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Abstract: In this study, a dynamic Mindlin–Reissner-type plate is developed based on a simplified
version of Mindlin’s form-II first-strain gradient elasticity theory. The governing equations of
motion and the corresponding boundary conditions are derived using the general virtual work
variational principle. The presented model contains, apart from the two classical Lame constants, one
additional microstructure material parameter g for the static case and one micro-inertia parameter
h for the dynamic case. The formal reduction of this model to a Kirchhoff-type plate model is also
presented. Upon diminishing the microstructure parameters g and h, the classical Mindlin–Reissner
and Kirchhoff plate theories are derived. Three points distinguish the present work from other similar
published in the literature. First, the plane stress assumption, fundamental for the development
of plate theories, is expressed by the vanishing of the z-component of the generalized true traction
vector and not merely by the zz-component of the Cauchy stress tensor. Second, micro-inertia terms
are included in the expression of the kinetic energy of the model. Finally, the detailed structure of
classical and non-classical boundary conditions is presented for both Mindlin–Reissner and Kirchhoff
micro-plates. An example of a simply supported rectangular plate is used to illustrate the proposed
model and to compare it with results from the literature. The numerical results reveal the significance
of the strain gradient effect on the bending and free vibration response of the micro-plate, when the
plate thickness is at the micron-scale; in comparison to the classical theories for Mindlin–Reissner
and Kirchhoff plates, the deflections, the rotations, and the shear-thickness frequencies are smaller,
while the fundamental flexural frequency is higher. It is also observed that the micro-inertia effect
should not be ignored in estimating the fundamental frequencies of micro-plates, primarily for thick
plates, when plate thickness is at the micron scale (strain gradient effect).

Keywords: strain gradient elasticity; strain gradient effect; micro-inertia effect; micro-plates

1. Introduction

In recent years, an increasing attention on size-dependent theories of continuum mechan-
ics is observed, as a result of the need to develop and investigate the behavior of structural
elements, like micro-bars, micro-beams, and micro-plates, used in applications of the blooming
technologies of micro- and nano-electromecanical systems (MEMS; NEMS) [1–6].

The mechanical behavior of these micro- or nano-structures is strongly affected by the
material microstructure, in cases when their dimensions are comparable to the material
internal length scale. The importance of microstructure length scales is well demonstrated
by experiments on particular geometries of the micro- and nano-scale. The existence of
material microstructure is responsible for various scale effects, such as the changes in
wave propagation dispersion curves, the increased bending stiffness of ultra-thin beams,
the finite-valued stress fields on the crack tips, etc. [7–11]. These scale effects cannot
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be predicted/captured by the classical theory of continuum mechanics, as no intrinsic
length scales are included in the constitutive theory. For this reason, various generalized
continuum mechanics theories have been developed that take into account material length
scale parameters.

The most well-known and widely used theories are the nonlocal theory of elastic-
ity [12–14], the couple-stress theory of elasticity [15], the micropolar theory of elastic-
ity [16,17], and Mindlin’s strain gradient elasticity [18–20]. In this paper a simplified
version of Mindlin’s first-strain gradient elasticity is adopted to model shear-deformable
plates, (see also in [4,21–34]). All above theories include scale effects rendering them
appropriate for modeling micro- and nanostructures, like MEMS and NEMS.

For completeness purposes, we mention in the sequence some noteworthy works the
results of which will be used to compare with those produced by the present work.

Considering at first the nonlocal elasticity theory, we mention the works of Lu et al. [35]
and Reddy [2]. Both works are based on the differential form of nonlocal elasticity [14,36].
In the first one, the authors developed nonlocal plate models for Kirchhoff-type and
Mindlin-type plate theories, and illustrated their use in solving the problems of deflection
and free vibration of a simply supported rectangular plate. In the second one, Reddy
implemented the principle of virtual work to derive the static equations of equilibrium
for nonlocal classical and shear-deformable beams and plates. The constitutive equations
proposed were based on Von Karman’s nonlinearity of strains. The nonlocal models
developed in both works maintain the same order for the governing equations, as in the
classical cases.

Next, with reference to couple-stress theory, we focus on the works of Ma et al. [37]
and Tsiatas [38]. In both these works, the modified couple-stress theory with one material
length scale parameter [39] is employed to develop a Mindlin-type plate theory in the
former work and a Kirchhoff-type plate theory in the last one.

Ma et al. [37], through the variational formulation of Hamilton’s principle, developed
a Mindlin-type (shear-deformable) plate and illustrated their model in static bending and
free vibration problems. On the other hand, Tsiatas applied the principle of minimum
potential energy to derive a static model, which was implemented in the bending of
arbitrary-shaped plates. Note that the governing equation of this model is of the fourth
order, contrary to the sixth-order gradient elasticity plate models.

Finally, concerning the theory of first-strain gradient elasticity, there are three works
to discuss. Lazopoulos [40] using the principle of virtual work and based on a simplified
version of Mindlin’s form-II first-strain gradient elasticity developed a Kirchhoff-type
plate model for the static case. In this model, apart from the classical Lame constants, two
additional constitutive coefficients were introduced; the intrinsic bulk length g, associ-
ated with the microstructure, and the directional surface energy length lk, accounting for
surface effects, like surface tension [19]. However, as an example, the analytical bending
solution for the simply supported rectangular plate was presented, using only the intrinsic
parameter g.

Parargyri-Beskou et al. [41,42] developed a Kirchhoff-type gradient plate, based on
a strain-gradient theory, in which only the intrinsic parameter g is employed. The re-
sulting governing equations of sixth-order is similar to that derived by Lazopoulos [40],
except from the coefficient of the fourth-order term. This difference arouses from the fact
that Lazopoulos used in his variational formulation some extra out-of-plane higher-order
(double) stress components. The difference becomes more apparent when examining the
deflection behavior of the plate: Lazopoulos’s model is much stiffer than the model of
Papargyri-Beskou et al. [41].

A third model to consider in our discussion on strain-gradient elastic plates comes
from the work of Ramezani [43]. In this work, Ramezani developed, using Hamilton’s
principle, a Mindlin-type (shear-deformable) micro-plate model based on the most general
form of Mindlin’s form-II first-strain gradient elasticity theory, in which five intrinsic
material parameters are employed. By assigning specific values to these five parameters,
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this general model reduces to a Mindlin-type plate with only one intrinsic parameter, the g
mentioned before. Concerning the dynamic part of the governing equations, Ramezani
used the classical inertia terms, omitting the micro-inertia effects of the microstructure.
Moreover, in developing the constitutive relations Ramezani used the plane stress assump-
tion expressed by the condition that the zz-component (vertical to the plate’s mid-plane) of
the Cauchy stress should vanish, i.e., τ33 = 0.

In this work, we develop, using the general virtual work principle, a dynamic Mindlin–
Reissner-type plate based on a simplified version of Mindlin’s form-II first-strain gradient
elasticity, with one intrinsic parameters, the intrinsic bulk length g. The plane stress
assumption adopted herein is expressed by the vanishing of the z-axis component of the
generalized traction vector, i.e., t3 = 0 . This leads in a very natural way to identifying
the detailed conditions satisfied by the respective Cauchy and double stress components,
withing the current framework. In addition, micro-inertia effects are also considered in the
kinetic energy of the plate, introducing the micro-inertia material parameter h. A thorough
study of the micro-inertial effects in the dynamic behavior and wave dispersion of elastic
micro-bars can be found in [44,45]. Note that rendering the microscopic parameters g and
h equal to zero, the classical plate models are deduced.

The paper is outlined as follows: In Section 2, the basic assumptions for the plane
stress condition of a Mindlin–Reissner-type plate, along with the governing constitutive
equations are presented. In Section 3, the displacement behavior and the resultant forces
and moments are employed, which are inserted into the general virtual work principle,
in Section 4, in order to derive the governing differential equations and appropriate bound-
ary conditions. In Section 5, a dynamic gradient Kirchhoff-type plate model is developed,
which for the static case is reduced to that developed in [40]. In Section 6, we review some
micro-plate models published in the literature, which are compared in Section 8 with those
developed herein. In Section 7, an example of a simply supported rectangular plate is
illustrated using the Navier solutions for the static bending and free vibration problems.
The numerical results and a comparative discussion on them is employed in Section 8.
Finally, some conclusions are envisioned in Section 9.

2. Basic Assumptions and Constitutive Relations for Grade-2 Mindlin–Reissner-Type
Elastic Plates

The general 3D constitutive equations for the strain gradient elasticity model consid-
ered herein are stated as follows (using tensorial notation, see in [18,20]),

τij = λεkkδij + 2Gεij (1)

µijk = g2
(

λκinnδjk + 2Gκijk

)
(2)

where τij and µijk are the components of the Cauchy stress and double (or dipolar) stress
tensors, respectively; κijk = ε jk,i are the components of the strain gradient tensor; εij are the
components of the small strain tensor; λ, G are the well-known Lame constants; and g is a
constant related to the material microstructure, see [18]. The unit of constant g is [Length].
Furthermore, Latin indices i, j, k, n take the values 1,2,3.

Recall that λ :=
Eν

(1 + ν)(1− 2ν)
and G :=

E
2(1 + ν)

(where E is the Young’s modulus

and ν is the Poisson’s ratio). The partial derivative of the variable y(xi) with respect to xi is
represented by y,i .

Note that Equation (1) is the standard elasticity stress–strain relation for isotropic
materials, and is related to (2) by µijk = g2τjk,i.

We consider a flat plate, lying on plane x − y (axis 1,2). As the plate is relatively
thin and the upper and lower surfaces are stress free, it is reasonable to assume that the
vertical component of the true traction vanishes identically (see, for example, Figure A1 in
Appendix A),
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t3 = 0 (3)

where t3 is the (out-of-plane) true traction, normal to the plate surface.
The general definition of the true traction in the strain gradient elasticity theory is

given by the relation [18]

tk = nj

(
τjk − µijk,i

)
− Dj

(
niµijk

)
+ (Dlnl)njniµijk (4)

where Dj(∗) :=
(

δjl − njnl

)
(∗), l is the surface gradient operator and ni are the compo-

nents of the normal unit vector on the surface. For the current case Dlnl = 0. That is,
the normal unit vector does not change along the plane. From Equation (4) it follows that

tk = nj

(
τjk − µijk,i

)
−
(

niµijk

)
,j
+ njnl

(
niµijk

)
,l

(5)

For the upper/lower surface of the plate (along the z axis), we have n1 = n2 = 0 and
n3 = ±1. Therefore, from Equation (5) we get

t3 = (τ33 − µi33,i)− µ3j3,j + µ333,3 = 0 (6)

The moment (or double traction) condition on the free surfaces [18,46] gives

ninjµijk = 0 ⇒ µ33k = µ3k3 = 0 (7)

Equations (6) and (7) suggest the following relations for the plane stress conditions in
the plane x− y, within the framework of the strain gradient elasticity theory:

τ33 = 0; µ333 = 0; µα33 = 0; µ3α3 = 0 (8)

for α = 1, 2, where the Greek indices correspond to the in-plane axes (x, y) and take the
values 1 and 2.

Equation (8) will be used in order to develop in-plane and out-of-plane constitutive
relations for the current model, describing the in-plane stress state in the plane x− y. To this
end, it is necessary to write Equations (1) and (2) as follows,

ταβ = λεkkδαβ + 2Gεαβ

τα3 = 2Gεα3

τ33 = λεkk + 2Gε33 = 0

µαβγ = g2(λκαnnδβγ + 2Gκαβγ

)
µαβ3 = g2(2Gκαβ3

)
µ3αβ = g2(λκ3nnδαβ + 2Gκ3αβ

)
µα33 = g2(λκαnn + 2Gκα33) = 0

µ3α3 = g2(2Gκ3α3) = 0

µ333 = g2(λκ3nn + 2Gκ333) = 0

(9)

For a graphical depiction and physical demonstration of the zero and non-zero double
stresses µijk, please refer to Appendix A.

From term τ33 in Equation (9) it follows that

λε33 + 2Gε33 = −λεαα (10)
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while, from term µα33 in Equation (9),

g2(2Gκα33) + g2(λκα33) = −g2(λκαββ

)
(11)

From Equations (10) and (11) the components ε33 and κα33 in terms of the in-plane
strains and strain-gradients can be solved,

ε33 = − λ

λ + 2G
εαα

κα33 = − λ

λ + 2G
καββ

(12)

Substituting Equations (12) into terms ταβ and µαβγ of Equation (9) we get the consti-
tutive equations for the in-plane stresses,

ταβ =
Eν

(1− ν2)
εγγδαβ + 2Gεαβ

µαβγ = g2
(

Ev
(1− ν2)

καδδδβγ + 2Gκαβγ

) (13)

where α, β, γ = 1, 2.
The remaining non-zero out-of-plane stress components are summarized as follows,

τα3 = 2Gεα3

µαβ3 = g2(2Gκαβ3
)

µ3αβ = g2(λκ3nnδαβ + 2Gκ3αβ

) (14)

It is noteworthy that the Kirchhoff-type model for gradient elastic plates developed
in [41,42] employs only the in-plane relations (13), while the respective Kirchhoff-type
model of [40] incorporates the contribution of the terms µ3αβ. The current theory, which is
based on a Mindlin–Reissner type approach, implies non-zero components µ3αβ and µαβ3.

