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Abstract: This paper is concerned with the modeling and simulation of two- and three-dimensional
impact in the presence of friction. Single impacts are considered, and the impact equations are solved
algebraically. Impact generates impulsive normal and frictional forces and the direction of sliding can
change during impact. A procedure is developed to estimate the change in direction of sliding during
three-dimensional impact. The modes of impact, such as sliding, sticking, or change in direction
of sliding, are classified for both two- and three-dimensional impact. Simulations are conducted to
analyze the energy lost, change in impact direction, and stick-slip conditions, where different models
for restitution are compared. A closed-form solution is developed to analyze the modes of sliding for
two-dimensional impact.

Keywords: impact with friction; three-dimensional impact; sliding direction; modes of sliding

1. Introduction

Research about impact between two rigid bodies spans centuries. There are two
fundamental parameters that dictate how impact takes place: coefficient of restitution and
coefficient of friction. Historically, restitution modeling was considered before friction
modeling, with Poisson’s and Newton’s models used to model restitution. Poisson’s model
is kinetic and defines the coefficient of restitution by the ratio of the normal forces before
and after impact while Newton’s method is kinematic and considers velocity ratios.

In some cases, the two approaches lead to the same result, as shown by Wang and
Mason [1]. They can also produce inconsistent results, especially in the presence of friction,
as shown by Stronge [2]. Routh [3] presented a graphic method to define the coefficient
of restitution.

Stronge [2] popularized an alternate method to define the coefficient of restitution as
the square root of the ratio of work done by the normal impact force during restitution and
compression. This approach eliminates inconsistent results that arise when change in slip
direction is not considered [4].

Interest in impact with friction increased during the 20th century, in part due to
robotics applications. Whittaker [5] was one of the first to consider frictional impulse,
but without discussing change in the sliding direction. Brach [6,7] proposed an algebraic
solution scheme, revising Newton’s model and introducing impulse ratios to describe the
behavior in the tangential directions. Brach’s model is equivalent to the friction coefficient in
many cases and is referred to as kinematic coefficient of restitution. It leads to a relationship
between the coefficient of friction and coefficient of restitution [8]. In this work, we assume
that the coefficient of friction and restitution are not related to each other within a reasonable
range of impact angles. Smith [9] proposed another algebraic approach using an average
value of different slipping velocities. Stronge [4] demonstrated inconsistencies in some
solutions obtained with Poisson’s model when the coefficient of restitution is assumed to
be independent of the coefficient of friction.
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The above discussion and references cited model impact as taking place over a very
short period of time, during which positions and angles do not change and pre- and post-
impact quantities are compared via restitution coefficients. Hence, the impact equations are
algebraic. Another approach, known as first-order dynamics, uses integration over time of
the impulsive forces. Keller [10] developed an approach that involves integration of the
contact impulse variables. The system is treated as an evolving process parameterized by a
cumulative normal impulse. Keller’s approach was originally proposed by G. Darboux in
the 19th century. A review of the evolution of first-order dynamics can be found in [11],
where a detailed exposition of contact models is analyzed. By using a revised Poisson’s
model, Keller concluded that no increase in energy is possible during impact. A similar
approach was considered in [12].

Yet another approach to impact modeling, commonly referred to as second-order
dynamics, considers compliance in the colliding bodies and/or analytical models, such as
Lagrangian mechanics. Examples of such analytical solutions can be found in works by
Brach [6,7] and Smith [9,13,14]. The latter two references provide comparisons of restitution
models. Lagrange’s equations describing impact are presented in [15]. These formulations
solve for unknown generalized coordinates, the Lagrange multipliers associated with
impact forces (or normal impulses), and the friction forces. This analytical approach has
also been applied to flexible-body systems (see, for example, Khulief and Shabana [16] and
Yigit et al. [17]).

The discussion above and references cited are merely representative of the vast amount
of research done in the field and they primarily discuss two-dimensional impact. The sliding
is along a line and change in sliding direction, commonly referred to as reverse sliding,
implies sliding is still along the same line but in the opposite direction.

We next turn our attention to three-dimensional impact, where sliding takes place on a
plane. Interest in three-dimensional impact has been primarily for robotics applications [18,19].
Another recent application is in space dynamics, including space robotics and landing
on asteroids and comets. Because there now is a plane of impact, as opposed to line of
impact for two-dimensional impact, determining slide, stick, or reverse slide motions on
the impact plane becomes more complex. Therefore, first- and second-order models are
more widely used.

Jia [18] models vertical and tangential impact by means of springs and analyzes change
in impulse magnitudes for the duration of impact. Zhao et al. [20] develop differential
equations for the impact duration. Wang et al. [21] discuss experimental results affecting
the coefficient of restitution in three-dimensional impact. Zhan et al. [22] consider three-
dimensional modeling of granular flow and model three-dimensional impact using a
Lagrangian approach. A numerical model for inelastic impact is considered from an
energy dissipation viewpoint in [23]. Change in the tangentional direction of impact is
considered by Zhen [24]. Batlle [25] proposes a hodograph-based analytical approach to
calculate change in sliding direction. Djerassi [26] considers a summation approach instead
of integration to model three-dimensional impact. Stronge [27] examines three different
coefficient of restitution models for three-dimensional impact for unbalanced collisions.
A detailed comparison of the several contact and impact models that have been proposed
in the literature can be found in [11], Section 4.3.9.

This paper first revisits two-dimensional impact and considers an algebraic model that
splits the stage at which sliding stops or reverses. The simulations are carried out for the
Newton, Poisson, and energetic models. The results show that the Poisson and energetic
models give similar results. Newton’s method gives inconsistent results in some cases and
we do not recommend its use.

We then consider three-dimensional impact. We develop an approximate algebraic
procedure to estimate the change in sliding direction on the plane of impact. This approx-
imation makes it possible to carry out simulations using the algebraic formulation. We
observe that, as in the two-dimensional analysis, the impact results for the Poisson and
energetic models are very similar.
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Finally, it should be noted that this paper models single impact and not multiple
impacts that occur at the same time, such as collision of the end effector of a robot with an
object, which imparts impulsive forces on all joints.

2. Review of Two-Dimensional Impact

Consider a rigid body of mass m and centroidal moment of inertia IG making impact
with a surface. The orientation is shown in Figure 1, where C is the impact point. In keeping
with notation in the literature on impact, we will use a fixed set of xyz axes, with the y axis
perpendicular to the plane of impact and pointing downward. The body axes are denoted
by XYZ.

Two forces act between the object and the impacting surface: the vertical impact force
and the horizontal friction force. These forces are impulsive, that is, a large force applied
over a very short period of time and its effect is denoted by the integral of the force over
time, so the units of an impulsive force are force × time, or linear momentum. We also
assume that positions and orientations do not change as the length of impulse is very short.
The gravitational force is not impulsive so we treat it as negligible compared to the impact
forces. Without loss of generality, we select the x-axis along the horizontal velocity of the
contact point C. The position of the contact point with respect to the center of mass is
defined by the angle θ. The position vector is

C
x

y

-y

Fx
^

Fy
^

Figure 1. Free body diagram of 2D model during impact assuming for vCx > 0.

