid and slow subsystems) brings up the following situation. The electron “sees”
two concentric “rings”: the ring of the radius Rµ, having the muon charge uniformly
distributed over it, and the ring of the radius Rn, having the nuclear charge uniformly
distributed over it (here Rn is the radius of the circular orbit of the nucleus; of course,
Rn � Rµ).
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In [3] it was shown that the effective potential energy of the Rydberg electron is
mathematically equivalent to the potential energy of a satellite around the oblate Earth.
The latter problem has a well-known solution—see, e.g., Beletsky’s book [7], Sec. 1.7.
According to this analogy with the celestial mechanics, the “unperturbed” elliptical orbit
of the Rydberg electron is involved in two types of the precession: (1) the precession of the
orbit in its plane; (2) the precession of the orbital plane about the axis of the rotation of
the muon and the nucleus. The frequencies of these two precessions can be expressed as
follows (see publications [3,7,8]—in units of the Kepler frequency of the Rydberg electron):

ωprecession in plane =

3(Z− 1)m2
ere4R2

µ(
8M4

e

)
(1− 5 cos2i

)
(7)

ωprecession of plane = −

3(Z− 1)m2
ere4R2

µ(
4M4

e

)
cos i (8)

where Me is the angular momentum of the Rydberg electron. The quantity i in Equations (7)
and (8) is the angle between the classical orbital plane of the electron and the classical plane
of the muonic and nuclear rings. In the celestial mechanics this angle is called inclination.
Also in Equations (7) and (8), the value of radius Rn of the nuclear ring, which could have
entered these equations as (Rµ

2 − Rn
2) was disregarded because of the strong inequality

given by Equation (1). The minus sign in Equation (8) indicates that the orbital plane of the
Rydberg electron rotates clockwise if viewed from the positive side of the z-axis.

The quasiclassical counterparts of the classical Formulas (7) and (8) are as follows:

ωprecession in plane(i) =
(

3
8

)[
(Z− 1)

Z2

](
1− 5 cos2i

) nµ(
le + 1

2

)
4(

mer

mµr

)2
(9)

ωprecession of plane(i) = −
(

3
4

)[
(Z− 1)

Z2

]
(cos i)

 nµ(
le + 1

2

)
4(

mer

mµr

)2
(10)

where le is the angular momentum quantum number of the electron.
Figure 1 shows the ratio of the frequency of the precession in plane (from Equation (7))

to the frequency of the precession of the plane (from Equation (8)) versus the inclination
i of the orbital plane of the electron. It is seen that for the range of |i| < 1.4 rad = 80◦,
the absolute values of both frequencies are of the same order of magnitude, except for
the vicinity of |i| = arcos(1/51/2) = 1.107 rad = 63.43◦, resulting from the solution of the
equation 1 − 5 cos2i = 0. Below we call it the critical angle and denote arcos(1/51/2) as ic.

At this point it is worth emphasizing the following. In the previous part of Section 2,
while conveying the concepts from our previous paper [3] (necessary for understanding
the primary new results of the present paper given below), we also provided some news
results. For example, Equations (2), (5), (7), and (8) express new results; also Figure 1 is new.

Now we proceed to present the primary new results. From Equation (7) it is clear that
the frequency of the precession of the electron orbit in its plane vanishes for the following
two values of the inclination angle:

i =± ic ≈ ±1.107 rad = ±63.43◦ (11)

Since at this inclination there is no precession in the orbital plane, then the dipole
moment does not vanish.
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At i = ±ic, Equation (8) for the frequency of the precession of the classical orbital plane
of the electron becomes:

ωprecession of plane = −

3(Z− 1)m2
ere4R2

µ(
51/24M4

e

)
 (12)

This precession does not eliminate the dipole moment: in the course of this precession,
the dipole moment precesses with the frequencyωprecession of plane. Therefore, the projection
of the dipole moment on the axis of the precession remains constant. Thus, at the two
values of the inclination given by Equation (11), the system should exhibit the linear Stark
effect even in a vanishingly small electric field.
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Figure 1. The ratio of the frequency of the precession in plane (from Equation (7)) to the frequency of the precession of 
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Figure 1. The ratio of the frequency of the precession in plane (from Equation (7)) to the frequency
of the precession of the plane (from Equation (8)) versus the inclination i of the orbital plane of
the electron.

We emphasize that a sufficiently high electric field would intermix energy levels of a
heliumic system and thus cause the linear Stark effect. However, the new result presented
above is the linear Stark effect in a heliumic system even in an arbitrarily small electric
field. This is a counter-intuitive result.

The linear Stark effect has classical roots, as noted in the Introduction. In the classical de-
scription, the linear Stark effect manifests as the precession of the elliptical orbit of a Rydberg
electron in a hydrogenic atom/ion about the direction of the electric field. The frequency
of the precession is proportional to the electric field. Let us calculate the frequency of the
precession in our situation of the heliumic system.