It is necessary to emphasize that in order to develop (13) the assumptions, τ33 = 0 and
µα33 = 0 have been employed, see terms τ33 and µα33 in Equation (9). Obviously, µ333 = 0
is implied by τ33 = 0 , as µijk = g2τjk,i. Moreover, the current theory satisfies a priori the
relation, µ3α3 = g2(2Gκ3α3) = 0, as the out-of-plane shear strain γα3 is constant through
the thickness. In higher-order shear deformation theories however, such as in Reddy or
Levinson plate theories, the condition µ3α3 = 0 should be satisfied only at the upper and
lower free surfaces of the plate.

3. Theoretical Basis for Mindlin–Reissner-Type Elastic Plates

With reference to Figure 1, the fundamental displacement or kinematical assumptions
read as follows,

u1 = −zθ1(x, y)

u2 = −zθ2(x, y)

u3 = w(x, y)

(15)

where u1, u2, and u3 are the components of the displacement vector u along the reference
axes x-, y-, and z- respectively; (x, y) are the coordinates of any point on the plate’s mid-
plane, z is the vertical distance along the z-axis; and −θ1, θ2 are the rotation angles around
the y- and x-axis respectively, of a normal to the mid-plane. For the rotation notations see
also the monograph [47].
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0

y

z

x

mid-plane
(x,y,0)

z

0
x or y

t

mid-plane
(x,y,0)

w,α

w

θα γα3

axis normal
to mid-plane

Figure 1. Plate configuration and Cartesian coordinate system. The deflection rate w,α, α = 1, 2 is
equal to the algebraic sum of the rotation θα and the shear strain γα3.

Then, the kinematical relations can be defined as follows. The macroscopic small
strain-displacement relations are given by

εαβ =
1
2
(
uα,β + uβ,α

)
= u(α,β) = −zθ(α,β) = −z

1
2
(
θα,β + θβ,α

)
(16)

while the out of plane macroscopic shear strains are given as

εα3 = ε3α = u(α,3) =
1
2
(uα,3 + u3,α) =

1
2
(w,α − θα) =

1
2

γα3 (17)

where α, β = 1, 2 and y,α :=
∂y
∂xα

.

Using the kinematical assumptions (15) and the definition κijk = ε jk,i of the strain-
gradient theory, within the framework of Form-II, Mindlin’s theory [18,20], there follows,

καβγ = εβγ,α = −zθ(β,γ),α = −z
1
2
(
θβ,γα + θγ,βα

)
καβ3 = κα3β = εβ3,α =

1
2
(
w,βα − θβ,α

)
κ3αβ = εαβ,3 = −1

2
(
θα,β + θβ,α

) (18)

The above relations provide the non-zero strain-gradient components, while the
following components vanish identically,

κα33 = ε33,α = 0

κ3α3 = κ33α = εα3,3 =
1
2
(w,α − θα),3 = 0

κ333 = ε33,3 = 0

(19)
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The classical bending moments and shear forces (standard resultant forces) are de-
fined as

Mαβ
.
=
∫

t
zταβdz

Qα
.
=
∫

t
τα3dz

(20)

where
∫

t •dz ≡
∫ t/2
−t/2 •dz denotes integration over the thickness t of the plate.

The positive sign convention and nomenclature of the resultant forces are depicted in
Figure 2, see also in [47].

0

y z

x

Q2

Q1

Q2

Q1

M12

M11 M22

M21

M21

M11

Figure 2. Positive sign convention for the generalized stress resultants on the plate’s local refer-
ence system.

Additionally, the following definitions for the resultant double moments (also referred
to as, hyper-moments, [40,43]) are introduced,

mαβγ
.
=
∫

t
zµαβγdz

m3αβ
.
=
∫

t
µ3αβdz α, β, γ = 1, 2

mαβ3
.
=
∫

t
µαβ3dz

(21)

Substitution of the kinematical relations (16)–(19) into the definitions of the stresses
and double-stresses, Equations (13) and (14), we have

ταβ = −zD1

[
νθγ,γδαβ +

1
2
(1− ν)

(
θα,β + θβ,α

)]
τα3 = G(w,α − θα)

µαβγ = −zg2[λ1θδ,δαδβγ + G
(
θβ,γα + θγ,βα

)]
µ3αβ = −g2[λ1θδ,δδαβ + G

(
θα,β + θβ,α

)]
µαβ3 = Gg2(w,βα − θβ,α

)
(22)

where D1 =
E

1− ν2 .

Using the term ταβ in (22), the classical bending moments Mαβ in (20), take the form



Dynamics 2021, 1 56

Mαβ = −IzD1

[
νθγ,γδαβ +

1
2
(1− ν)

(
θα,β + θβ,α

)]
(23)

Using the term τα3 in (22), the relation between shear forces Qα in (20), and the
out-of-plane shear strains becomes

Qα = Gtγα3 = tG(w,α − θα) (24)

Using terms µαβγ, µ3αβ, µαβ3 in (22) in (21), the hyper-moments (21) are written as

mαβγ = −Izg2[λ1θδ,δαδβγ + G
(
θβ,γα + θγ,βα

)]
m3αβ = −tg2[λ1θδ,δδαβ + G

(
θα,β + θβ,α

)]
mαβ3 = tGg2(w,βα − θβ,α

) (25)

where Iz, t are the secondary moment of inertia per unit width and the plate thickness, re-
spectively,

λ1 = νD1; Iz
.
=
∫

t
z2dz; t =

∫
t
dz (26)

In the standard Mindlin–Reissner plate theory [47–50], a shear correction factor is
usually employed in (24). More precisely, the shear stiffness term tG is substituted by kstG,
where ks is selected so as to correlate the results of the Mindlin–Reissner plate theory with
those of the Kirchhoff theory, for the case of thin plates. Note that for isotropic materials it
can be shown that the optimal value of the shear correction factor is ks ≈ 5/6, [47].

4. Variational Formulation of Mindlin–Reissner-Type Gradient Elastic Plates

The general structure of the virtual work principle, as applied to the given micro-plate
model, reads as follows:

δU + δK = δW (27)

where δU represents the virtual work of the internal forces, δK is the virtual work of the
inertia forces, and δW is the virtual work of the externally applied loads.

In the sequel, Ω will be denoting the area domain (x, y) of the plate’s mid-plane,
∂Ω the boundary of that domain, i.e., the sides of the plate, and t the thickness of the
plate. The integral

∫
Ω

∫
t •dzdΩ is calculated over the volume of the plate. Furthermore,

in the following derivations, for simplicity, it is assumed that the plate is of homogeneous
thickness t and the material density ρ is independent of the plate’s coordinates.

4.1. The Virtual Work of the Internal Forces

The contributions of the various terms in the variation δU are examined at first, see
(27). The part related to the Cauchy stresses τij is written as follows:

δU1 =
∫

Ω

∫
t
τijδεijdzdΩ =

∫
Ω

∫
t
ταβδεαβdzdΩ +

∫
Ω

∫
t
τα3δγα3dzdΩ⇒

δU1 =
∫

Ω

∫
t
ταβ(−z)

1
2
(
δθα,β + δθβ,α

)
dzdΩ +

∫
Ω

∫
t
τα3(δw,α − δθα)dzdΩ (28)

Using the definition (20) of the standard resultant forces, it follows from (28) that

δU1 =
∫

Ω

(
−Mαβ

)1
2
(
δθα,β + δθβ,α

)
dΩ +

∫
Ω

Qα(δw,α − δθα)dΩ (29)
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The part of the variation δU which is related to the double stresses µijk is written
as follows:

δU2 =
∫

Ω

∫
t
µijkδκijkdzdΩ =

∫
Ω

∫
t
µαβγδκαβγdzdΩ +

∫
Ω

∫
t
µαβ32δκαβ3dzdΩ

+
∫

Ω

∫
t
µ3αβδκ3αβdzdΩ⇒

δU2 =
∫

Ω

∫
t
µαβγ(−z)

1
2
(
δθβ,γα + δθγ,βα

)
dzdΩ +

∫
Ω

∫
t
µαβ3

(
δw,βα − δθβ,α

)
dzdΩ

+
∫

Ω

∫
t
µ3αβ

(
−1

2

)(
δθα,β + δθβ,α

)
dzdΩ

(30)

From Equation (21), and after application of the Green–Gauss theorem on the terms
having second derivatives, Equation (30) results in

δU2 =
∫

Ω
mαβγ,α

1
2
(
δθβ,γ + δθγ,β

)
dΩ

+
∫

Ω
m3αβ

(
−1

2

)(
δθα,β + δθβ,α

)
dΩ−

∫
Ω

mαβ3,α
(
δw,β − δθβ

)
dΩ

+
∫

∂Ω
nαmαβγ

(
−1

2

)(
δθβ,γ + δθγ,β

)
dS +

∫
∂Ω

nαmαβ3
(
δw,β − δθβ

)
dS

(31)

The following resultant forces are defined, referred to as equilibrium bending or
resultant moments and shear forces, respectively,

M̃αβ := Mαβ −mγαβ,γ + m3αβ

Q̃α := Qα −mβα3,β
(32)

The virtual work of the internal forces can now be written as follows, after grouping
together the area and boundary terms, and making use of the tensors’ symmetries,

δU = δU1 + δU2 =
∫

Ω
M̃αβ

(
−1

2

)(
δθα,β + δθβ,α

)
dΩ +

∫
Ω

Q̃α(δw,α − δθα)dΩ

+
∫

∂Ω
nαmαβγ

(
−1

2

)(
δθβ,γ + δθγ,β

)
dS +

∫
∂Ω

nαmαβ3
(
δw,β − δθβ

)
dS

(33)

Using the symmetries of the tensors, Equation (33) is equivalent to

δU =
∫

Ω
M̃αβ

(
−δθα,β

)
dΩ +

∫
Ω

Q̃α(δw,α − δθα)dΩ+∫
∂Ω

nαmαβγ

(
−δθβ,γ

)
dS +

∫
∂Ω

nαmαβ3
(
δw,β − δθβ

)
dS

(34)

Applying the Green–Gauss theorem in the area integrals of Equation (34),

δU =
∫

Ω
M̃αβ,βδθαdΩ−

∫
Ω

Q̃α,αδwdΩ +
∫

Ω
Q̃α(−δθα)dΩ

−
∫

∂Ω
nβ M̃αβδθαdΩ +

∫
∂Ω

nαQ̃αδwdΩ

+
∫

∂Ω
nαmαβγ

(
−δθβ,γ

)
dS +

∫
∂Ω

nαmαβ3
(
δw,β − δθβ

)
dS

(35)

Observing carefully the last boundary terms of (35) we conclude that the derivatives
of the variations must be further decomposed, introducing variations of the tangential
(surface) derivatives and normal (to the boundary) derivatives. This is necessary, as only
the variations of the normal derivatives are independent of the values of the variations of
the respective variables. Then, the surface divergence theorem, combined with the Stokes
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theorem, will be employed in order to write the variations of the tangential derivatives in
terms of the variations of the respective variables at the boundary.

It is recalled that
δθβ,γ = Dγδθβ + nγDδθβ

δw,β = Dβδw + nβDδw
(36)

where Dj(∗)
.
=
(

δjl − njnl

)
∂l(∗) and D(∗) .

= nl∂l(∗) are the well-known surface and
normal gradient operators, respectively.

Thus, the following relations are valid and should be substituted in Equation (35),∫
∂Ω

nαmαβγ

(
−δθβ,γ

)
dS =−

∫
∂Ω

(Dlnl)nγnαmαβγδθβdS−
∮

C
‖mγnαmαβγ‖δθβdc

+
∫

∂Ω
Dγ

(
nαmαβγ

)
δθβdS−

∫
∂Ω

nαmαβγ

(
nγDδθβ

)
dS

(37)

∫
∂Ω

nαmαβ3δw,β =
∫

∂Ω
(Dlnl)nβnαmαβ3δwdS +

∮
C
‖mβnαmαβ3‖δwdc

−
∫

∂Ω
Dβ

(
nαmαβ3

)
δwdS +

∫
∂Ω

nαmαβ3nβDδwdS
(38)

The term ‖∗‖ denotes the jump of the quantity in the brackets across curve(s) C.
In our case, mα = e3γαs3nγ, where s3 is the tangential vector of curve(s) C, and eijk is the
Levi–Civita permutation symbol. As the domain is two-dimensional, the (typical) curve C
is normal to the boundary of the plate and s3‖n3, at the corner points. Furthermore, the line
integral degenerates to point-wise values (the jumps are located only at the corner points
of the boundary of the domain Ω).