~RC/G = Lx~i + Ly~j Lx = −L sin θ Ly = L cos θ, (1)

in which L is the distance from the center of mass G to C. The velocities of the center of
mass and angular velocity immediately before impact are

~VG = vx~i + vy~j ~ω = ωz~k. (2)

The contact point velocity ~VC at the beginning of impact is

~VC = ~VG + ~ω× ~RC/G =
(
vx −ωzLy

)
~i +

(
vy + ωzLx

)
~j = vCx

~i + vCy
~j. (3)

The impulsive forces are the normal force F̂y which acts in the vertical direction
(upwards) and impulsive friction force F̂x that acts opposite to the horizontal velocity of
the contact point C. We express the total impulsive force F̂ as

~̂F = Sx F̂x~i− F̂y~j, (4)
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in which Sx = −sign(vCx ). Assuming that impact takes place in a very short period of
time, the linear and angular impulse–momentum relationships can be written as

mvx + Sx F̂x = mv′x mvy − F̂y = mv′y IGω− Sx F̂xLy − F̂yLx = IGω′, (5)

where the primes denote post-impact quantities and IG = αmR2 is the mass moment of
inertia about the center of mass. The quantities Lx and Ly are defined in Equation (1). Note
that, with this notation, F̂x, and F̂y are both positive quantities.

The three equations above do not form a closed system because there are five un-
knowns: three post-impact velocities v′x, v′y, ω′ and two impulsive forces F̂x, F̂y. Two
additional equations are needed. Depending on the type of motion and stage of impact,
the additional relations are obtained from (a) magnitudes of impulsive normal and im-
pulsive friction forces during sliding, (b) kinematic relations for horizontal and vertical
velocities, or (c) relation between impulsive forces in the compression and restitution stages.
Friction is usually modeled by the static and kinetic coefficients µs and µk, with µs ≥ µk.

In each stage of impact, the contact point can undergo three modes of motion: (i) it
can continue sliding, (ii) sliding can come to a stop and the contact point sticks, or (iii) after
coming to a stop, the contact point begins to slide in the opposite direction. It is necessary
to determine whether the mode (sliding, sticking, reverse sliding) of motion changes during
the compression or restitution stages. To this end, we split the stage at which the mode
changes into two periods.

Reverse sliding occurs when the moment generated by the impulsive normal force is
large enough so that the resulting angular velocity is sufficient to reverse the direction of
velocity of the point of contact. For example, in Figure 1, where we assume that the initial
horizontal velocity is in the positive x-direction, the moment generated by the impact force
is counterclockwise and has the tendency to move the contact point in the −x direction.

Consider the compression stage and where sliding continues throughout. The impul-
sive forces F̂c

x and F̂c
y are related by F̂c

x = µk F̂c
y . The three momentum balances are

mvx + Sc
x F̂c

x = mvc
x mvy − F̂c

y = mvc
y IGω− Sc

x F̂c
x Ly − F̂c

y Lx = IGωc. (6)

The velocity of the impact point along the line of impact is zero at the end of compres-
sion, so that the fourth and fifth equations become

vc
Cy

= vc
y + ωc

zLx = 0 F̂c
x = µk F̂c

y . (7)

When sliding ends during compression, we split the compression stage into two
periods, denoted by c1 and c2. The horizontal velocity of the contact point becomes zero
before the vertical velocity does. We replace c with c1 in Equation (6) and the fourth and
fifth equations become

vc1
Cx

= vc1
x −ωc1

z Ly = 0 F̂c1
x = µk F̂c1

y . (8)

There are two possibilities during the second part of the compression stage, after the
contact point has come to a rest: the contact point sticks or it slides in the opposite direction.
Note that once sliding comes to an end, the contact point can no longer slide in its original
direction. When the contact point sticks, both the horizontal and vertical velocities of the
contact point are zero at the end of compression. To find the value of Sc2

x for sticking, we
need to consider the slide direction of the impact point in the absence of friction. For impact
along a line, this tendency is dictated by the value of θ. When θ > 0, the contact point will
slide in the −x direction, and vice versa. The governing equations for sticking are

mvc1
x + Sc2

x F̂c2
x = mvc

x mvc1
y − F̂c2

y = mvc
y IGωc1 − Sc2

x F̂c2
x Ly − F̂c2

y Lx = IGωc, (9)



Dynamics 2022, 2 5

and

vc
Cx

= vc
x −ωc

zLy = 0 vc
Cy

= vc
y + ωc

zLx = 0. (10)

When reverse sliding occurs during the second period of compression, the governing
equations become Equation (9) and

vc
y + ωc

zLx = 0 F̂c2
x = µk F̂c2

y , (11)

and Sc2
x = 1 because during this period vCx is negative and direction of the friction force

changes.
Next, consider the case where the initial horizontal speed vCx = 0. There are two

possibilities: sticking continues throughout compression or sliding begins. When sticking
continues, the three momentum balances are the same as Equation (6) and the fourth and
fifth equations are vc

x − ωc
zLy = 0 and vc

y + ωc
zLx = 0. For sliding, the fourth and fifth

equations are Fc
x = µk F̂c

y and vc
y + ωc

zLx = 0.
In all cases above, the five equations to be solved at each period of compression are

linear. When conducting a simulation, we can begin by checking if sliding ends during
compression by examining if vc1

x − ωc1
z Ly = 0 holds. If it does not, then there is sliding

throughout compression and we calculate the horizontal and vertical velocities of the
contact point using Equation (7). If sliding does come to an end, we first calculate the
impact parameters using Equation (8). Then comes the task of calculating whether there is
reverse sliding. We calculate the friction needed to prevent sliding and compare it to the
available level of friction, µs.

When compression is divided into two periods, the cumulative impulsive forces become

F̂c
y = F̂c1

y + F̂c2
y F̂c

x = Sc1
x F̂c1

x + Sc2
x F̂c2

x . (12)

For reverse sliding, friction forces in each period act in opposite directions. Energy
loss due to friction needs to be calculated separately for each period.

We next consider the restitution stage. Here, the impulsive normal force has a smaller
magnitude than during compression, due to energy loss. Hysteresis is the primary source
of this energy loss, which usually is modeled by the coefficient of restitution, denoted by
en, (0 ≤ en ≤ 1).

During restitution, the contact point can slide, stick, or reverse slide. We begin with
the case where at the end of compression the contact point slides and sliding continues
during restitution. The impulsive friction force is related to the impulsive normal force
by F̂r

x = µk F̂r
y and the coefficient of restitution expression is used to generate a relation

between the normal force and velocity of the contact point C.
The three linear and angular momentum balances are

mvc
x + Sr

x F̂r
x = mv′x mvc

y − F̂r
y = mv′y IGωc − Sr

x F̂r
x Ly − F̂r

y Lx = IGω′. (13)

The fourth and fifth equations are the sliding condition, F̂r
x = µk F̂r

y , and coefficient of
restitution equation.

When sliding ends during restitution, we separate the restitution stage into two
periods, r1 and r2. The momentum balances in the first period become

mvc
x + Sr1

x F̂r1
x = mvr1

x mvc
y − F̂r1

y = mvr1
y IGωc − Sr1

x F̂r1
x Ly − F̂r1

y Lx = IGωr1 . (14)

Horizontal velocity of the contact point becomes zero at r1 so that

vr1
Cx

= vr1
x −ωr1

z Ly = 0 F̂r1
x = µk F̂r1

y . (15)
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At this point there are two possibilities: sticking during the second period of the
restitution stage or reverse sliding. The momentum balances for both cases are the same:

mvr1
x + Sr2

x F̂r2
x = mv′x mvr1

y − F̂r2
y = mv′y IGωr1 − Sr2

x F̂r2
x Ly − F̂r2

y Lx = IGω′. (16)

For sticking, the fourth equation is due to continuation of zero horizontal velocity,
v′Cx

= v′x − ω′zLy = 0. For reverse sliding, the fourth equation is F̂r2
x = µk F̂r1

y . The total
impact forces are

F̂r
y = F̂r1

y + F̂r2
y F̂r

x = Sr1
x F̂r1

x + Sr2
x F̂r2

x . (17)

As in the compression stage, we calculate friction needed to prevent sliding and
compare to the available friction. If at end of compression the contact point is sticking or
reverse sliding, the mode of motion continues throughout restitution.