From the separation of the center-of-mass motion and the relative motion, it follows
that the projection of the dipole moment on the axis of the precession (chosen as the z-axis)
is equal to (see Appendix A):

dz= e < ze >
[Mn+mµ + (Z− 1)me]

(Mn+mµ+me)
(13)

< ze ><< re > cos θ =< re > sin i =
±2 < re >

51/2 (14)

where <ze> is the average value of the z-coordinate of the electron:
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Here <re> is the absolute value of the radius-vector of the electron after averaging
over the unperturbed elliptical orbit within its plane. It can be expresses as follows (see,
e.g., [5,8–10]):

< re>=

[
3e2(Z− 1)
( 4|Ee|)

]1− 2|Ee|M2
e[

(Z− 1)2mere4
]


1/2

(15)

where Ee is the unperturbed energy of the Rydberg electron. The quasiclassical counterpart
of the classical result (15) is the following:

< re>=

3ћ2ne

[
n2

e −
(

le + 1
2

)2
]1/2

[2(Z− 1)mere2]
(16)

On substituting Equations (14) and (15) in Equation (13), we obtain:

dz = ±
{
[Mn+mµ + (Z− 1)me]

(M + mµ+me)

}[
3e3(Z− 1)(
51/22|Ee|

)]
1− 2|Ee|M2

e[
(Z− 1)2mere4

]


1/2

(17)

The quasiclassical counterpart of the classical result (17) is as follows:

dz = ±
{
[Mn+mµ + (Z− 1)me]

(M + mµ+me)

}
3ћ2ne

[
n2

e −
(

le + 1
2

)2
]1/2

[
51/2(Z− 1)mere2

] (18)

A uniform electric field F along the z-axis (i.e., along the axis of the rotation of the muon
and the nucleus) causes another precession of the orbital plane of the electron. By using the
relation between the precession frequency from the book [5] and the corresponding value
of dz from [5], we obtain the following classical expression for the precession frequency ωF
in our case:

ωF = ±
(

3eF
2

){
[M n+mµ + (Z− 1)me]

[(M + mµ+me)51/2mer|Ee|]

}1/2

(19)

The corresponding quasiclassical expression is as follows:

ωF = ±
[

1
me

+
(Z− 1)

(M + mµ)

]
3ne

[
n2

e −
(

le +
1
2

)2
]1/2

ћ
F[

51/2(Z− 1)e
] (20)

The two possible signs of the precession frequency correspond to two possible direc-
tions of the precession/rotation of the orbital plane of the electron caused by the electric
field. In particular, the positive sign in Equations (19) and (20) corresponds to the critical
value of the angle of the inclination ic ≈ +1.107 rad = +63.43◦.

The total frequency of the precession of the orbital plane is:

ω= ωF+ωprecession of plane (21)

Thus, we encounter a possibility of the electrically-controlled precession of the orbital
plane of the electron.

In particular, for the critical value of the angle of the inclination ic ≈ +1.107 rad =
+63.43◦, there exists a critical value of the electric field Fcrit, such that there would be no
precession: ω = 0. In other words, the electric field Fcrit would “kill” the precession and
make the elliptical orbit stationary. This is another counter-intuitive result.

For finding the critical value Fcrit, first we calculate the following ratio (using the
corresponding quasiclassical expressions):
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|ωF|
ωprecession of plane

=

[
1

me
+

(Z− 1)
(M + mµ)

]
4Z2m2

µr

(
le +

1
2

)4
n4

e

[
n2

e −
(

le +
1
2

)2
]1/2

ћ4F[
(Z− 1)4n4

µm3
ere5

] (22)

By using the fact that 1/me � (Z − 1)/(M + mµ) and by approximating mµr ≈mµ

and mer ≈me, we simplify Equation (22) to:

|ωF|
ωprecession of plane

≈
[

4Z2

(Z− 1)4

](
mµ

me

)2( ne

nµ

)4(
le +

1
2

)4
[

n2
e −

(
le +

1
2

)2
]1/2

F
Fat

(23)

where:

Fat =
m2

ee5

ћ4 (24)

is the atomic unit of the electric field.
Then by equating the right side of Equation (23) to unity, we get:

Fcrit

Fat
≈

(Z− 1)4
(

me
mµ

)2(nµ

ne

)4{
4Z2

(
le + 1

2

)4
[

n2
e −

(
le + 1

2

)2
]1/2

} (25)

By using the validity condition (6), we obtain the following inequality from
Equation (25):

Fcrit

Fat
�

Z2/3(Z− 1)1/3
(

me
mµ

)2/3{
4
(

le + 1
2

)4
[

n2
e −

(
le + 1

2

)2
]1/2

} ∼ Z2/3(Z− 1)1/3(
4n5

e

) (
me

mµ
)

2/3
� 1 (26)

It is seen that for eliminating the precession and making the elliptical orbit of the
electron stationary, it would suffice an electric field really much smaller than the atomic
unit. For example, for muonic-electronic Rydberg atoms of helium at ne ~ nµ � 1 and
le = ne − k, where the integer k� ne, we obtain from Equation (25) the following:

Fcrit

Fat
∼ 1.5× 10−6[

n9/2
e (2k− 1)1/2

] (27)