4.2. The Virtual Work of the Inertia Forces

The virtual work of the inertia forces (27) is written as follows, [18], where h accounts
for the micro-inertia effect of the micro-structure and ρ is the material density. Without loss
of generality, h and ρ are considered independent of the plate’s coordinates.

δK =
∫∫

Ω
ρükδukdzdΩ +

∫∫
Ω

(
ρh2

3

)
ük,pδuk,pdzdΩ

=
∫∫

Ω
ρ(üαδuα + ü3δu3)dzdΩ +

∫∫
Ω

(
ρh2

3

)
üα,βδuα,βdzdΩ

+
∫∫

Ω

(
ρh2

3

)
üα,3δuα,3dzdΩ +

∫∫
Ω

(
ρh2

3

)
ü3,αδu3,αdzdΩ ⇒

δK =
∫∫

Ω
ρz2(θ̈αδθα

)
dzdΩ +

∫∫
Ωt

ρ(ẅδw)dzdΩ +
∫∫

Ω

(
ρh2

3

)
z2θ̈α,βδθα,βdzdΩ

+
∫∫

Ω

(
ρh2

3

)
θ̈αδθαdzdΩ +

∫∫
Ω

(
ρh2

3

)
ẅ,αδw,αdzdΩ ⇒

δK =
∫

Ω
ρIz
(
θ̈αδθα

)
dΩ +

∫
Ω

ρt(ẅδw)dΩ +
∫

Ω
Iz

(
ρh2

3

)
θ̈α,βδθα,βdΩ

+
∫

Ω
t
(

ρh2

3

)
θ̈αδθαdΩ +

∫
Ω

t
(

ρh2

3

)
ẅ,αδw,αdΩ

(39)
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Application of the Green–Gauss theorem in Equation (39) gives finally

δK =
∫

Ω
ρt(ẅδw)dΩ +

∫
Ω

ρIz
(
θ̈αδθα

)
dΩ−

∫
Ω

Iz

(
ρh2

3

)
θ̈α,ββδθαdΩ

+
∫

Ω
t
(

ρh2

3

)
θ̈αδθαdΩ−

∫
Ω

t
(

ρh2

3

)
ẅ,ααδwdΩ

+
∫

∂Ω
nβ Iz

(
ρh2

3

)
θ̈α,βδθαdS +

∫
∂Ω

nαt
(

ρh2

3

)
ẅ,αδwdS

(40)

4.3. The Virtual Work of the External Forces

Assuming only classical boundary forces, the virtual work of the applied external
forces is written as follows,

δW =
∫

∂Ω
(−δθα)Mαds +

∫
∂Ω

QNδwds +
∫

Ω
q(x, y)δwdΩ (41)

where M .
=

{
M1
M2

}
is the vector of the applied external bending moments, [Nm/m], QN is

the applied shear force, [N/m], and q(x, y) is the applied lateral distributed load, [N/m2].

4.4. The Governing Equations of Motion and the Boundary Conditions

Substituting (35), (40), and (41) into virtual work principle (27), there follows,∫
Ω

M̃αβ,βδθαdΩ +
∫

Ω
Q̃α(−δθα)dΩ−

∫
Ω

Q̃α,αδwdΩ

−
∫

∂Ω
nβ M̃αβδθαdΩ +

∫
∂Ω

nαQ̃αδwdΩ

−
∫

∂Ω
(Dlnl)nγnαmαβγδθβdS−

∮
C
‖mγnαmαβγ‖δθβdc

+
∫

∂Ω
Dγ

(
nαmαβγ

)
δθβdS−

∫
∂Ω

nαmαβγ

(
nγDδθβ

)
dS

+
∫

∂Ω
(Dlnl)nβnαmαβ3δwdS +

∮
C
‖mβnαmαβ3‖δwdc

−
∫

∂Ω
Dβ

(
nαmαβ3

)
δwdS +

∫
∂Ω

nαmαβ3nβDδwdS +
∫

∂Ω
nαmαβ3

(
−δθβ

)
dS

+
∫

Ω
ρt(ẅδw)dΩ−

∫
Ω

t
(

ρh2

3

)
ẅ,ααδwdΩ +

∫
Ω

ρIz
(
θ̈αδθα

)
dΩ

−
∫

Ω
Iz

(
ρh2

3

)
θ̈α,ββδθαdΩ +

∫
Ω

t
(

ρh2

3

)
θ̈αδθαdΩ

+
∫

∂Ω
nβ Iz

(
ρh2

3

)
θ̈α,βδθαdS +

∫
∂Ω

nαt
(

ρh2

3

)
ẅ,αδwdS

=
∫

∂Ω
Mα(−δθα)ds +

∫
∂Ω

QNδwds +
∫

Ω
q(x, y)δwdΩ

(42)

Note that the variations δw, δθα are independent. Based on the fundamental lemma of
the calculus of variations (or the weighted residual method), the so-called Euler–Lagrange
Equations (or the Strong form) for the current problem, along with the respective essential
and natural boundary conditions can be derived from Equation (42):

(a1) Euler–Lagrange Equations for Mindlin–Reissner type strain gradient elastic plate:

M̃αβ,β − Q̃α + ρIz θ̈α + t
ρh2

3
θ̈α − Iz

ρh2

3
θ̈α,ββ = 0 (43)

Q̃α,α − ρtẅ + t
ρh2

3
ẅ,αα + q(x, y) = 0 (44)
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Upon substituting Equations (23)–(25) into the equilibrium bending moments and
shear forces (32), and the latter into Equations (43) and (44), the governing equations of
motion take the following form,

−kstG(w,α − θa)−
1
2

D
[
(1 + ν)ϑγ,γα + (1− ν)θα,ββ

]
+Izg2[(λ1 + G)θδ,δγγα + Gθα,ββγγ

]
+ tg2[Gw,αββ − (λ1 + G)θδ,δα − 2Gθα,ββ

]
=

−ρ

(
Iz + t

h2

3

)
θ̈a + ρIz

h2

3
θ̈α,ββ

(45)

kstG(w,αα − θα,α)− tGg2(w,ααββ − θα,αββ

)
+ q = ρtẅ− ρt

h2

3
ẅ,αα (46)

Equations (45) and (46) will be directly compared with the respective ones published
in literature, see Section 6 below, and the results will be presented in Section 8 below.

(b1) Moment natural boundary conditions:

− nβ M̃αβ − (Dlnl)nγnβmβαγ + Dγ

(
nβmβαγ

)
− nβmβα3 + nβ Iz

ρh2

3
θ̈α,β = −Mα

or θα is fixed
(47)

(c1) Shear Force natural boundary conditions:

nαQ̃α + (Dlnl)nβnαmαβ3 − Dβ

(
nαmαβ3

)
+ nαt

ρh2

3
ẅ,α = QN

or w is fixed
(48)

(d1) Double moment natural conditions:

nαnγmαβγ = 0 or Dθβ is fixed

nαmαβ3nβ = 0 or Dw is fixed
(49)

(e1) Jump conditions at the plate corners:

‖mγnαmαβγ‖ = 0 or θβ is fixed at the current corner

‖mβnαmαβ3‖ = 0 or w is fixed at the current corner
(50)

4.5. Governing Equations of Motion and Boundary Conditions for Mindlin–Reissner-Type Strain
Gradient Plate with Straight Boundaries Aligned to Axes x or y

For the purpose of completeness, we depict extensively the above boundary value
problem in the case of straight plate boundaries, parallel to x or y axis (ninj = δij, for the
outer unit vectors, normal to the boundary).

(a2) Euler–Lagrange Equations for Mindlin–Reissner-type strain gradient elastic:

t
ρh2

3
θ̈1 − Iz

ρh2

3
θ̈1,22 − Iz

ρh2

3
θ̈1,11 + ρIz θ̈1 + M̃11,1 + M̃12,2 − Q̃1 = 0

t
ρh2

3
θ̈2 − Iz

ρh2

3
θ̈2,22 − Iz

ρh2

3
θ̈2,11 + ρIz θ̈2 + M̃22,2 + M̃12,1 − Q̃2 = 0

t
ρh2

3
ẅ,22 + t

ρh2

3
ẅ,11 − ρtẅ + Q̃1,1 + Q̃2,2 + q(x, y) = 0

(51)

or in a more extended form,
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dM
1 = kstG(w,1 − θ1)− tGg2(w,111 + w,122) + ABθ1,11 + ACθ1,22 + ADθ2,12

− Izg2[(λ1 + 2G)θ1,1111 + (λ1 + 3G)θ1,1122 + Gθ1,2222 + (λ1 + G)(θ2,1112 + θ2,1222)]

dM
2 = kstG(w,2 − θ2)− tGg2(w,211 + w,222) + ABθ2,22 + ACθ2,11 + ADθ1,12

− Izg2[(λ1 + 2G)θ2,2222 + (λ1 + 3G)θ2,1122 + Gθ2,1111 + (λ1 + G)(θ1,1112 + θ1,1222)]

dM
0 = kstG(w,11 + w,22)− tGg2(w,1111 + 2w,1122 + w,2222)

− kstG(θ1,1 + θ2,2) + tGg2(θ1,111 + θ1,122 + θ2,112 + θ2,222) + q

(52)

where
AB = Iz(λ1 + 2G) + tg2(λ1 + 3G)

AC = G
(

Iz + 2tg2
)

AD = (λ1 + G)
(

Iz + tg2
) (53)

and the left-hand-side parts are equal to

dM
1 = ρ

(
Iz + t

h2

3

)
θ̈1 − Iz

ρh2

3
(
θ̈1,11 + θ̈1,22

)
dM

2 = ρ

(
Iz + t

h2

3

)
θ̈2 − Iz

ρh2

3
(
θ̈2,11 + θ̈2,22

)
dM

0 = ρtẅ− t
ρh2

3
(ẅ,11 + ẅ,22)

(54)

(b2) Moment natural boundary conditions:(
Iz

ρh2

3
θ̈1,1n1 − n1M̃11 + m112,2n1 −m113n1

)
+(

Iz
ρh2

3
θ̈1,2n2 − n2M̃12 + m211,1n2 −m213n2

)
= −M1 or θ1 is fixed(

Iz
ρh2

3
θ̈2,1n1 − n1M̃12 + m122,2n1 −m123n1

)
+(

Iz
ρh2

3
θ̈2,2n2 − n2M̃2 + m212,1n2 −m223n2

)
= −M2 or θ2 is fixed

(55)

(c2) Shear Force natural boundary conditions:(
t
ρh2

3
ẅ,1n1 + n1Q̃1 −m123,2n1

)
+

(
t
ρh2

3
ẅ2n2 + n2Q̃2 −m213,1n2

)
= QN

or w is fixed
(56)

(d2) Double moment natural boundary conditions:

m111n1 = 0 or θ1,1 is fixed

m212n2 = 0 or θ1,2 is fixed

m112n1 = 0 or θ2,1 is fixed

m222n2 = 0 or θ2,2 is fixed

m113n1 = 0 or w,1 is fixed

m223n2 = 0 or w,2 is fixed

(57)
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(e2) Jump conditions at the right angle corners, with reference to Figure 3:(
s3n2

1m112 − s3n2
2m211

)C+

−
(

s3n2
1m112 − s3n2

2m211

)C−
= 0 or θ1 is fixed(

s3n2
1m122 − s3n2

2m221

)C+

−
(

s3n2
1m122 − s3n2

2m221

)C−
= 0 or θ2 is fixed(

s3n2
1m123 − s3n2

2m213

)C+

−
(

s3n2
1m123 − s3n2

2m213

)C−
= 0 or w is fixed

(58)

Due to the fact that the normal vectors are assigned the values {n1, n2} = {0,±1},
the above relations reduce to the following ones, valid at every corner of the plate with
straight boundaries, parallel to the axes x or y of the Cartesian reference system:

m211 + m112 = 0 or θ1 is fixed

m122 + m212 = 0 or θ2 is fixed

m213 + m123 = 0 or w is fixed

(59)

n
− = (n1, n2)

−

= (n1, n2)
+

s3

C−

Figure 3. Positive sign notation for the jump conditions at the plate corner C.

5. Development of the Kirchhoff-Type Gradient Elastic Plate

We proceed with the derivation of the Euler–Lagrange equations for the respective
Kirchhoff thin plate theory. A similar formulation for the static case has been published
in [40]. In this section, a different form for the boundary conditions is given, that is
consistent with the notation of the present work. The basic assumption, in addition to those
of the Mindlin–Reissner-based theory, is that

w,α − θ,α = 0 (60)

As a result of (60), some of the equations which have been derived in the framework of
the Mindlin–Reissner theory degenerate or become meaningless. For example, from term
τα3 in (14) or term τα3 in (22) and term καβ3 in (18), the out-of-plane shear stresses vanish,
and therefore the internal shear force cannot be evaluated by integrating over the thickness.