The fifth equation is in terms of the coefficient of restitution. We consider three
definitions. The first definition, known as Newton’s law, relates the velocities of the contact
point before and after impact by

~V′C ·~j = −en~VC ·~j or en = −
v′Cy

vCy

= −

(
v′y + ω′zLx

)
(
vy + ωzLx

) . (18)

The second definition relates the strength of the impulsive normal forces by

F̂r
y = en F̂c

y , (19)

and it is attributed to Poisson.
A more recent definition is defined in terms of work done (or energy dissipated) by

the normal force F̂y during the compression and restitution stages. Denoting the work done
by the normal force by Wc and Wr, the energetic coefficient of restitution is defined as

en =

√
Wr

−Wc . (20)

Work can be defined as the integral of power, that is, of force times velocity. For the
normal force Fy, W =

∫
FyvCy dt. Note that, even though we are assuming that the forces are

impulsive, we consider the compression and restitution stages separately and also consider
that the mode of motion can change during these stages and we separate the duration of
impact into two periods. Consider a two-part compression stage of length ∆ where sliding
ends at time γ∆ (0 ≤ γ ≤ 1). We split the work done into two as

−Wc =
∫ γ∆

0
Fc1

y vCydt +
∫ ∆

γ∆
Fc2

y vCydt. (21)

Assuming constant impact forces the velocity profile becomes linear, so that work
done during compression can be expressed as the area under the velocity curve over time,
multiplied by the impact force

−Wc = Fc1
y

(
vCy + vc1

Cy

)
γ∆/2 + Fc2

y

(
vc1

Cy + vc
Cy

)
(1− γ)∆/2, (22)

with vc
Cy = 0. The impulsive force is approximated as the impact force multiplied by the

duration of impact so that the above equation reduces to

−Wc = F̂c1
y

(
vCy + vc1

Cy

)
/2 + F̂c2

y

(
vc1

Cy + vc
Cy

)
/2. (23)



Dynamics 2022, 2 7

When sliding (or sticking) continues throughout compression, the two terms above be-
come−Wc = F̂c

y vCy/2. Work done by the impact force during restitution has a similar form

Wr = F̂r1
y

(
vc

Cy
+ vr1

Cy

)
/2 + F̂r2

y

(
vr1

Cy + v′Cy

)
/2. (24)

When sliding (or sticking) continues throughout restitution, Wr = F̂r
yv′Cy/2. Note that,

unlike Newton’s or Poisson’s formulations, the impact equations that use the energetic
coefficient of restitution are not linear. We can show that in the absence of friction all three
definitions of the coefficient of restitution are equivalent. Combining the scenarios dis-
cussed above, seven different cases can be identified for two-dimensional impact, as listed
in Table 1. Figure 2 represents a flowchart of the simulation. Note that three-dimensional
impact simulation uses the same flowchart.

Table 1. Cases for two-dimensional (also three-dimensional) impact.

Case Initial Compression Restitution
No. Condition Stage Stage

0 vCx 6= 0 Sliding Sliding
1 vCx 6= 0 Sliding ends, sticking Sticking
2 vCx 6= 0 Sliding ends, reverse sliding Reverse sliding
3 vCx 6= 0 Sliding Sliding ends, sticking
4 vCx 6= 0 Sliding Sliding ends, reverse sliding
5 vCx = 0 Sticking Sticking
6 vCx = 0 Sliding Sliding

Is there an initial horizontal velocity?

Does sliding end during compression?

Does object reverse slide?

Reverse slide rest of 
compression and 
restitution (case 2)

Continue sticking rest 
of compression and 
restitution (case 1)

Does sliding begin?

Slide throughout 
compression and 
restitution (case 6)

Stick throughout 
compression and 
restitution (case 5)

Does sliding end during restitution?

Does object reverse slide?

Reverse slide during 
restitution (case 4)

Continue sticking during 
restitution (case 3)

No

Yes No NoYes

Yes

NoYes

NoYes

NoYes

Continue sliding during 
restitution (case 0)

Figure 2. Flowchart of simulation of impact for both 2D and 3D.

We next obtain numerical results for the mode of impact, value of vCy and energy ratio
(after impact/before impact) as a function of the initial orientation angle θ and velocity ratio
vCx /vCy for the values of µs = µk = 0.4, and en = 0.7 in Figure 3 for Poisson’s model and
Figure 4 for the energetic model. The initial angular velocity is taken as zero. The falling
object is a rod with m = 1, L = 2.3. The velocity ratio is normalized w.r.t. the coefficient of
restitution, −v′Cy

/(vCy en), so that its value should be around 1.
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The results show that, at least for this particular case, Poisson’s method and energetic
coefficient of restitution give very similar results. The mode of motion is the same for both
models. Differences can be seen in the velocity after impact and on the energy dissipation,
especially when sliding stops during compression or restitution. In our research, we
simulated results for different values of the friction coefficients and coefficient of restitution.
The values presented here correspond to a case where the mode of motion plot depicts all
of the modes of motion.

While not shown here for brevity, in some cases when friction is involved, Newton’s
method gives different results for mode of motion and inconsistent results for energy
dissipation. It is recommended to not use Newton’s formulation in further work, especially
for three-dimensional impact.
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Figure 3. Influence of orientation angle θ and velocity ratio vCx /vCy on the type of impact for ωz = 0,
µk = µs = 0.4, en = 0.7. Top figure: mode of sliding, middle figure: −v′Cy

/(vCy en). Lower figure:
energy ratio (after impact/before impact). Poisson’s model is used.
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The colors indicate the seven different types of impact that can occur. As expected,
reverse sliding occurs more frequently when the horizontal velocity is smaller and when
the rod is leaning forward (θ > 0). When the initial horizontal velocity is zero, there is
a region of reverse sliding, as indicated by the solid red line (case 6). We also conducted
simulations for when the static and kinetic coefficients of riction are different. The sticking
region is larger when µs > µk. Also, the larger static friction coefficient µs makes it more
difficult to change the mode of impact into reverse sliding.
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Figure 4. Influence of orientation angle θ and velocity ratio vCx /vCy on the type of impact for ωz = 0,
µk = µs = 0.4, en = 0.7. Top figure: −v′Cy

/(vCy en). Lower figure: energy ratio (after impact/before
impact). Energetic coefficient of restitution is used.

The plots are given for −70◦ ≤ θ ≤ 70◦. Assumptions associated with constant
coefficient of restitution begin to lose validity as the object becomes more horizontal.
The value of 70◦ is chosen here arbitrarily. We can compare the differences between the
Poisson and energetic models by taking the ratios of the velocities of the contact point
and the energy remaining in the system. We do this by dividing the values of the vertical
velocity of the contact point v′Cy

(second plot in Figure 3) and energy left in system (third
plot) with their counterparts in Figure 4. The results are shown in Figure 5 and are very
similar except for a few cases where there is an up to 25% difference in velocity ratios.