For ne ~ 10 and k = 2, from Equation (23) we find Fcrit ~ 10−1 V/cm. This is a really
much smaller electric field compared, e.g., to the maximum electric field used in the
experimental study [11] of the Stark effect in helium atoms. For the case of ne � nµ� 1,
one would have even much smaller values of the critical field Fcrit:

Fcrit

Fat
� 1.5× 10−6[

n9/2
e (2k− 1)1/2

] (28)

3. Conclusions

We have considered the classical dynamics of Rydberg states of muonic-electronic
helium or helium-like ions. In our previous paper [3] we showed that the elliptical orbit of
the electron, generally speaking, undergoes two kinds of the precession: the precession of
the orbital plane and the precession of the orbit within its plane. Proceeding from the setup
from our previous paper [3], we obtained the following primary new results:
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(1) We pointed out that there are two values of the inclination angle i of the elliptical
orbit of the electron, for which there is no precession of the orbit within its plane, but
only the precession of the orbital plane.

(2) We emphasized that at these values of i, the projection of the precessing electric
dipole moment of the electron on the axis of the precession would conserve, so the
system would exhibit a linear Stark effect even in a vanishingly small electric field. This
is a counterintuitive result—since according to the existing paradigm, helium atoms
and helium-like ions in a vanishingly small external electric field do not exhibit the
linear Stark effect—in distinction to the hydrogen atom and hydrogenlike ions. We
underscored that the linear Stark effect has classical roots, manifesting as the precession
of the elliptical orbit of a Rydberg electron about the direction of the electric field.

(3) We calculated the overall precession frequency of the system in the external electric
field. This result demonstrated a possibility of the electrically-controlled precession of
the orbital plane of the electron.

(4) We showed that there exists a critical value of the electric field Fcrit, such that there
would be no precession: the electric field Fcrit would “kill” the precession and make
the classical elliptical orbit of the electron stationary. This is another counter-intuitive
result. We calculated analytically the value of the critical field and showed that it is
typically smaller or even much smaller than 1 V/cm.

In addition to the above primary new results, we also provided some other classical
new results, represented by Equations (2), (5), (7), and (8), as well as by Figure 1. Finally,
we note that for the usual helium atom or helium-like ion, where both light particles are
electrons, the linear Stark effect in a vanishingly small electric field could be still possible,
provided that the size of the major semiaxis of the elliptical orbit of the outer electron is
much greater than the radius of the circular orbit of the inner electron.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Rigorous Value of the Electric Dipole Moment of the Atomic Electron
Following from the Separation of the Center-of-Mass Motion and the Relative Motion
in the Three-Body Problem

We start from a general setup of the three-body system consisting of the masses M,
m1, and m2, the radius-vectors of these three bodies being R, R1, and R2, respectively (here
M max (m1, m2)). These radius-vectors are measured with respect to the center of mass of
the system, so that:

MR + m1R1 + m2R2 = 0 (A1)

We introduce the relative coordinates of the bodies m1, and m2:

r1 = R1 −R, r2 = R1 −R (A2)

From Equations (A1) and (A2), it is easy to express R, R1, and R2 through r1 and r2,
as follows:

R = − (m1r1 + m2r2)

(M + m1+m2)
(A3)

R1 =
[(M + m2)r1 −m2r2]

(M + m1+m2)
(A4)

R2 =
[(M + m1)r2 −m1r1]

(M + m1+m2)
(A5)

The initial expression for the kinetic energy T in the Lagrangian is:
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T =

(
MV2 + m1V2

1 + m2V2
2
)

2
(A6)

where V, V1, and V2 are the time derivatives of vectors R, R1, and R2, respectively. By
differentiating Equations (A3)–(A5) with respect to time and substituting in Equation (A6),
we obtain (after some calculations):

T =
m1rv2

1
2

+
m2rv2

2
2
− m1m2v1v2

(M + m1+m2)
(A7)

where v1 and v2 are the time derivatives of vectors r1 and r2, respectively; v1v2 stands for
the scalar product (also known as the dot-product) of these two vectors. In Equation (A7):

m1r =
m1(M + m2)

(M + m1+m2)
(A8)

is the reduced mass of the body of the mass m1 and

m2r =
m2(M + m1)

(M + m1+m2)
(A9)

is the reduced mass of the body of the mass m1.
If the body of the mass M has the charge Ze, while the two other bodies have the

charge—e (where e is the absolute value of the electron charge), then the instantaneous
dipole moment of the system is:

d = e(ZR−R1 −R2) (A10)

On substituting Equations (A3)–(A5) in Equation (A10), we obtain:

d =
er1[(Z− 1)m1+M + m2]

(M + m1+m2)
+

r2[(Z− 1)m2+M + m1]

(M + m1+m2)
(A11)

Now let the body of mass M be the nucleus of charge Z, the body of mass m1 = mµ

be the muon, and the body of mass m2 = me be the electron. In the setup of paper [3] and
of the present paper, the muon revolves in a circular orbit, so that the average value r1
vanishes. The electron orbit is, generally speaking, elliptical—therefore, r2 does not vanish,
so that the average dipole moment in this situation is:

< d >= e < r2 >
[(Z− 1)m2+M + m1]

(M + m1+m2)
(A12)
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