5.1. The Virtual Work of the Internal Forces

Starting from the virtual work of the internal forces, Equation (33), we have two
different sources of contributions. The first contribution is due to the equilibrium resultant
moments, whose definition remains the same, see term M̃αβ in (32),
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δŨ1 =
∫

Ω
M̃αβ

(
−1

2

)(
δθα,β + δθβ,α

)
dΩ =

∫
Ω

M̃αβ

(
−1

2

)(
δw,αβ + δw,βα

)
dΩ

Note that we made use of the Kirchhoff constraint (60). Applying the Green–Gauss
theorem, as usually, we get

δŨ1 =

(
−1

2

) ∫
∂Ω

M̃αβ

(
nβδw,α + nαδw,β

)
dS +

1
2

∫
Ω

M̃αβ,βδw,αdΩ +
1
2

∫
Ω

M̃αβ,αδw,βdΩ (61)

Applying for a second time the Gauss theorem in the last two integrals, and using the
symmetry condition M̃αβ = M̃βα, it follows that

δŨ1 = −
∫

∂Ω
M̃αβnαδw,βdS +

∫
∂Ω

M̃αβ,βnαδwdS−
∫

Ω
M̃αβ,αβδwdΩ (62)

The derivatives of the variations on the boundary must be written appropriately, in or-
der to separate the surface gradient from the normal gradient contribution. As in Section 4.1
above, we decompose δw,β into surface and normal components, see Equation (36), and sub-
stitute in (62), which gives

δŨ1 = −
∫

∂Ω
M̃αβnαDβδwdS−

∫
∂Ω

M̃αβnαnβDβδwdS

+
∫

∂Ω
M̃αβ,βnαδwdS−

∫
Ω

M̃αβ,αβδwdΩ
(63)

The first term on the right hand side of (63) is written appropriately, via the use of
surface divergence and Stokes theorems [18],

−
∫

∂Ω
M̃αβnαDβ(δw)dS = −

∫
∂Ω

Dβ

(
nα M̃αβδw

)
dS +

∫
∂Ω

Dβ

(
nα M̃αβ

)
δwdS =

−
∫

∂Ω
(Dlnl)nβnα M̃αβδwdS−

∮
C
‖mβnα M̃αβ‖δwdc

+
∫

∂Ω
Dβ

(
nα M̃αβ

)
δwdS

(64)

Now, we focus on the second contribution in (33), coming from the hyper-moments,

δŨ2 =
∫

∂Ω
nαmαβγ

(
−1

2

)(
δθβ,γ + δθγ,β

)
d S

= −
∫

∂Ω
nαmαβγ

δθβ,γd S

= −
∫

∂Ω
nαmαβγ

(
Dγδθβ + nγDδθβ

)
dS ⇒

δŨ2 = −
∫

∂Ω
nαmαβγ

(
Dγδw,β

)
dS−

∫
∂Ω

nαmαβγ

(
nγDδw,β

)
dS (65)

The first term on the right hand side of (65) is written as follows,
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−
∫

∂Ω
nαmαβγ

(
Dγδw,β

)
dS = −

∫
∂Ω

(Dmnm)nβ

[
(Dlnl)nγnαmαβγδw

]
dS

−
∮

C
‖mβ(Dlnl)nγnαmαβγ‖δwdc

+
∫

∂Ω
Dβ

[
(Dlnl)nγnαmαβγ

]
δwdS

−
∫

∂Ω
(Dlnl)nγnαmαβγ

(
nβDδw

)
dS

−
∮

C
‖mγnαmαβγ‖δw,βdc

+
∫

∂Ω
Dmnmnβ

[
δwDγ

(
nαmαβγ

)]
dS

+
∮

C
‖mβDγ

(
nαmαβγ

)
‖δwdc

−
∫

∂Ω
Dβ

[
Dγ

(
nαmαβγ

)]
δwdS

+
∫

∂Ω
Dγ

(
nαmαβγ

)(
nβDδw

)
dS

(66)

In a similar way, the second term on the right hand side of (65) is written as follows,

−
∫

∂Ω
nαmαβγ

(
nγDδw,β

)
dS = −

∫
∂Ω

(Dmnm)nβ

(
nαmαβγnγDδw

)
dS

−
∮

C
‖mβnαmαβγnγ‖Dδwdc

+
∫

∂Ω
Dβ

(
nαmαβγnγ

)
(Dδw)dS

−
∫

∂Ω
nαmαβγnγnβDDδwdS

(67)

5.2. The Virtual Work of the Inertia Forces

After applying the Green–Gauss and Stoke’s theorems in some terms of (40) it fol-
lows for the virtual work of the inertia forces δK, for the case of Kirchhoff-type gradient
elastic plate,

δK =
∫

Ω
ρtẅδwdΩ +

∫
∂Ω

nαρIzẅ,αδwdS−
∫

Ω
ρIzẅ,ααδwdΩ

−
∫

∂Ω
nα Iz

ρh2

3
ẅ,αββδwdS +

∫
Ω

Iz
ρh2

3
ẅ,ααββδwdΩ

+
∫

∂Ω
(Dmnm)nα

(
nβ Iz

ρh2

3
ẅ,αβ

)
δwdS +

∮
C

∥∥∥∥mαnβ Iz
ρh2

3
ẅ,αβ

∥∥∥∥δwdc

−
∫

∂Ω
Dα

(
nβ Iz

ρh2

3
ẅ,αβ

)
δwdS +

∫
∂Ω

nβ Iz
ρh2

3
ẅ,αβ(nαDδw)dS

− 2
∫

Ω
t
ρh2

3
ẅ,ααδwdΩ + 2

∫
∂Ω

nαt
ρh2

3
ẅ,αδwdS

(68)

5.3. The Virtual Work of the External Forces

The virtual work of the external forces and moments has the same structure as previ-
ously (see Section 4.3 above and Equation (41)), under the influence of (60),

δW =
∫

∂Ω
(−δw,α)Mαds +

∫
∂Ω

QNδwds +
∫

Ω
q(x, y)δwdΩ (69)
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Further, using Stoke’s theorem, it can be shown that∫
∂Ω

(−δw,α)Mαds = −
∫

∂Ω
(Dlnl)nα(Mαδw)dS−

∮
C
‖mα Mα‖δwdc

+
∫

∂Ω
(Dα Mα)δw

)
dS−

∫
∂Ω

Mαnα(Dδw)dS
(70)

5.4. The Euler–Lagrange Equations of Motion and the Respective Boundary Conditions for
Kirchhoff Type Gradient Elastic Plate

Combining (63) to (70), we finally get the Euler–Lagrange Equations and boundary
conditions, for the Kirchhoff-type gradient elastic plate:

(a3) Euler–Lagrange Equations for Kirchhoff-type gradient elastic plate:

M̃αβ,αβ + q(x, y) = ρtẅ− ρ

(
Iz + 2t

h2

3

)
ẅ,αα + Iz

ρh2

3
ẅ,ααββ (71)

(b3) Shear Force Natural Boundary conditions:

QN − (Dlnl)nα Mα + Dα Mα =M̃αβ,βnα − (Dlnl)nβnα M̃αβ + Dβ

(
nα M̃αβ

)
− (Dmnm)nβ

[
(Dlnl)nγnαmαβγ

]
+ Dβ

[
(Dlnl)nγnαmαβγ

]
+ (Dmnm)nβ

[
Dγ

(
nαmαβγ

)]
− Dβ

[
Dγ

(
nαmαβγ

)]
+ ρIzẅ,αnα + (Dmnm)nαnβ Iz

ρh2

3
ẅ,αβ − Dα

(
nβ Iz

ρh2

3
ẅ,αβ

)
− nα Iz

ρh2

3
ẅ,αββ + nαt

2ρh2

3
ẅ,α

or w is fixed on this part of the boundary

(72)

(c3) Moment Natural Boundary conditions:

nα Mα =M̃αβnαnβ + (Dlnl)nγnαnβmαβγ − nβDγ

(
nαmαβγ

)
+ (Dmnm)nβnαmαβγnγ − Dβ

(
nαmαβγnγ

)
− nβ Iz

ρh2

3
nαẅ,αβ

or Dw is fixed on this part of the boundary

(73)

(d3) Hyper-Moment Natural Boundary conditions:

nαmαβγnγnβ = 0

or DDw is fixed on this part of the boundary
(74)

(e3) Jump conditions at the corners:

−‖mβnα M̃αβ‖ − ‖mβ(Dlnl)nγnαmαβγ‖+ ‖mβDγ

(
nαmαβγ

)
‖

+

∥∥∥∥mαnβ Iz
ρh2

3
ẅ,αβ

∥∥∥∥ = −‖mα Mα‖

or w is fixed on this corner of the boundary

(75)

(f3) Hyper-Jump conditions at the corners:

‖mγnαmαβγDβδw‖+ 2‖mγnαnβmαβγDδw‖ = 0 (76)
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5.5. Governing Equation of Motion and Boundary Conditions for Kirchhoff Type Strain Gradient
Plate with Straight Boundaries Aligned to x or y

For the case of straight boundaries aligned to the axes x or y, in the same way as in
Section 4.5 for the Mindlin–Reissner-type gradient elastic plate, Equations (71)–(76) take the
following simplified forms:

(a4) Euler-Lagrange Equations for Kirchhoff-type gradient elastic plate:

M̃11,11 + 2M̃12,12 + M̃22,22 + q(x, y) = ρtẅ− ρ

(
Iz + 2t

h2

3

)
ẅ,αα + ρIz

h2

3
ẅ,ααββ

or

− D1

(
Iz + tg2

)
w,ααββ + g2D1 Izw,ααββγγ + q(x, y) = ρtẅ− ρ

(
Iz + 2t

h2

3

)
ẅ,αα + ρIz

h2

3
ẅ,ααββ

(77)

(b4) Shear Force Natural Boundary conditions:

QN =n1
(

M̃11,1 + 2M̃12,2 −m122,22
)
+ n2

(
M̃22,2 + 2M̃21,1 −m211,11

)
+ ρ

(
Iz + 2t

h2

3

)
(n1ẅ,1 + n2ẅ,2)− Iz

ρh2

3
[n1(ẅ,111 + ẅ,122) + n2(ẅ,211 + ẅ,222)]

or deflection w is fixed

(78)

(c4) Moment Natural Boundary conditions:

M1 = n1M̃11 − n1m112,2 − n1m121,2 − n1 Iz
ρh2

3
ẅ,11 or w,1 is fixed

M2 = n2M̃22 − n2m221,1 − n2m212,1 − n2 Iz
ρh2

3
ẅ,22 or w,2 is fixed

(79)

(d4) Hyper-Moment Natural Boundary conditions:

n1m111 = 0 or w,11 is fixed

n2m222 = 0 or w,22 is fixed
(80)

(e4) Jump conditions at the corners:

−‖−s3n2M1 + s3n1M2‖ =− ‖s3n2
1M̃12 − s3n2

2M̃21‖

+ ‖−s3n2
1

(
m121,1 − n2

1m121,1 + m122,2

)
+ s3n2

2

(
m211,1 − n2

2m212,2 + m212,2

)
‖

+ Iz
ρh2

3
‖−s3n2

2ẅ,12 + s3n2
1ẅ,21‖

or deflection w is fixed

(81)

For example, for a corner with normal vectors n+ = (0, 1) and n− = (1, 0) , at the
neighboring perpendicular sides, the above relation reduces to

−(−s3M1)
C+

+ (s3M2)
C− = s3

(
M̃21 + m211,1

)C+

+ s3
(

M̃12 + m122,2
)C−

+ Iz
ρh2

3
s3

[
(−ẅ,12)

C+
− (ẅ,21)

C−
]

(82)

following the notation of Figure 3.
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(f4) Hyper-Jump conditions at the corners:

‖n2
1m112 − n2

2m211 − n4
1m112 + 2n4

1m112‖ = 0 or w,1 is fixed

‖n2
1m122 − n2

2m221 + n4
2m221 − 2n4

2m221‖ = 0 or w,2 is fixed
(83)

6. Short Literature Review of Micro-Structured Plate Theories

In this section some models for Mindlin–Reissner and Kirchhoff type plates with
microstructure are being reviewed briefly, in order to be compared with the current ones.
The Mindlin-Reissner type elastic plates will be denoted as “model Mi”, and the Kirchhoff
type elastic plates as “model Ki”, for i = 1, . . . , 5. The models proposed in this work
will be denoted as “model M1”, Equations (45) and (46), for Mindlin–Reissner plates,
and “model K1”, Equation (71), for Kirchhoff plates. For the sake of brevity, only the
governing partial differential equations will be presented, and refer the interested reader
to the cited publications.