Note that Poisson’s method leads to lower velocities when reverse sliding occurs.
The lowest velocity ratios are in the vicinity of the angle at which the mode of sliding
changes. By contrast, the energetic coefficient of restitution leads to lower velocities when
sliding in the original direction continues throughout impact. Overall, Poisson’s method
leads to lower velocities and lower energy. We observed this phenomenon for different
levels of friction. Energy ratios (before/after) of both models are very close to each other.
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Figure 5. Ratios of vertical velocity of impact point v′Cy
and energy left in system. Results for Poisson

model divided by results obtained using the energetic model.

From the top plot in Figure 3, a vertical line describes change of the mode of impact.
This implies that the mode of impact depends largely on the orientation of the falling
object and not on the initial velocity ratio. Orientation of the object influences the moment
generated by the impulsive normal force. The change in mode of impact is from sticking to
reverse sliding, as in case 5 becoming 6, case 1 becoming 2, and case 3 becoming 4. It turns
out that the mode-change relationship can be derived in closed-form. The momentum
balances in terms of the contact point velocities vCx and vCy are

SxFx = m(v̇Cx + L cos θω̇) − Fy = m(v̇Cy + L sin θω̇), (25)

IGω̇ = L sin θFy − SxFxL cos θ. (26)

The next step is to substitute Equation (26) into Equation (25), which eliminates ω
from the force balances. Writing the mass moment of inertia as IG = αmL2 and considering
impulsive motion, the impulsive momentum balances during compression become

m(vc
Cx
− vCx ) = −PF̂y + Sc

xRF̂x m(vc
Cy
− vCy) = −QF̂y + Sc

xPF̂x, (27)

in which P = sin θ cos θ/α, Q = 1+ sin2 θ/α, and R = 1+ cos2 θ/α are dimensionless quan-
tities.

For the contact point to slide throughout compression, vc
Cx

has the same sign as vCx

at the end of compression, where vc
Cy

= 0, and F̂x = µk F̂y. Setting vc
Cx
− vCx = 0 gives

the result

vCx

vCy

=
P− µkSc

xR
Q− µkSc

xP
=

sin θ cos θ + µk(α + cos2 θ)

α + sin2 θ + µ sin θ cos θ
= R1, (28)
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so that sliding will continue throughout compression for when vCx
vCy

> R1. When sliding

comes to an end during compression, vc1
Cx

= 0, which gives the value of F̂c1
x and substitution

of this value to the vertical force balance yields

mvc1
Cy

= mvCy −mvCx

(
Q + µkP
P + µkR

)
. (29)

For sticking during the second period of compression, we calculate the forces needed
using vc

Cx
= 0, with the result

F̂c2
x

F̂c2
y

=
sin θ

α + cos2 θ
= R2. (30)

Since the highest value of the friction force is F̂c2
x = µs F̂c2

y , the critical case is defined by
µs = sin θ

α+cos2 θ
. Therefore, when sin θ

α+cos2 θ
> µs friction needed to prevent reverse sliding

is higher than the available friction and the contact point will reverse slide; otherwise,
the contact point will stick. Therefore, two ratios, defined above as R1 and R2, completely
define the mode of motion during the compression stage.

The closed-form solution for restitution is similar to the solution for compression
when Poisson’s model is used. For brevity, we only list the results here. Defining the ratio
R3 = R1(1 + en), the different modes of motion are given in Table 2 as a function of the
initial velocity ratio vCx /vCy .

Table 2. Stick-slide conditions based on ratios R1, R2, R3 (for vCx ≥ 0).

If vCx /vCy and R2 Is During Compression During Restitution

>R3 any value Sliding Sliding
<R3 and >R1 <1 Sliding Sliding ends, sticking
<R3 and >R1 >1 Sliding Sliding ends, reverse sliding

<R1 <1 Sliding ends, sticking Sticking
<R1 >1 Sliding ends, reverse sliding Reverse sliding
=0 <1 Sticking Sticking
=0 >1 Sliding Sliding

It follows that the top plot in Figure 3 can be generated using Table 2. A similar
straight line phenomenon is also observed for three-dimensional impact [28]. When θ < 0,
the impulsive moment generates a counterclockwise angular velocity, which translates into
continued sliding in the positive x-direction. For a more upright orientation, the impulsive
moment becomes smaller and the object begins to stick. After θ = 0◦, direction of the
moment changes and tendency of the body is to slide in the opposite direction. This can
lead to reverse sliding. For lower initial speeds, reverse sliding continues throughout as θ
increases. For higher initial speeds, reverse sliding may begin during restitution.

Considering the vertical velocity at end of impact, for most cases, the value for
−v′Cy

/(vCy en) is around 1.0. Variations also occur, especially during sticking. The observa-
tion that the final value of the vertical velocity is not fixed is one of the main arguments
why Newton’s model should not be used.

The energy ratio (energy after impact divided by energy before impact) indicates that
less energy is lost for higher horizontal speeds and as the rod becomes more horizontal.
Furthermore, more energy is dissipated when sticking occurs. Therefore, there is more
energy loss at lower speeds and lower angles of incidence. Around the region where sliding
turns into sticking, energy loss can be substantial.

Note that the above results also hold when different coefficients of friction are used
and for different values of the mass moment of inertia, which is quantified as IG = αmL2.
In summary, this section provides an analytical and numerical comparison of the Poisson
and energetic models of restitution. It also shows in closed form that the mode of impact
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depends on the orientation of the falling object and provides a tool for analysis of two-
dimensional impact. This section also lays the foundation for three-dimensional impact
because, with the assumption introduced in this paper, it becomes possible to solve the
impact equations in algebraic form.

3. Extension to Three Dimensions

We use the same coordinate system as before. The xz plane is the plane of impact.
The position vector ~R = ~RC/G from the center of mass to the contact point is a three-
dimensional vector, whose orientation is defined by the direction angles with respect to the
coordinate axes, as shown in Figure 6.

C

+Ly

G

x

y

Fx
^

Fy
^

z

Fz
^

-Lx

-Lz

Figure 6. Falling rod colliding with ground in three dimensions.

We express the position vector as

~RC/G = Lx~i + Ly~j + Lz~k, (31)

with L2
x + L2

y + L2
z = L2, where L is the distance from the center of mass G to impact point C.

The initial velocity of the center of mass and angular velocity are

~VG = vx~i + vy~j + vz~k ~ω = ωx~i + ωy~j + ωz~k. (32)

The contact point velocity ~VC at the beginning of impact is

~VC = ~VG + ~ω× ~RC/G = vCx
~i + vCy

~j + vCz
~k, (33)

~VC = (vx + ωyLz −ωzLy)~i + (vy + ωzLx −ωxLz)~j + (vz + ωxLy −ωyLx)~k, (34)

and we denote all velocities immediately after impact with primes.
Figure 6 also illustrates the impulsive forces acting at the contact point during impact.

Defining the magnitudes of these forces as positive, the impulsive force vector becomes

~̂F = Sx F̂x~i− F̂y~j + Sz F̂z~k, (35)

where Sx = −sign (vCx ), Sz = −sign (vCz). We write the linear momentum balances in
the fixed x, y, and z-directions as

mvx + Sx F̂x = mv′x mvy − F̂y = mv′y mvz + Sz F̂z = mv′z. (36)

The angular momentum of a rigid body about its center of mass, expressed in column
vector format, is {HG} = [IG]{ω}, in which [IG] is the inertia matrix and {ω} is the angular
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velocity. The inertia matrix is symmetric and, using XYZ as the set of coordinates attached
to the body, has the form

[IG] =

 IXX −IXY −IXZ
−IXY IYY −IYZ
−IXZ −IYZ IZZ

. (37)

The general expression for the angular momentum balance is

d
dt

~HG = ~MG = ~RC/G × ~F, (38)

and the angular impulse–momentum relationship for an impulsive force ~̂F is

~H′G − ~HG =
∫ (

~RC/G × ~F
)

dt ≈ ~RC/G × ~̂F. (39)

In column vector notation, the angular momentum balance, using a set of coordinates
fixed to the body, is

[IG]{ω̇}+ [ω̃][IG]{ω} = {MG}, (40)

where [ω̃] is the skew-symmetric matrix used in the representation of a cross-product and
{MG} is the applied moment.

For impulsive motion, integral of [ω̃][IG]{ω} over the impulse duration is negligible,
so the angular impulse-momentum relation is approximated by

[IG]
(
{ω′} − {ω}

)
= {M̂G}. (41)

It is preferable to express the impact equations using inertial coordinates. The impact
plane is fixed and the friction forces are related to the normal force via the coefficient of
friction. Expressing the rotation matrix between the inertial xyz coordinates and body-fixed
XYZ by [Q], so that  X

Y
Z

 = [Q]

 x
y
z

, (42)

we relate the angular velocity vectors and inertia matrices of the fixed and moving frames by

{xyzω} = [Q]T{XYZω} [xyz IG] = [Q]T [XYZ IG][Q]. (43)

The transformation matrix [Q] between the xyz and XYZ coordinates is quantified
by three rotation angles. These three rotation parameters can be found in different ways,
depending on the measurements taken and coordinate transformation sequence used. For a
symmetric slender object, such as a thin rod, we assume that rotation about the axis of the
rod is not excited by impact, so that two rotational parameters are sufficient.

If we know the orientation of the impacting body, we can calculate the angular velocity
and inertia matrix in terms of the xyz coordinates and use Equation (41) to relate the
pre- and post-impact parameters. Recall that the inertia matrix we wish to use is [xyz IG]
and angular velocity is {xyzω}. The impulsive moment generated by the impulsive force,
~̂MG = ~RC/G × ~̂F, is

~̂MG = ~RC/G × ~̂F = (Lx~i + Ly~j + Lz~k)× (Sx F̂x~i− F̂y~j + Sz F̂z~k)

= (LySz F̂z + Lz F̂y)~i + (LzSx F̂x − LxSz F̂z)~j + (−Lx F̂y − LySx F̂x)~k. (44)
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The angular momentum of a rigid body about its center of mass is

~HG = (Ixxωx − Ixyωy − Ixzωz)~i + (−Iyxωx + Iyyωy − Iyzωz)~j + (−Izxωx − Izyωy + Izzωz)~k. (45)

Equating components for xyz axes in Equations (44) and (45), and separating known
and unknown quantities results in

(Ixxω′x − Ixyω′y − Ixzω′z)− (LySz F̂z + Lz F̂y) = (Ixxωx − Ixyωy − Ixzωz), (46)

(−Iyxω′x + Iyyω′y − Iyzω′z)− (LzSx F̂x − LxSz F̂z) = (−Iyxωx + Iyyωy − Iyzωz), (47)

(−Izxω′x − Izyω′y + Izzω′z)− (−Lx F̂y − LySx F̂x) = (−Izxωx − Izyωy + Izzωz). (48)

The linear and angular momentum equations lead to three translational equations
Equation (36) and three rotational equations Equations (46)–(48). There are nine unknowns:
v′x, v′y, v′z, ω′x, ω′y, ω′z and F̂x, F̂y, F̂z. Three more equations are needed. These equa-
tions arise from the impact conditions and sliding geometry, the way they did for two-
dimensional impact.

Tribology of Impact in Three Dimensions

As in the two-dimensional case, we split impact into the compression and restitution
stages. Furthermore, when sliding comes to an end in one of the stages we further separate
that stage into two periods.

In two-dimensional impact, the friction force is always opposite to the planar velocity
of the contact point. This is because the planar velocity is along a line. When reverse sliding
takes place, the direction of velocity changes but the velocity still stays on the same line.
This is not the case for three-dimensional impact, where the contact point moves on a plane.

Consider planar velocity of the of the contact point before impact

~VCH = ~VC −
(
~VC ·~j

)
~j = vCx

~i + vCz
~k = VCH~e, (49)

in which VCH is the speed and ~e is the unit vector along the velocity. Unlike the two-

dimensional case, we cannot express the friction force as ~̂Ff = −Ff~e. This is because the
contact point velocity can change direction on the impact plane. It is necessary to calculate
direction of the friction force during impact. Work on this topic has included determining
a nonlinear curve to describe the change in direction [25]. More recent research involves
considering that impact has a finite time duration and integrating force and moment
equations over this time period [21,22].

We propose the following approximation for calculating the direction of the friction
force for both the compression and restitution stages. We solve the impact problem in the
absence of friction and calculate the planar velocity ~VCP at the end of the stage. We approxi-
mate the friction force to be in the opposite direction of this velocity. This approximation
enables us to solve the impact problem algebraically.

The 3D impact equations in the absence of friction have seven unknowns since Fx
and Fz are zero. In the compression stage, the seventh equation, in addition to the six
momentum balances, comes from the zero vertical velocity of the impact point at end of
compression. During the restitution stage there are only six unknowns, as the impact force
Fy can be calculated a priori.

Solving the zero-friction impact equations, we obtain the planar velocity of the impact
point ~VCP . Denoting by φ the angle between the x- axis and ~VCP , we assume that the
impulsive friction force is opposite this resultant planar velocity. Writing ~VCP = VCP~eh, we
express the impulsive friction force during sliding as

~̂Ff = −µk F̂y~eh = Sx F̂x î + Sz F̂z k̂ F̂f = µk F̂y =

√
F̂2

x + F̂2
z , (50)
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and

F̂x = µk F̂y|cos φ| Sx = −sign(cos φ) F̂z = µk F̂y|sin φ| Sz = −sign(sin φ). (51)

We discuss next different scenarios of impact. There are six equations from the linear
and angular momentum balances and nine unknowns; three translational and three angular
velocities, and three impulsive forces. Three additional equations will be identified from
the kinematics and kinetics of impact.