6.1. Model M2: The Classical Mindlin–Reissner Plate

The classical Midlin–Reissner elastic plate first established by Mindlin [48], can be
expressed by the following equations of motion [47,50],

ksGt(w,11 + w,22 − θ1,1 − θ2,2) + q = I0ẅ

ksGt(w,1 − θ1) + Iz[(λ1 + 2G)(θ1,11 + νθ2,12) + G(θ1,22 + θ2,12)] = I2θ̈1

ksGt(w,2 − θ2) + Iz[(λ1 + 2G)(θ2,22 + νθ1,12) + G(θ2,11 + θ1,12)] = I2θ̈2

(84)

where w is the flexural displacement, −θ1, θ2 are the rotations of a normal to the mid-plane
with respect to the y- and x-axes, respectively, and {I0, I2} = {ρt, ρIz}.

6.2. Model M3: S. Ramezani’s Mindlin Type Micro-Plate

In the work of S. Ramezani [43] a Mindlin-type plate based on Mindlin’s strain
gradient elasticity theory [18,20] was developed including five microscopic parameters
αi, i = 1, . . . , 5. The variational formulation derived three governing equations for the
motion of the plate and six pairs of non-standard boundary conditions. Additionally, S.
Ramezani expressed the equations of motion for the special case when the above intrinsic
parameters reduce to one, g. The two basic assumptions used for this plate theory are,
first of all, the plane stress assumption expressed by τ33 = 0 and second, the vanishing of
double stresses on the top and bottom surfaces of the plate, expressed by µ3αi = 0. These
assumptions are obviously different from the one used in the current model, expressed by
t3 = 0. Furthermore, in Ramezani’s model the micro-inertia terms were omitted. For the
purposes of this paper, and in order to have a direct comparison with the results of the
present work and the models to be presented in the subsequent sections, we reproduce
herein only the constitutive equations and the equations of motion for the special case of
one microscopic parameter g.

Note that the two basic assumptions stated before result in constitutive equations for
the double stresses µijk that differ from those obtained herein,

µϕαβ = zg2[λδαβψϑ,ϑϕ + G
(
ψα,βϕ + ψβ,αϕ

)]
µ3αβ = g2[λδαβψϕ,ϕ + G

(
ψα,β + ψβ,α

)]
µαβ3 = Gg2(ψβ,α + w,αβ

) (85)

where ψα = −θα.
A direct comparison between (85) and terms µαβγ, µ3αβ, µαβ3 in (22) reveals the differ-

ence between the constitutive relations used in this paper and those used by Ramezani.
This difference is related to the Lame constant λ used by Ramezani and the constant λ1
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(see Section 3) used in the current model. This influences the overall derivation, and the
Ramezani’s resulting equations of motion are given by the following three relations:

−Dsks
(
w,β + ψβ

)
+

1
2

D f
[
(1 + ν)ψα,αβ + (1− ν)ψβ,αα

]
−Izg2[(λ + G)ψα,αϕϕβ + Gψβ,ααϕϕ

]
+tg2[(λ + G)ψα,αβ + 2Gψβ,αα + Gw,ααβ

]
= I2ψ̈β

−tGg2(w,ββαα + ψβ,βαα

)
+ Dsks(w,αα + ψα,α) + q = I0ẅ

(86)

where Ds = tG, D f =
E

1− ν2 Iz, I0 = ρt, I2 = ρIz and α, β = {1, 2}.
Nevertheless, by setting g = 0, the classical Mindlin plate theory is obtained. These

equations are directly comparable with (45) and (46), respectively, of the present work.

6.3. Model M4: Modified Couple-Stress Mindlin Plate

Ma et al. [37] developed a Mindlin-type plate model based on a modified couple
stress theory [51] with one intrinsic parameter g. Herein we present the three equations of
motion, omitting the in-plane loading that was included in [51],

ksG(w,11 + w,22 − θ1,1 − θ2,2)

− 1
4

g2G(w,1111 + 2w,1122 + w,2222 + θ1,111 + θ1,122 + θ2,112 + θ2,222) +
1
t

q = ρẅ

(λ + 2G)θ1,11 + Gθ1,22 + (λ + G)θ2,12 +
12ksG

t2 (w,1 − θ1)

+
1
4

g2G(−θ1,1122 − θ1,2222 + θ2,1112 + θ2,1222)

− 3g2G
t2 (−w,111 − w,122 − θ1,11 − 4θ1,22 + 3θ2,12) = ρθ̈1

(λ + G)θ1,12 + Gθ2,11 + (λ + 2G)θ2,22 +
12ksG

t2 (w,2 − θ2)

+
1
4

g2G(θ1,1112 + θ1,1222 − θ2,1111 − θ2,1122)

− 3g2G
t2 (−w,112 − w,222 + 3θ1,12 − 4θ2,11 − θ2,22) = ρθ̈2

(87)

Note that by setting g = 0, the equations of the classical Mindlin–Reissner plate theory
are not obtained.

6.4. Model M5: Non-Local Mindlin Elastic Plate

In the works of Pin Lu, et al. [35] and Reddy J.N. [2] non-local models for Mindlin–
Reissner and Kirchhoff type elastic plates were developed including one microscopic
parameter µ̂, which for comparison purposes of the current paper will be assigned the
same values as the square of the parameter g, i.e., µ̂ = g2. For the Mindlin–Reissner-type
non-local elastic plate the following equations were derived,

−ksGt(w,11 + w,22 + φ1,1 + φ2,2) + L{q} = L{I0ẅ}
−ksGt(w,1 + φ1) + Iz[(λ1 + 2G)(φ1,11 + νφ2,12) + G(φ1,22 + φ2,12)] = L{I2φ̈1}
−ksGt(w,2 + φ2) + Iz[(λ1 + 2G)(φ2,22 + νφ1,12) + G(φ2,11 + φ1,12)] = L{I2φ̈2}

(88)

where φα = −θα and the non-local operator is given by,

L .
= 1− µ̂∇2 (89)
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It is obvious that for µ̂ = 0 the equations of classical Mindlin’s elastic plate are obtained.

6.5. Model K1: Strain Gradient Kirchhoff Type Elastic Plate

According to the current derivation of the Kirchhoff-type elastic plate of strain gradient
elasticity, see Equation (77) in Section 5.5 above, the governing equation is expressed as

− D1

(
Iz + tg2

)
w,ααββ + D1 Izg2w,ααββγγ + q = ρ

[
tẅ−

(
Iz + 2t

h2

3

)
ẅ,αα + Iz

h2

3
ẅ,ααββ

]
or

− D1

(
Iz + tg2

)
∇4w + D1 Izg2∇6w + q = ρ

[
t−
(

Iz + 2t
h2

3

)
∇2 + Iz

h2

3
∇4
]

ẅ

(90)

Classical Kirchhoff plate is obtained by setting g = h = 0. Moreover, note that in the
case of static loading, Equation (90) reduces to the one derived in [40].

6.6. Model K2: The Classical Kirchhoff Plate

The classical Kirchhoff elastic plate is expressed by the following equation of mo-
tion [50],

− D1 Iz∇4w + q = I0ẅ + I2∇2ẅ (91)

where the inertia term I2 ≡ ρIz accounts for the rotary inertia.

6.7. Model K3: Papargyri-Beskou’s Gradient Kirchhoff Type Elastic Plate

Papargyri-Beskou S. et al. [41,42] developed a gradient elastic Kirchhoff plate with
one microscopic parameter g, based on the total stresses σαβ. In these works, the total
stresses σαβ are considered to be energy conjugate to the classical strain components εαβ.
The governing equation of motion as obtained by Paparagyri-Beskou is expressed as
follows [41],

− D1 Iz

(
1− g2∇2

)
∇4w + q = ρtẅ (92)

6.8. Model K4: Modified Couple-Stress Kirchhoff Type Elastic Plate

A Kirchhoff-type elastic plate based on a modified couple-stress theory [39] was
developed by Tsiatas G. in [38]. The governing equation for static loading was provided as
follows (see Equation (37) of the cited paper),(

D1 Iz + Dl
)
∇4w = q (93)

where Dl = g2Gt is bending rigidity due to rotation gradients. For comparison pur-
poses and for the free vibration example, the inertia term I0ẅ will be considered in the
above equation.

6.9. Model K5: Non-Local Kirchhoff Elastic Plate

The governing equation for the non-local Kirchhoff-type elastic plate was obtained in
the works of Pin Lu, et al. [35] and Reddy J.N. [2], as stated previously in Section 6.4 above,

− D1 Iz∇4w + L{q} = L{I0ẅ} (94)

where the operator L is given by Equation (89). It is obvious that for µ̂ = 0 the equation of
classical Kirchhoff elastic plate is obtained.

7. Example: Navier Solutions for Static Bending and Free Vibration of a Simply
Supported Rectangular Plate

In this section, the example of a simply supported rectangular plate is illustrated,
see Figure 4, in order to investigate the static bending and free vibration behavior of the
gradient Mindlin–Reissner–type elastic plate developed in Section 4.5. The results are
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compared with the classical Mindlin and Kirchhoff plates, and the models reviewed from
the literature in Section 6.

We consider a rectangular plate whose straight sides of length a and b are parallel to
the axes x- and y-, respectively, of the Cartesian reference system Oxy, Figure 4. The upper
surface of the plate is loaded by a concentrated force Q0, at the point (x, y) = (a/2, b/2).
In the following subsections, the appropriate boundary conditions for the Mindlin–Reissner
and Kirchhoff plate models M1, M2, K1, and K2 are illustrated.

O

y

z

x
Q0

a

b

A

Figure 4. Simply supported plate, forced by a concentrated vertical load Q.

7.1. Boundary Conditions for the Mindlin–Reissner Plate Model M1

For the boundaries referred to the sides DO and AB, with coordinates and normal vec-
tors (x, y)DO = (0, y), (x, y)AB = (a, y), and nDO = {−1, 0}, nAB = {+1, 0}, the following
boundary conditions are considered, according to relations (55)–(57) of Section 4.5,

(b2)(i) M1 = 0

(b2)(ii) θ2 = 0

(c2) w = 0

(d2)(i) θ1,1 = 0

(d2)(iii) n1m112 = 0

(d2)(v) n1m113 = 0

(95)

For the boundaries referred to the sides OA and BD, with coordinates and normal
vectors (x, y)OA = (x, 0), (x, y)BD = (x, b), and nOA = {0,−1}, nAB = {0,+1}, respec-
tively, the following boundary conditions are considered, according to relations (55)–(58)
of Section 4.5,

(b2)(i) θ1 = 0

(b2)(ii) M2 = 0

(c2) w = 0

(d2)(ii) n2m212 = 0

(d2)(iv) θ2,2 = 0

(d2)(vi) n2m223 = 0

(96)

Finally, the jump conditions in Equation (58) at the four corners of the plate
(
CO, CA, CB, CD)

read as follows:
θ1 = 0; θ2 = 0; w = 0 (97)
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7.2. Boundary Conditions for the Kirchhoff Plate Model K1

For the boundaries referred to the sides DO and AB, with coordinates and normal
vectors (x, y)DO = (0, y), (x, y)AB = (a, y), and nDO = {−1, 0}, nAB = {+1, 0}, respec-
tively, the following boundary conditions are considered, according to relations (78)–(80)
of Section 5.5,

(b4) w = 0

(c4) M1 = 0

(d4) w,11 = 0

(98)

For the boundaries referred to the sides OA and BD, with coordinates and normal vec-
tors (x, y)OA = (x, 0), (x, y)BD = (x, b), and nOA = {0,−1}, nBD = {0,+1}, respectively,
we have

(b4) w = 0

(c4) M2 = 0

(d4) w,22 = 0

(99)

Finally, the jump conditions (81)–(83) at the four corners of the plate read as follows:

w = 0; w,1 = 0; w,2 = 0 (100)

7.3. Boundary Conditions for the Classical Mindlin–Reissner Plate Model M2

For the boundaries referred to the sides DO and AB, with coordinates and normal vec-
tors (x, y)DO = (0, y), (x, y)AB = (a, y), and nDO = {−1, 0}, nAB = {+1, 0}, respectively,
we have

w = 0; θ2 = 0; M11 = 0 (101)

For the boundaries referred to the sides OA and BD, with coordinates and normal vec-
tors (x, y)OA = (x, 0), (x, y)BD = (x, b), and nOA = {0,−1}, nBD = {0,+1}, respectively,
we have

w = 0; θ1 = 0; M22 = 0 (102)

7.4. Boundary Conditions for the Classical Kirchhoff Plate Model K2

For the boundaries referred to the sides DO and AB, with coordinates and normal vec-
tors (x, y)DO = (0, y), (x, y)AB = (a, y), and nDO = {−1, 0}, nAB = {+1, 0}, respectively,
there is

w = 0; M11 = 0 (103)

For the boundaries referred to the sides OA and BD, with coordinates and normal vec-
tors (x, y)OA = (x, 0), (x, y)BD = (x, b), and nOA = {0,−1}, nBD = {0,+1}, respectively,
we have

w = 0; M22 = 0 (104)

7.5. Static Bending Behavior for Mindlin–Reissner Plate Model M1

For the static bending problem the displacement and rotations are functions only of
the coordinates (x, y) of the plate’s mid-plane w .