Begin with the compression stage. When the impact point slides throughout com-
pression, meaning there is an initial horizontal velocity of the impact point, two of the
equations that apply are Equation (51) with superscript c. The third equation arises from
the condition that the vertical velocity is zero at the end of compression

vc
Cy

= ~Vc
C ·~j = 0, (52)

which can be expressed as
vc

y + ωc
zLx −ωc

xLz = 0. (53)

When sliding comes to an end during compression we split the stage into two periods,
c1 and c2. The velocity components of the contact point in the horizontal plane will be zero
at c1

vc1
Cx

= ~Vc1
C ·~i = 0 vc1

Cz
= ~Vc1

C ·~k = 0, (54)

which can be expressed as

vc1
x + ωc1

y Lz −ωc1
z Ly = 0 vc1

z + ωc1
x Ly −ωc1

y Lx = 0. (55)

The third additional equation is

F̂c1
f = µkFc1

y =

√(
F̂c1

x
)2

+
(

F̂c1
z
)2, (56)

and we note that this equation is nonlinear.
When the contact point sticks during the second stage of compression, all translational

velocities are zero at end of compression so that the three additional equations become

vc
Cx

= vc
x + ωc

yLz −ωc
zLy = 0 vc

Cz
= vc

z + ωc
xLy −ωc

yLx = 0

vc
Cy

= vc
y + ωc

zLx −ωc
xLz = 0 (57)

We check whether the contact point sticks by calculating the amount of friction needed
for the above equations to hold

µneeded =

√(
F̂c2

x
)2

+
(

F̂c2
z
)2/F̂c2

y ≤ µs, (58)

and comparing it with the available friction, µs. The object will reverse slide if there is not
sufficient friction.

When the contact point reverse slides, we first find the value for φ using the approach
described above and use Equations (51) and (53). As discussed in two-dimensional impact,
the impact forces of the two periods need to be added to obtain the total impact force
during the compression stage.

For the case when impact begins with zero horizontal velocity, the contact point will
either stick throughout compression or it will begin to and continue to slide throughout
compression. For sticking, Equation (57) apply and for sliding Equations (51) and (53)
apply. For sticking to continue, the needed friction force has to be equal to or less than the
friction available. For sliding, we need to calculate the sliding direction angle φ to be used
in Equation (51).
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It is of interest to examine the nine coupled equations that need to be solved. For sliding
throughout compression, the equations are linear and can be expressed in matrix form as

m 0 0 0 0 0 −Sc
x 0 0

0 m 0 0 0 0 0 1 0
0 0 m 0 0 0 0 0 −Sc

z
0 0 0 Ixx −Ixy −Ixz 0 Sc

xLz Ly
0 0 0 −Iyx Iyy −Iyz −Sc

xLz 0 Sc
zLx

0 0 0 −Izx −Izy Izz −Ly −Sc
zLx 0

0 0 0 0 0 0 Sc
x −µk cos φ 0

0 1 0 −Lz 0 Lx 0 0 0
0 0 0 0 0 0 0 −µk sin φ Sc

z





vc
x

vc
y

vc
z

ωc
x

ωc
y

ωc
z

F̂c
x

F̂c
y

F̂c
z


=



mvx
mvy
mvz

A
B
C
0
0
0


, (59)

where A = (Ixxωx − Ixyωy − Ixzωz), B = (−Iyxωx + Iyyωy − Iyzωz), and C = (−Izxωx −
Izyωy + Izzωz).

The impact equations are nonlinear when sliding comes to an end at c1, but the sticking
and reverse sliding equations in the second stage of compression (c2) are linear. When
sliding comes to an end during compression, the first eight linear equations are



m 0 0 0 0 0 −Sc1
x 0 0

0 m 0 0 0 0 0 1 0
0 0 m 0 0 0 0 0 −Sc1

z
0 0 0 Ixx −Ixy −Ixz 0 Sc

xLz Ly
0 0 0 −Iyx Iyy −Iyz −Sc

xLz 0 Sc
zLx

0 0 0 −Izx −Izy Izz −Ly −Sc
zLx 0

0 0 0 0 0 0 Sc1
x −µk cos φ 0

0 0 0 0 0 0 0 −µk sin φ Sc1
z





vc1
x

vc1
y

vc1
z

ωc1
x

ωc1
y

ωc1
z

F̂c1
x

F̂c1
y

F̂c1
z


=



mvx
mvy
mvz

A
B
C
0
0


, (60)

and the ninth equation is Equation (56). Note that, because the equations are nonlinear,
there may be multiple solutions when a numerical solver is used. We need to check if the
solution makes sense. For example, in the actual solution F̂c

y > 0 and vc
Cy

> 0.
For sticking during the second period of compression, the nine equations in matrix

form are

m 0 0 0 0 0 −Sc2
x 0 0

0 m 0 0 0 0 0 1 0
0 0 m 0 0 0 0 0 −Sc2

z
0 0 0 Ixx −Ixy −Ixz 0 Sc

xLz Ly
0 0 0 −Iyx Iyy −Iyz −Sc

xLz 0 Sc
zLx

0 0 0 −Izx −Izy Izz −Ly −Sc
zLx 0

1 0 0 0 Lz −Ly 0 0 0
0 1 0 −Lz 0 Lx 0 0 0
0 0 1 Ly −Lx 0 0 0 0





vc
x

vc
y

vc
z

ωc
x

ωc
y

ωc
z

F̂c2
x

F̂c2
y

F̂c2
z


=



mvc1
x

mvc1
y

mvc1
z

Ac1

Bc1

Cc1

0
0
0


. (61)

For reverse sliding during the second period of compression, the impact equations are
the same as Equation (59) with terms on the right side of the equation having superscript
c1. The forces have superscript c2. As in the two-dimensional case, the impulsive forces for
the two periods of the compression stage are

F̂c
x = Sc1

x F̂c1
x + Sc2

x F̂c2
x F̂c

z = Sc1
z F̂c1

z + Sc2
z F̂c2

z F̂c
y = F̂c1

y + F̂c2
y . (62)

We next consider restitution. The procedure to calculate the post impact quantities are
similar to the compression stage, except that the zero vertical velocity condition at the end
of compression is replaced by the coefficient of restitution equation. When using Poisson’s
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formulation, F̂r
y = enFc

y . When the impact point slides throughout restitution, the nine
impact equations are linear

m 0 0 0 0 0 −Sr
x 0 0

0 m 0 0 0 0 0 1 0
0 0 m 0 0 0 0 0 −Sr

z
0 0 0 Ixx −Ixy −Ixz 0 Sc

xLz Ly
0 0 0 −Iyx Iyy −Iyz −Sc

xLz 0 Sc
zLx

0 0 0 −Izx −Izy Izz −Ly −Sc
zLx 0

0 0 0 0 0 0 Sr
x −µk cos φ 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −µk sin φ Sr

z





v′x
v′y
v′z
ω′x
ω′y
ω′z
F̂r

x
F̂r

y
F̂r

z


=



mvc
x

mvc
y

mvc
z

Ac

Bc

Cc

0
en F̂c

y
0


. (63)

The impact equations for when sliding ends during restitution are the same as
Equations (56) and (60) with the superscript c1 replaced by r1 and the subscript c added to
the terms on the right side of Equation (60). The impact equations during the second period
of restitution are calculated in a similar fashion. The total impulsive force is calculated the
same way as in Equation (62), with c1 and c2 replaced by r1 and r2.