= w(x, y), θ1
.
= θ1(x, y), θ2

.
= θ2(x, y),

and are expressed by the following double expanded trigonometric series,

w(x, y) =
∞

∑
m=1

∞

∑
n=1

Wmn sin
(mπx

a

)
sin
(nπy

b

)
θ1(x, y) =

∞

∑
m=1

∞

∑
n=1

Θx
mn cos

(mπx
a

)
sin
(nπy

b

)
θ2(x, y) =

∞

∑
m=1

∞

∑
n=1

Θy
mn sin

(mπx
a

)
cos
(nπy

b

)
(105)
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where the Fourier coefficients Wmn, Θx
mn, Θy

mn are to be determined for every pair of
the integers m and n. It is obvious that the boundary conditions stated previously in
Sections 7.1–7.4 are satisfied by the above trigonometric expansions. It should also be
noted that Equations (105) satisfy the boundary conditions related to the plate models
reviewed in Section 6 above. The interested reader should refer to the cited papers for
more details.

Additionally, the vertical loading Q on the upper surface of the plate is expanded in a
Fourier series as follows [50],

Q(x, y) =
∞

∑
m=1

∞

∑
n=1

Qmn sin
(mπx

a

)
sin
(nπy

b

)
(106)

where the Fourier coefficients Qmn are given by the relation.

Qmn =
4Q0

ab
sin
(mπ

a

)
sin
(nπ

b

)
(107)

Substituting Equations (105) and (106) into the equations of motion (52), the following
system of linear algebraic equations is obtained,

[C]
{

Wmn Θx
mn Θy

mn
}T

=
{
−Qmn 0 0

}T (108)

The solution of this system yields the relations of the Fourier coefficients Wmn, Θx
mn, Θy

mn.
Then, upon substitution into Equations (105) the exact solutions for the displacement w
and the rotations θ1, θ2 are obtained.

The components of the 3 × 3 matrix [C] are given as follows:

C21 = C12

C22 = −kstG−
( π

ab

)2(
ABm2b2 + ACn2a2

)
− Izg2

( π

ab

)4[
(λ1 + 2G)m4b4 + (λ1 + 3G)m2b2n2a2 + Gn4a4

]
C23 = −mπ

a
nπ

b

[
AD + g2 Iz(λ1 + G)Amn

]
C31 = C13

C32 = C23

C33 = −kstG−
( π

ab

)2(
ABn2a2 + ACm2b2

)
− Izg2

( π

ab

)4[
(λ1 + 2G)n4a4 + (λ1 + 3G)m2b2n2a2 + Gm4b4

]

(109)

where Amn =
( π

ab

)2(
m2b2 + n2a2).

7.6. Free Vibration Behavior for Mindlin–Reissner Plate Model M1

The displacement w and the rotations θ1, θ2 are now considered to be functions of the
time t, and the (x, y) coordinates of the plate’s mid-plane w .

= w(x, y, t), θ1
.
= θ1(x, y, t),

θ2
.
= θ2(x, y, t). They are expressed by the following double series expansions:

w(x, y, t) =
∞

∑
m=1

∞

∑
n=1

Wmn sin
(mπx

a

)
sin
(nπy

b

)
ejωmnt

θ1(x, y, t) =
∞

∑
m=1

∞

∑
n=1

Θx
mn cos

(mπx
a

)
sin
(nπy

b

)
ejωmnt

θ2(x, y, t) =
∞

∑
m=1

∞

∑
n=1

Θy
mn sin

(mπx
a

)
cos
(nπy

b

)
ejωmnt

(110)
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where ωmn is the (mn)th natural frequency of vibration of the simply supported plate, and j
the imaginary number, j2 = −1. It can easily be verified that the boundary conditions de-
scribed in Sections 7.1–7.4 are fully satisfied by Equation (110). Substituting Equation (110)
into the governing equations of motion (52), the following system of algebraic equations
is obtained, (

[C]− ρω2
mn[D]

){
Wmn Θx

mn Θy
mn
}T

=
{

0 0 0
}T (111)

where the components of the 3 × 3 matrix [C] are given by Equation (109), as in the static
case (see Section 7.5), and the components of the 3 × 3 matrix [D] are given as follows,

D11 = −t
(

1 +
h2

3
Amn

)
D22 = −

(
Iz + t

h2

3

)
− Iz

h2

3
Amn

D33 = D22

Dij = 0 for i 6= j

(112)

In order for Equation (111) to have non-trivial solutions for the Fourier coefficients
Wmn, Θx

mn, Θy
mn, the determinant of the system should be equal to zero,

det
(
[C]− ρω2

mn[D]
)
= 0 (113)

The three real and positive roots of Equation (113),
(

ω
(i)
mn

)2
, i = 1, 2, 3, correspond to

the frequencies associated with the three vibration modes of the Mindlin plate, i.e., one
flexural mode, one thickness-shear mode at the x–z plane and one thickness-shear mode
at the y–z plane [48,49,52]. The smallest one corresponds to the essential flexural mode.
Nevertheless, as it is observed by Mindlin in [48], all three principal kinematical variables,
w, θ1, θ2 contribute to the composition of these three vibration modes.

7.7. Static Bending and Free Vibration Behavior for Kirchhoff Plate Model K1

In order to investigate the static bending and free vibration behavior of the gradient
Kichhoff plate model K1, based on Equation (90) (see also Sections 6.5 and 7.2), a similar
procedure, as in Sections 7.5 and 7.6, is followed. Thus, the flexural displacement w is
expressed as a double series expansion on the (x, y) coordinates and the time t,

wK1(x, y, t) =
∞

∑
m=1

∞

∑
n=1

WK1
mn sin

(mπx
a

)
sin
(nπy

b

)
ejωK1

mnt (114)

Substituting Equation (114) into Equation (90), the following equations are derived:

1. for the static bending problem the bending Fourier coefficients WK1
mn are given as

WK1
mn =

Qmn

DA2
mn

[(
1 + 12

g2

t2

)
+ g2 Amn

] (115)

2. while, for the free vibration problem the flexural fundamental frequencies ωK1
mn are ob-

tained,

ωK1
mn =

√√√√√√√√
DA2

mn

[(
1 + 12

g2

t2

)
+ g2 Amn

]
ρ

[
t +
(

Iz + 2t
h2

3

)
Amn + Iz

h2

3
A2

mn

] (116)
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8. Numerical Results and Comparison between Models

In this section, numerical results for the example in Section 7, are presented and
discussed. The material of the plate is selected to be the same used in [37]. The numerical
values for the material properties, the shear correction factor, the load Q and the dimensions
of the plate are presented in the next Table 1.

Table 1. a Numerical values for the problem’s parameters.

Material Properties and Problem Parameters Numerical Values

Young’s Modulus E (GPa) 1.44
Poisson ratio ν 0.38
Material microscopic parameter g (µm) 17.6
Micro-inertia parameter h (µm) 17.6
Material density ρ (kg/m3) 1220.0
Shear correction factor ks 5/6
Concentrated load Q (N) 0.1

Plate thickness t (µm) Multiple of g,
e.g., t = g, 2g, 5g, 10g, . . .

Plate dimensions a and b (µm) Multiple of plate thickness t
e.g., (a, b) = 20t, 50t, 100t, . . .

a Material parameter values taken from [37].

8.1. Numerical Results for the Static Bending Problem

For the static bending behavior of the simply supported plate of Figure 4, we investi-
gate the dependence of the deflection w and the rotation θ1 on the microscopic parameter g
(the strain gradient effect), the plate thickness t, and dimensions a, b.

8.1.1. Influence of Strain Gradient Effect on Thin Plates

In Figures 5 and 6, the deflection ratio wMi/wM2 and rotation ratio θMi
1 /θM2

1 , respec-
tively, for thin plates (a = b = 20t) and for various values of the plate thickness t, are
depicted for the Mindlin–Reissner–type plates. The deflection ratios wKi/wK2 for the
Kirchhoff-type plates are depicted in Figure 7. The notations Mi and Ki, for i = 1, 3, 4, 5
stand for the classification of the plate models as presented in previous Section 6.

It is obvious that the deflections of model M1 are smaller than those of model M2,
while the difference diminishes for increasing values of the plate thickness with respect
to the material microstructure parameter g i.e., the ratio t/g. This means that the strain
gradient effect is mostly important for cases where the thickness of the plate is at the micron
scale. Similar results were also observed in the works of [37,43], as can easily be verified by
Figure 5. The gradient and couple-stress models are much stiffer than the classical ones,
both for Mindlin–Reissner–type and Kirchhoff-type plates, a result also observed by the
authors of the respective models. By contrast, the nonlocal plate models M5 and K5 are
softer than their classical counterparts, models M2 and K2, respectively [35]. Note that
model M4, as developed in [37] based on a modified couple-stress theory (see Section 6.3
above), does not converge to the classical Mindlin plate theory with increasing ratio t/g .
The same observations hold true for the rotation ratios, Figure 6. The behavior of rotation
θ2 is not depicted in a figure due to similarity with θ1.

Considering the deflection ratios for Kirchhoff plates, the same observations made
for the Mindlin plates hold true. For thin plates the strain gradient effect should not be
ignored for small values of the ratio t/g, Figure 7. It is also observed that models K1
(current) and K4 (Tsiatas’s couple-stress plate model) are much stiffer than models K3
(Papargyri-Beskou’s gradient model) and K5 (nonlocal model). Moreover, models K1 and
K4 converge to the classical Kirchhoff plate theory, model K2, with lower rate than do
models K3 and K5, at increasing ratio t/g.

Next, we are going to show the differences between models M1 (current developed
gradient model) and M3 (Ramezani’s gradient model). The deflection and rotation ratios
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for the two models are depicted in Figure 8a,b, respectively, for thin simply supported
rectangular plates and for various values of the ratio t/g. It is obvious that model M1 is
less stiff than model M3, both for deflection and rotations. This difference is due to the
different plane stress assumptions used in the two models, see Sections 2 and 6.2. It is also
observed that as the plate thickness increases with respect to g, i.e., for increasing values of
the ratio t/g, the two models converge.
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Figure 5. Deflection ratios for thin (a = b = 20t) simply supported rectangular Mindlin–Reissner
plates on (x, y) = (a/2, b/2), varying with the ratio t/g.
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(x, y) = (a/2, b/2), varying with the ratio t/g; thin (a = b = 20t) simply supported rectangular
Mindlin–Reissner plates.

8.1.2. Influence of Strain Gradient Effect on Thick Plates

The sensitivity of the plate deflection on the length-to-thickness ratio a/t, has been
investigated in [43], and the same observations hold true for the gradient model M1
developed herein. In Figures 9 and 10, for t/g equal to 1 and 20, respectively, the deflection
ratios are depicted for thick plates, (a/t) ∈ [5, 20]. It is observed that as long as the
plate thickness t is at the micron scale, i.e., comparable to the microstructure parameter
g, the deflection ratios for models M1, M3, and M4 exhibit very small values, Figure 9a.
On the other hand, for larger values of the ratio t/g, e.g., 20, the deflection ratio is closer
to unity even for thick plates, although the strain gradient effect has not been diminished
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completely, see Figure 10. These observations indicate the significance of the strain gradient
effect on the static bending behavior of thick plates. It is also interesting to indicate the
peculiar behavior of models M4 and M5. For the nonlocal model M5 and for t ≈ g we
observe an extremely noticeable difference with the classical model M2, especially for thick
plates, Figure 9b. For the couple-stress model M4, we observe a constant deviation from its
classical counterpart M2 (Figure 10), meaning that the strain gradient effect influences the
bending behavior in any case, i.e., for thin and thick plates, and for any value of the ratio
t/g. This last observation may be interpreted by the fact that model M4 do not reduce to
model M2 when the microscopic parameter g becomes zero, see Section 6.3.