When using the energetic formulation, we calculate the work done during compression
using Equation (23) and calculate the expression for work by the impact force in restitution
by Wr = −e2

nWc. When there is sliding throughout, we use Equation (24), which can be
expressed in terms of the motion variables as

2Wr = F̂r
yv′Cy

= Fr
y

(
v′y + Sr

xLzv′x − Sr
zLxv′z

)
. (64)

As in the two-dimensional case, this equation is nonlinear. When sliding comes to an
end, we separate the work done into two parts, Wr = Wr1 + Wr2 in which

2Wr1 = Fr1
y vr1

Cy
= Fr1

y
(
vr1

y + Sr1
x Lzvr1

x − Sr1
z Lxvr1

z
)
,

2Wr2 = Fr2
y

(
vr2

Cy
+ vr1

Cy

)
= Fr2

y

(
v′y + Sr2

x Lzv′x − Sr2
z Lxv′z + vr1

y + Sr2
x Lzvr1

x − Sr2
z Lxvr1

z

)
(65)

As in two-dimensional impact, the mode of motion is not affected by the method
used in calculating the coefficient of restitution. We next consider the different possibilities
that arise during three-dimensional impact. We note a difference between three- and two-
dimensional impact in that the contact point can continue sliding in its initial direction,
change its sliding direction while vCx maintains the same sign, sliding ending, and reverse
sliding. We redefine reverse sliding as initial sliding first coming to an end and sliding
restarting with a reversed sign of vCx , while there also may be a nonzero vCz . These
scenarios can happen in both stages of impact. Change in horizontal velocity direction
without coming to rest is categorized under sliding.

The x and z-directions are selected so that the planar velocity of the impact point is
initially in the positive x-direction. With these revised definitions, classifications of different
cases of impact become the same as in Table 2 and Figure 2.

4. Analysis and Simulation

Analysis of the impact equations requires that the initial conditions (orientation of
the object, translational velocities, and angular velocities) be known immediately before
impact, together with the material properties (coefficients of friction and of restitution),
as well as geometry of the impacting body.

The orientation of the object is used to calculate the inertia matrix. We can do this
calculation by means of Euler angles or if given coordinates of the center of mass with
respect to the impact point. Consider the Euler angle approach and recall that xyz constitute
a set of inertial coordinates and XYZ are attached to the body. For a slender rod, designating
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the symmetry axis by Y, we begin with the initial position where the Y and y axes are
aligned. Note that there are several Euler angle combinations that we can use.

Consider the slender rod making point contact with the impact surface, shown in
Figure 6. The impact and friction forces do not create a moment about the axis of the rod,
so that we can bring the rod into position with two Euler angle rotations discussed earlier
and depicted in Figure 7.

a) b)

Figure 7. Rotation angles (a) θ1 and (b) θ2 for a slender rod.

We select the first rotation to be by θ1 about the z axis, leading to the x′y′z′ coor-
dinates. The second rotation is about the x′ axis by θ2, leading to the XYZ coordinates.
The transformation between the xyz and XYZ coordinates is given by

{XYZr} = [Q]{xyzr} = [Q2][Q1]{xyzr}, (66)

where {xyzr} = [0 L 0]T and

[Q1] =

 cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1

, [Q2] =

 1 0 0
0 cos θ2 sin θ2
0 − sin θ2 cos θ2

, (67)

and use Equation (43) to calculate the inertia matrix about the fixed xyz axes. This approach
permits simulation of the impact equation for the full range of orientations.

When the coordinates of the center of mass of the impacting object is given, say,
{xyzr} = [xG yG zG]

T , we use these coordinates to calculate the orientation angles θ1 and θ2.
For a rod of length 2L, noting that {xyzr} = [Q]T{XYZr} and that {XYZr} = L[0 − 1 0]T ,

{xyzr} = L[cos θ2 sin θ1 − cos θ2 cos θ1 − sin θ2]
T = [xG yG zG]

T . (68)

The above equation gives three expressions to find two unknowns, θ1 and θ2. The equa-
tions are consistent, with one unique solution. Note that when the body is not slender,
three Euler angle rotations are necessary. Care must be taken when dealing with inverse
sines and cosines, because of definition of their range in computer software. Once the two
angles θ1 and θ2 are determined, the approach discussed above gives the inertia matrix.

We next outline a procedure to find the modes of impact. We assume that mass and
inertia properties, initial orientation, initial velocities and initial angular velocities are
known, as well as the coefficients of friction and restitution. The flowchart of the impact
simulation is given in Figure 2. The only difference from two-dimensional impact is to
replace the term reverse sliding with change in sliding direction in the flowchart.

1. If the impact point has a horizontal velocity immediately before impact, check if
sliding comes to an end during compression. Solve the impact equations using
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Equations (55) and (56). Check if the answer is reasonable. For example, all contact
forces must be greater than or equal to zero.

2. If sliding comes to an end during compression, split the compression stage into two
periods, c1 and c2, and check if the contact point sticks. Find associated sliding angle
φ and use Equation (57) to calculate the impulsive forces. Use Equation (58) to check
whether the available friction force is greater than friction necessary to prevent sliding.
If so, the object will stick and continue sticking during restitution.
If there is not sufficient friction, the object will reverse slide. Use Equations (51)
and (53) with the appropriate superscripts to find the velocities after compression.
Because the contact point C slides due to the effect of the moments generated by the
orientation of the body, sliding will continue through restitution.

3. If sliding does not come to an end during compression, the object slides throughout
compression and Equations (51) and (53) apply.

4. If impact point has zero horizontal velocity before impact, check if impact point sticks
using Equation (57). Find φ, and determine whether the amount of friction needed to
sustain the no slip condition is less than the available friction. If there is not sufficient
friction, the impact point will slide throughout compression and Equations (51) and
(53) apply. This mode of motion continues through restitution.

At end of compression, the impact point may be sliding, reverse sliding, or sticking.
We next consider restitution.

1. If the impact point is sticking at the end of compression, it will continue to stick
throughout restitution. The first two of Equation (57) with superscript r and F̂r

y = en F̂c
y

apply for Poisson’s model and Equation (64) for the energetic model.
2. If the impact point is sliding at end of compression, go through the same process

as outlined in the compression stage to determine if sliding comes to an end or it
continues. If sliding comes to an end, split the restitution stage into two periods
r1 and r2 and check if the impact point sticks or slides in another direction. Use
F̂r

y = en F̂c
y = F̂r1

y + F̂r2
y for Poisson and Equation (65) for the energetic model.

If the sliding at end of compression is due to a mode change, so that there is reverse
sliding, the changed mode will continue during restitution as well.

The impact equations in Equation (56) are nonlinear when motion comes to a rest
(during compression or restitution) or when the energetic model is used to model resti-
tution. Nonlinear equations usually have multiple solutions. We should always check if
the numerical answers make sense. For example, if the normal force F̂y turns out to be
negative, the results are invalid and the assumed mode of motion is incorrect. Furthermore,
by selecting initial values for the velocities and forces in a way that reflects the geometry,
we can ensure convergence of the nonlinear equation solver to the correct values. One way
to do this is to obtain the solution to the impact equations in the absence of friction and use
the results of this analysis to specify initial estimates of the variables to be solved.

5. Results: Impact of a Rod with the Ground

Consider impact of a cylindrical rod of length 2L and radius r. Ends of the rod are
assumed to be spherical to model impact as point-to-line. Furthermore, it is assumed the
distance between the contact point and the center of mass remains constant during impact.
The parameters of the rod are m = 1, 2L = 4.6, r = 0.5 (same as the rod dimensions for the
two-dimensional case so we can compare the results; otherwise the procedure applies to
any three-dimensional object). We conduct simulations for different orientations of the rod
during impact, as well as different values for the coefficients of friction and restitution.