It would also be interesting to investigate the influence of the strain gradient effect on
the deflection ratio between models M1 and K2, i.e., with respect to the classical Kirchhoff
plate theory. To this end, the deflection ratio wM1/wK2 is depicted in Figure 11, varying
with the length-to-thickness ratio a/t, for t/g equal to 1 and 20. For thick plates, i.e.,
5 < a/t < 10, the deflection predicted by model M1 deviates significantly from that pre-
dicted by K2, both for small and large values of the ratio t/g. As ratio a/t increases, i.e., for
thinner plates, model M1 converges to K2 for larger values of the ratio t/g, indicating thus
the attenuation of the strain gradient effect. However, for plate thickness at the micron
scale, e.g., t/g = 1 , the strain-gradient effect seems to play a significant role in the bending
behavior of the plate, both for thick and thin plates.
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Figure 9. Deflection ratios on (x, y) = (a/2, b/2), varying with ratio a/t and for t = g. In (a), for
models M1, M3 and M4 with respect to M2, and in (b), for model M5 with respect to M2.
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8.2. Free Vibration Problem

In this section, the free vibration problem is investigated. In particular, the dependence
of the fundamental frequencies ω1 ≡ ω11 (flexural for Mindlin–Reissner and Kirchhoff
plate models) and ωxz ≡ ωxz

11 (thickness-shear mode for Mindlin–Reissner plates) on the
ratios t/g, and a/t is examined. The influence of the micro-inertia effect is also addressed
for models M1 and K1.
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8.2.1. Natural Frequencies for Mindlin–Reissner Type Plate Models

In Figure 12, the fundamental flexural frequency ω1 varying with the ratio t/g is
depicted. The figure shows all Mindlin–Reissner models presented in previous Section 6,
for comparison reasons. Note that the frequency predicted by model M1, the gradient
Mindlin plate developed herein, is lower than the one predicted by model M3 in [43] (see
Sections 2 and 6.2 and the discussion of Figure 8).

In Figure 13, the ratios ωMi
1 /ωM2

1 of the natural flexural frequency are depicted varying
with the ratio t/g. It is noteworthy that for the models M1, M3, and M4, the frequency
is always higher than the one predicted by the classical Mindlin plate theory, while the
nonlocal model M5 underestimates the frequency. Furthermore, as the plate thickness
increases with respect to the microstructure material parameter g, all frequencies—except
from model M4—converge to the value of the classical theory. It is thus apparent the
significance of the strain gradient effect at the micron scale, when t ≈ g. The deviation of
model M4 from M2 is due to the fact that M4 does not reduce to M2 for decreasing values
of the microscopic parameter g (see also Sections 6.3, 8.1.1 and 8.1.2).

Next, in Figure 14, a 3D plot for the first natural flexural frequency ω1 for model
M1 is depicted as a function of the ratios a/t and t/g. Furthermore, note that the thinner
the plate, i.e., for increasing ratio a/t, the lower the fundamental frequency. Moreover,
the smaller the ratio t/g, i.e., for plate thickness comparable to the material parameter g,
the higher the frequency becomes, especially for thick plates, i.e., small ratio a/t.
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varying with the ratio t/g, for square plates (a = b = 20t).
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Figure 14. Fundamental flexural frequency ω1 for model M1, varying with the ratios a/t and t/g, for
square plates (a = b).

The ratio ωM1
1 /ωM2

1 of the fundamental flexural frequencies for models M1 and M2
is depicted in Figure 15. It is noteworthy that the frequency predicted by model M1 with
microstructure considerations is always higher than that of the classical Mindlin plate,
model M2. As it can be observed, the thicker the plate, e.g., small ratio a/t, the lower
the fundamental frequency ratio ωM1

1 /ωM2
1 , Figures 15c,d. Also, as the plate thickness

increases with respect to material microstructure parameter g, (increasing t/g), the ratio
ωM1

1 /ωM2
1 converges to unity, both for thick and thin plates. These last observations are

illustrated more clearly in Figure 15b–d, as parts of the 3D Figure 15a.
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Figure 15. Ratio of fundamental flexural frequencies ω1 for models M1 and M2, varying with the
ratios a/t and t/g, for square plates (a = b). In (a), a three-dimensional surface plot of the frequency
ratio ωM1

1 /ωM2
1 varying with a/t and t/g; in (b) the frequency ratio ωM1

1 /ωM2
1 for thick plates

(a = b = 5t) and thin plates (a = b = 20t) varying with the ratio t/g; in (c) the frequency ratio
ωM1

1 /ωM2
1 for the extreme case of a plate thickness equal to the microstructural parameter g, varying

with plate thickness ratio a/t; and, in (d) the frequency ratio ωM1
1 /ωM2

1 for a special case of t/g = 5
varying with plate thickness ratio a/t.

Now we are going to investigate the influence of micro-inertia terms, reflected on
material parameter h, in the dynamic behavior of the simply supported rectangular plate.
To this end, refer first to Figure 16, where the ratio of fundamental flexural frequencies for
model M1 with (h = g) and without (h = 0) micro-inertia terms is depicted, as function of
the ratios a/t and t/g. Note that the thinner the plate (i.e., larger ratio a/t) the closer the
values of the fundamental frequencies predicted by model M1 with and without micro-
inertia terms. Furthermore, for higher values for the ratio t/g, the effect of the micro-inertia
terms renders insignificant and the predicted frequencies almost coincide, both for thick
and thin plates. This can be readily verified in Figure 17, where the relative difference
between the two frequencies is depicted. For plate thickness t at the micron scale, i.e., for
small ratios t/g , the relative difference can be as much as 12% for thick plates (a/t = 5)
and 2% for thin plates (a/t = 20) , Figure 17b.
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Figure 16. Fundamental flexural frequency ω1 ratio for model M1 with, (h = g), and without,
(h = 0), micro-inertia terms, for square plates (a = b). In (a), a three-dimensional surface plot of the
frequency ratio ωM1

1 /ωM1
1(h=0) varying with a/t and t/g; in (b) the frequency ratio ωM1

1 /ωM1
1(h=0) for

thick plates (a = b = 5t) and thin plates (a = b = 20t) varying with the ratio t/g; in (c) the frequency
ratio ωM1

1 /ωM1
1(h=0) for the extreme case of a plate thickness equal to the microstructural parameter g,

varying with plate thickness ratio a/t; and, in (d) the frequency ratio ωM1
1 /ωM1

1(h=0) for a special case
of t/g = 10 varying with plate thickness ratio a/t.

Figure 17. Relative difference (%) for model M1 fundamental flexural frequency ω1 with, (h = g),
and without, (h = 0), micro-inertia terms, for square plates (a = b). In (a), a three-dimensional
surface plot of the relative difference (%) varying with a/t and t/g; in (b) the relative difference
(%) for thick plates (a = b = 5t) and thin plates (a = b = 20t) varying with the ratio t/g; in (c) the
relative difference (%) for the extreme case of a plate thickness equal to the microstructural parameter
g, varying with plate thickness ratio a/t; and, in (d) the the relative difference (%) for a special case
of t/g = 10 varying with plate thickness ratio a/t.
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Next, we investigate the fundamental flexural frequency as a function of the plate
dimensions, i.e., the ratios b/a and a/t. First, the ratio ωM1

1 /ωM2
1 is depicted for t = g in

Figure 18, and for t = 10g in Figure 19. The significance of the strain gradient effect is
apparent, as, for plate thickness at the micron scale, i.e., for t = g, the frequency calculated
by model M1 is much greater than M2, and increases with increasing ratio a/t, no matter
the values of ratio b/a (compare Figures 18c,d and 19c,d). Furthermore, as the shape ratio
b/a increases, the frequency ratio converges to a single value depending on the ratio a/t ,
Figures 18b and 19b.

A similar behavior is observed for the fundamental flexural frequency ratio ωM1
1 /ωM1

1(h=0)
with and without micro-inertia terms, for t = g in Figure 20 and for t = 10g in Figure 21.
Note that this behavior is different from that observed in Figure 16, where the frequency
ratio ωM1

1 /ωM1
1(h=0) is depicted as a function of the ratios a/t and t/g. From Figure 20 it is

deduced that for t = g and small a/t ratios, i.e., for thick plates, the two frequencies, with and
without micro-inertia terms, differ from each other, even for large values of the shape ratio
b/a. However, for greater ratios t/g, e.g., t = 10g, these differences become insignificant,
especially for increasing ratios b/a and a/t , indicating once again that the strain gradient
effect is only effective when the plate thickness t is at the micron scale, compare Figure 20
with Figure 21.

Figure 18. Ratio of fundamental flexural frequencies ω1 for model M1 vs. model M2, varying with
the ratios a/t and b/a, for the special case of plate thickness equal to the microstructural parameter
g, (t = g). In (a), a three-dimensional surface plot of the frequency ratio ωM1

1 /ωM2
1 varying with

a/t and b/a; in (b) the frequency ratio ωM1
1 /ωM2

1 for thick plates (a = 5t) and thin plates (a = 20t)
varying with the shape ratio b/a; in (c) the frequency ratio ωM1

1 /ωM2
1 for square plates a = b, varying

with plate thickness ratio a/t; and, in (d) the frequency ratio ωM1
1 /ωM2

1 for a rectangular plate,
b/a = 10, varying with plate thickness ratio a/t.
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Figure 19. Ratio of fundamental flexural frequencies ω1 for model M1 vs. M2, varying with the
ratios a/t and b/a, for a plate with thickness to material parameter ratio t/g = 10. In (a), a three-
dimensional surface plot of the frequency ratio ωM1

1 /ωM2
1 varying with a/t and b/a; in (b) the

frequency ratio ωM1
1 /ωM2

1 for thick plates (a = 5t) and thin plates (a = 20t) varying with the shape
ratio b/a; in (c) the frequency ratio ωM1

1 /ωM2
1 for square plates a = b, varying with plate thickness

ratio a/t; and, in (d) the frequency ratio ωM1
1 /ωM2

1 for a rectangular plate, b/a = 10, varying with
plate thickness ratio a/t.

Figure 20. Fundamental flexural frequency ω1 ratio for model M1 with, (h = g), and without,
(h = 0), micro-inertia terms, for the special case of plate thickness equal to the microstructural
parameter g, (t = g). In (a), a three-dimensional surface plot of the frequency ratio ωM1

1 /ωM1
1(h=0)

varying with a/t and b/a; in (b) the frequency ratio ωM1
1 /ωM1

1(h=0) for thick plates (a = 5t) and thin

plates (a = 20t) varying with the shape ratio b/a; in (c) the frequency ratio ωM1
1 /ωM1

1(h=0) for square

plates a = b, varying with plate thickness ratio a/t; and, in (d) the frequency ratio ωM1
1 /ωM1

1(h=0) for a
rectangular plate, b/a = 10, varying with plate thickness ratio a/t.
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Figure 21. Fundamental flexural frequency ω1 ratio for model M1 with, (h = g), and without,
(h = 0), micro-inertia terms, for a plate with thickness to material parameter ratio t/g = 10. In (a), a
three-dimensional surface plot of the frequency ratio ωM1

1 /ωM1
1(h=0) varying with a/t and b/a; in (b)

the frequency ratio ωM1
1 /ωM1

1(h=0) for thick plates (a = 5t) and thin plates (a = 20t) varying with the

shape ratio b/a; in (c) the frequency ratio ωM1
1 /ωM1

1(h=0) for square plates a = b, varying with plate

thickness ratio a/t; and, in (d) the frequency ratio ωM1
1 /ωM1

1(h=0) for a rectangular plate, b/a = 10,
varying with plate thickness ratio a/t.

Finally, we investigate briefly the fundamental frequencies for the other two vibration
modes of the Mindlin–Reissner-type plates, i.e., the frequencies ωxz and ωyz, for the shear-
thickness modes at the x–z and y–z planes, respectively. It is noted that the values of these
frequencies are much greater than the fundamental flexural frequency investigated so far.

In Figure 22, the ratio ωM1
xz /ωM2

xz of the fundamental shear-thickness frequency ωxz
is depicted as a function of the ratios a/t and t/g . The strain gradient effect is mostly
significant for plates with thickness at the micron scale, i.e., for small ratios t/g, both for
thin and thick plates, i.e., 5 < a/t < 20. On the other hand, this effect diminishes for
increasing ratio t/g .

In Figure 23, the same frequency ratio ωM1
xz /ωM2

xz is depicted varying with the ratios
a/t and b/a , for t = g. The strain gradient effect is more significant here, as model’s
M1 shear thickness frequency ωxz deviates from its counterpart model M2, both for thick
and thin plates, ratio a/t, and for every value of the shape ratio b/a. However, for plate
thickness much greater than the microscopic parameter g, e.g., t = 10g, the strain gradient
effect attenuates significantly, (not pictured here).

Last, considering the micro-inertia effect (term h), we observe from Figure 24 that this
effect should not be ignored, especially for small ratios t/g (see Figure 24c). For greater val-
ues, e.g., t = 10g, the micro-inertia effect does not play any significant role (see Figure 24d).
The behavior of the frequency ωyz for the shear-thickness mode at the y–z plane is analo-
gous to the behavior of ωxz and the same observations hold true.
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Figure 22. Ratio of fundamental shear-thickness frequency ωxz, model M1, varying with the ratios
a/t and t/g, for square plates (a = b).

Figure 23. Ratio of fundamental shear-thickness frequency ωxz, model M1, varying with the ratios
a/t and b/a, for the special case of plate thickness equal to the microstructural parameter g, (t = g).

8.2.2. Natural Frequencies for Kirchhoff Type Plate Models

The behavior of the fundamental flexural frequency ω1 for the gradient Kirchhoff type
plate, model K1, is similar to the behavior of model M1. For completeness we will present
in short only some results. In Figure 25, the frequency ratio ωK1

1 /ωK2
1 is depicted as a

function of the ratio t/g, for thin plates (a = b = 20t). It is noteworthy that for models K1,
K3, and K4, the frequency is always higher than the one predicted by the classical Kirchhoff
plate theory, model K2, while the nonlocal model K5 underestimates the frequency.

Finally, the same observations as for model M1 for the effect of the micro-inertia terms
hold true for model K1. In Figure 26 the ratio of the fundamental flexural frequency with
and without micro-inertia terms is depicted as function of the ratios t/g and a/t. It is
indicated that its effect is mostly significant for thick plates (small ratio a/t) and for plate
thickness t at the micron scale (t ≈ g) .
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Figure 24. Fundamental shear-thickness frequency ωxz ratio for model M1 with, (h = g), and without,
(h = 0), micro-inertia terms, for square plates (a = b). In (a), a three-dimensional surface plot of the
frequency ratio ωM1

xz /ωM1
xz(h=0) varying with a/t and t/g; in (b) the frequency ratio ωM1

xz /ωM1
xz(h=0) for

thick plates (a = b = 5t) and thin plates (a = b = 20t) varying with the ratio t/g; in (c) the frequency
ratio ωM1

xz /ωM1
xz(h=0) for the extreme case of a plate thickness equal to the microstructural parameter

g, varying with plate thickness ratio a/t; and, in (d) the frequency ratio ωM1
xz /ωM1

xz(h=0) for a special
case of t/g = 10 varying with plate thickness ratio a/t.
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Figure 25. Natural flexural frequency ω1 ratios, for thin (a = b = 20t) simply supported rectangular
Kirchhoff type plates, varying with ratio t/g. In (a), for models K1 and K4 with respect to K2, and in
(b), for models K3 and K5 with respect to K2, where RI stands for rotary inertia.
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8.2.3. Comparison of Natural Frequencies between Mindlin-Type (M1) and Kirchhoff-Type
(K1) Plate Models

Last, a comparison of the natural frequency ω1 between models M1 (Mindlin-type)
and K1 (Kirchhoff-type) is discussed in this subsection. The frequency ratio ωM1

1 /ωK1
1 is

shown in Figure 27a for varying ratio t/g, for thin (a/t = 20) and thick (a/t = 5) plates,
both for h = g and h = 0. The strain gradient effect, (g), is highly dominant in thick
plates for plate thickness at the micron scale (t ≈ g), although it is not diminished as t/g
increases, Figure 27a. The micro-inertia term h contributes significantly only for thick plates
and for plate thickness at the micron scale (t ≈ g).

The effect of plate thickness a/t on the frequency ratio ωM1
1 /ωK1

1 is shown in Figure 27b
with (h = g) and without micro-inertia effect (h = 0), for t = g and t = 10g. When the plate
thickness is comparable to the strain gradient parameter, t ≈ g, the two frequencies ωM1

1
and ωK1

1 differ significantly for thick plates, although the difference is still prominent for thin
plates (increasing a/t). For t = 10g the difference between ωM1

1 and ωK1
1 is higher for thick

plates, but still much smaller than the case of t ≈ g. The micro-inertia term h has insignificant
influence on the frequency ratio ωM1

1 /ωK1
1 for t = 10g, independent of the plate thickness

a/t. However, it contributes significantly for t ≈ g and small values of the ratio a/t.

Figure 26. Fundamental flexural frequency ω1 ratio for model K1 with, (h = g), and without, (h = 0),
micro-inertia terms, for square plates (a = b). In (a), a three-dimensional surface plot of the frequency
ratio ωK1

1 /ωK1
1(h=0) varying with a/t and t/g; in (b) the frequency ratio ωK1

1 /ωK1
1(h=0) for thick plates

(a = b = 5t) and thin plates (a = b = 20t) varying with the ratio t/g; in (c) the frequency ratio
ωK1

1 /ωK1
1(h=0) for the extreme case of a plate thickness equal to the microstructural parameter g,

varying with plate thickness ratio a/t; and, in (d) the frequency ratio ωK1
1 /ωK1

1(h=0) for a special case
of t/g = 10 varying with plate thickness ratio a/t.
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Figure 27. Ratio of natural flexural frequency ω1, for model M1 vs. K1, with and without micro-
inertia terms h, for square plates (a = b). In (a), for thin (a/t = 20) and thick (a/t = 5) plates for
varying t/g ratio, and in (b), for varying a/t ratio and for the special cases of t = g and t = 10g.

9. Summary and Conclusions

The aim of this contribution was to develop dynamic micro-plate models in order to
investigate the influence of the strain gradient and micro-inertia effects on the static bending
and free vibration behavior of micro-plates, based on Mindlin’s form-II first strain gradient
elasticity theory. To this end, the plane stress assumption, expressed by the vanishing of the
z-component of the true traction, was first considered in order to formulate the necessary
constitutive relations. Then, using the general virtual work principle, the governing
dynamic equations of motion and the detailed structure of classical and non-classical
boundary conditions for a dynamic Mindlin–Reissner-type micro-plate (model M1) were
obtained. Upon appropriate manipulations, model M1 was reduced to a Kirchhoff-type
micro-plate, model K1. A short review of published micro-plate models (M3, M4, and M5
for Mindlin–Reissner plates and K3, K4, and K5 for Kirchhoff plates) based on various
non-classical, higher-order continuum theories were presented, in order to compare with
models M1 and K1 developed herein and with the classical Mindlin–Reissner and Kirchhoff
plates, models M2 and K2, respectively. In order to investigate the static bending and free
vibration behavior of models M1 and K1, an example of a simply supported rectangular
plate was illustrated. The most interesting results are summarized as follows.

9.1. Conclusions for Static Bending Response of Micro-Plates

1. The strain gradient effect is proved to be more significant when the plate thickness t is
at the micron-scale. That said, for small ratios t/g, models M1 and K1 are much stiffer
than their classical counterparts, models M2 and K2, respectively, i.e., the deflection
and the rotations are smaller than those predicted by models M2 and K2. These
observations hold true for thick and thin plates, i.e., for every value of the ratio a/t.

2. Considering models M1 (present) and M3 (Ramezani’s), which were based on different
plane stress assumptions (see Sections 2 and 6.2), it is observed from Figure 8 that
M1 is less stiff than M3, especially for small ratios t/g. The two models converge for
increasing values of the ratio t/g.

3. Considering models M1 and K2, and Figure 11, the combined influence of the shear
effect (characteristic of Mindlin–Reissner plates) and the strain gradient effect was
investigated. For small ratios t/g and in every range of ratio a/t (i.e. for thick and
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thin plates), this combination is dominant and the two models deviate significantly
from each other. For larger values of t/g, the difference between the two models
is important only for thick plates, while for thin plates (a/t = 20 or more) the two
models converge, showing that the shear effect and the strain gradient effect diminish.

4. For plate thickness t is at the micron-scale (small ratio t/g), models M1, M3 and M4
are stiffer than the classical model M2, while the non-local model M5 is softer than M2.
The strain gradient effect is significant both for thick and thin plates, Figures 5, 6, 9 and 10.
The same is true for their Kirchhoff counterparts; K1, K3 and K4 are stiffer than K2, while
K5 is softer than K2, Figures 7 and 11.

5. For larger values of the ratio t/g, models M1, M3 and M5 converge to the classical
model M2 for increasing a/t, i.e., for thinner plates. The effect of strain gradient is
not completely diminished for thick plates. Additionally, M1 converges to K2 for
increasing a/t.

9.2. Conclusions for Free Vibration Response of Micro-Plates

It is reminded that there are three vibration modes for Mindlin–Reissner-type plates;
one flexural mode and two shear-thickness modes (see Section 7.6), and one flexural mode
for Kirchhoff-type plates.

1. The flexural fundamental frequency ω1 for model M1 is always higher than that of
model M2, for every value of the ratios t/g, a/t and b/a, i.e., for thick, thin, square
and non-square plates, (see Figures 13, 15, 18 and 19). Shear-thickness frequencies
ωxz and ωyz are, respectively, always lower than those of model M2, for every value
of the ratios t/g, a/t and b/a (see Figures 22 and 23).

2. The strain gradient effect g is mostly significant when plate thickness is at the micron-
scale, i.e., for small ratio t/g , both for thick and thin plates, and results in higher
values for ω1 and lower values for ωxz (as compared to model M2). For increasing
ratios t/g , frequencies ω1 and ωxz converge to their classical counterparts, (see
Figures 15a and 22, respectively).

3. The micro-inertia effect (reflected on parameter h), should not be omitted in estimating
ω1, for plate thickness at the micron scale, i.e. for small ratio t/g, and for thick plates,
i.e. for small ratio a/t , The difference could be as much as 12% for thick plates, (see
Figures 16 and 17).

4. Micro-inertia effect is also significant for the shear-thickness frequency ωxz, primarily
when the plate thickness is at the micron scale (small ratio t/g). At any range of the
ratio t/g, the frequency ωxz is not greatly affected by the ratio a/t, Figure 24.

5. For the Kirchhoff-type model K1, the influence of the strain gradient effect, g, and the
micro-inertia effect, h, on the fundamental flexural frequency ωK1

1 , is similar to that of
ω1 for model M1, and the same observations hold true (see Figures 25 and 26).

6. Considering models M1 and K1, and Figure 27, the combined influence of the shear
effect (characteristic of Mindlin–Reissner plates) and the micro-inertia effect, h, on the
fundamental frequency ω1 was investigated. Model M1 predicts always a smaller
frequency ω1 than K1. For thick plates, where the shear stresses cannot be ignored,
the two models differ significantly, especially for lower values of the ratio t/g. The
micro-inertial effect, h, contributes to the difference mostly for thick plates and for
lower values of the ratio t/g. For thin plates, the micro-inertial term does not add to
the difference in ω1 predicted by the two gradient models M1 and K1. For thin plates
(increasing a/t) and when the plate thickness is much larger than the strain gradient
parameter g, the two models give similar predictions for ω1.

7. For plate thickness t is at the micron-scale (small ratio t/g), models M1, M3, and M4
overestimate the fundamental frequency ω1, as compared to the classical model M2,
while model M5 underestimates it, Figure 13. Except model M4, all other models
converge to M2 for increasing t/g.
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Appendix A

The physical demonstration of most of the zero and non-zero components of the
double stress tensor introduced in Section 2 is graphically depicted in Figures A1–A5, using
the following nomenclature.

1. i denotes the normal to the face on which the double stress acts. For example, µ1jk
acts on the faces (planes) that are normal to the x-axis (1-axis)

2. j, direction of the double stress arm. For example, the arm of µi2k is along the y-axis
(2-axis). The side of the arm which is towards the positive direction of the respective
axis is termed as positive arm-side (is marked by a ball-point).

3. k, for positive double stress, acting on a positive face, the force on the ball-point
(positive arm-side) is towards the positive k-axis (and the other force in the oppo-
site direction).

4. For positive double stress, acting on a negative face, the force on the ball-point
(positive arm-side) is towards the negative k-axis (and the other force in the oppo-
site direction).

5. Positive face: the one which has outer normal towards the positive direction of an
axis (1, 2 or 3)

6. Negative face: the one which has outer normal towards the negative direction of an
axis (1, 2 or 3)

7. Note that, at each face of the elementary volume, the total (resultant) moment of the
double stresses acting on that face is zero. In other words, the double stress system in
strain gradient elasticity is in self-equilibrium at each face.

Figure A1. Zero-stress components resulting from the assumption of vanishing the true traction
normal to the plate surface, along z direction.



Dynamics 2021, 1 92

Figure A2. Plane stress conditions on x–y plane; 2D strain gradient elasticity (FORM II); eight
in-plane double stress components; double stress components of the form µαβγ, αβγ = 1, 2, β 6= γ

(components on both positive and negative faces are shown).

Figure A3. Plane stress conditions on x–y plane; 2D strain gradient elasticity (FORM II); eight
in-plane double stress components; double stress components of the form µαβγ, αβγ = 1, 2, β = γ

(components on both positive and negative faces are shown).

Figure A4. Plane stress conditions on x–y plane; 2D strain gradient elasticity (FORM II); eight out-
of-plane double stress components; double stress components of the form µαβ3, µα3β, α = 1, 2, β = 1
(components on both positive and negative faces are shown).
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Figure A5. Plane stress conditions on x–y plane; 2D strain gradient elasticity (FORM II); four out-of-
plane double stress components; double stress components of the form µ3αα, α = 1, 2 (components on
both positive and negative faces are shown).
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