The inertia matrix [IG] for a symmetric cylindrical rod using a body-attached frame is

[IXYZ
G ] = m

 1
4 r2 + 1

3 L2 0 0
0 1

2 r2 0
0 0 1

4 r2 + 1
3 L2

. (69)



Dynamics 2022, 2 20

We assume that impact forces do not create a moment about the symmetry axis of the rod.
We first simulate the impact equations for the following initial conditions: vx =

0.4, vy = 1, ~ω =~0 and for µk = 0.2, µs = µk, en = 0.8. Figure 8, which uses the Poisson
model for restitution, shows the mode of impact, the normalized vertical velocity of the
impact point, and the ratio of final energy to initial kinetic energy. Energy is calculated
as E = (m~v ·~v + ~ω · ~HG)/2. The results are symmetric for positive and negative values
of θ2 (only the velocity in z-direction will have a different sign) so that the plots are for
positive values of θ2. This analysis is carried out for the range of initial orientations
−25◦ ≤ θ1 ≤ 25◦, 0◦ ≤ θ2 ≤ 25◦. The nature of the results does not change as the range of
angles is increased.

-25 -20 -15 -10 -5 0 5 10 15 20 25

1 (in degrees)

0

5

10

15

20

25

2 (i
n 

de
gr

ee
s)

Plot of Mode of Sliding, vCx
 = 0.4, en = 0.8, k = 0.2

0

1

2

3

-25 -20 -15 -10 -5 0 5 10 15 20 25

1 (in degrees)

0

5

10

15

20

25

2 (i
n 

de
gr

ee
s)

Plot of v"Cy
/(vCy

en), vCx
 = 0.4, en = 0.8, k = 0.2

0

0.2

0.4

0.6

0.8

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

1 (in degrees)

0

5

10

15

20

25

2 (i
n 

de
gr

ee
s)

Plot of Energy Ratio (After/Before), vCx
 = 0.4, k = 0.2

0

0.2

0.4

0.6

0.8

1

Figure 8. Impact results for µk = 0.2, en = 0.8 using Poisson model.

As expected, the motion is dominated by sliding, with a small range of sticking (during
compression and also in restitution), and reverse sliding for larger values of θ1. When the
rod is relatively upright (small values of θ1, θ2), the rod will slide and then stick. As the
orientation angles become larger, reverse sliding and sliding in other directions begin to
dominate the motion. Furthermore, energy lost during impact is highest for when sliding
comes to an end during one of the stages of impact.

Next, let us consider the energetic coefficient of restitution and solve for the same
initial conditions. The results are shown in Figure 9. Just as in the two-dimensional impact
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case, the results are very similar to Poisson’s model, with slight differences in only a few
configurations.
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Figure 9. Impact results for µk = 0.2, en = 0.8 using energetic coefficient of restitution.

For a parametric study, consider impact of a point mass with both a horizontal
speed vCx and vertical speed vCy before impact. The impulsive normal force during com-
pression is F̂c

y = mvy so that the horizontal impulsive friction force is approximated as
F̂c

x = µF̂c
y = µmvy. If this force is greater than mvx the object will stop sliding. We then

define a slide parameter s = vx/µvy (vCx /µvCy for the rigid-body model) that relates the
initial conditions and available friction. When s < 1, sliding will end, and when s > 1,
sliding continues during compression. While the slide parameter is defined for particles,
it can be used as a guideline for rigid body impact. For example, for the case considered
above, s = 0.4/0.2 = 2, so that we can expect sliding to continue in one form or another for
the majority of orientations.

Let us consider a case when the slide parameter is close to one. Selecting µ = 0.4 leads
to a slide parameter of s = 1. The results are shown in Figure 10 for Poisson’s model. The
ranges for θ1 and θ2 are between −50◦ and 50◦.
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Figure 10. Impact results for µk = 0.4, en = 0.7. Slide parameter is s = 1. Poisson’s model is used.

Here, the region when the rod sticks is larger than when µk = 0.2. Furthermore,
the parameters used here are the same as the ones in the two-dimensional example earlier
(Figures 3 and 4). Indeed, if we consider a line that represents a velocity ratio of 0.4 in the
two-dimensional case and θ2 = 0 in the three-dimensional case, the results are the same.

We consider next the same initial conditions with µk = 0.4 and en = 0.5. The results
are shown in Figure 11 using Poisson’s model.

Reduction in the coefficient of restitution increases energy loss, slightly affects velocity
ratios (as they are normalized with respect to the coefficient of restitution), but does not
affect the mode of motion, just as we observed in the two-dimensional results. Note there
is no reverse sliding during restitution in any of the cases considered above.

We next analyze impact results as a function of the coefficients of friction and resti-
tution. Using the same parameters for the rod as before, initial orientation of θ1 = 20◦,
θ2 = 15◦, and initial velocities of vCx = 0.4, vCy = 1, Figure 12 gives the mode of motion,
vertical velocity ratios and energy ratios before and after impact. Poisson’s model is used
to model the friction force. It should be noted that, for the set of parameters used here,
the energetic method produces nearly identical results to the Poisson model.
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Figure 11. Impact results for µk = 0.4, en = 0.5. Poisson’s model is used.

As expected, the mode of motion is not affected by the value of the coefficient of
restitution. Noting that an initial orientation of θ1 = 20◦, θ2 = 15◦ will lead to change of
direction of horizontal velocity and possible reverse sliding, for low levels of friction the
contact point continues sliding, albeit with change in direction. Even though reverse sliding
is expected, friction is not sufficient to make sliding come to an end. However, the sliding
direction, which initially was in the x-direction, acquires a component in the z-direction.

As friction increases, sliding comes to an end and reverse sliding in the negative
x-direction begins. For high levels of friction, the impulsive friction force is sufficient to
prevent reverse sliding and the contact point sticks. In our simulations, we found very
few cases where, for a given level of friction, the mode of motion changes as en is varied.
The initial orientation θ1 = −20◦, θ2 = 15◦ is one such case and the results are plotted in
Figure 13.

The vertical velocity ratio of the contact point is affected by both the coefficient of
restitution and coefficient of friction. However, en plays a much more significant factor.
Note that, unlike previous figures, the velocity ratio is not normalized with respect to the
coefficient of restitution. Similarly, the energy loss is influenced much more by en than by
µk. Noted that, in certain cases, the translational kinetic energy of the rod is converted into
rotational kinetic energy.
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Figure 12. Impact results as a function of µk and en for θ1 = 20◦, θ2 = 15◦.

Figure 13. Impact results as a function of µk and en for θ1 = −20◦, θ2 = 15◦.
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Figures 12 and 13 are generated using Poisson’s model. The energetic model for
restitution gives almost identical results so they are not plotted here. This substantial
similarity between the Poisson and energetic models may not hold for other orientations of
the rod.

6. Discussion

As in the case of two-dimensional impact, whether there is sliding or not is influenced
more by the angle the rod makes with the vertical than the level of friction. When θ2 6= 0,
because the rod is already sliding, sticking occurs in a smaller range of θ1 and θ2. Therefore,
there is more sliding and reverse sliding in three-dimensional impact, as sliding can occur
perpendicular to the initial planar velocity.

As in two-dimensional impact, there is more energy loss as the coefficient of restitution
is decreased, friction is increased, and also when the rod becomes more flat. We can observe
these effects by looking at the right side of the energy ratio plots. Using a static coefficient
of friction different than the kinetic coefficient of friction does not change the results in a
significant way.

The Poisson and energetic models give similar results for the majority of initial con-
ditions for both two- or three-dimensional impact, as we split the stage in which sliding
ends into two periods. The mode of motion is not dependent on Poisson and energetic
models. As in the two-dimensional case, the difference in vertical velocity and energy ratio
for the two models is more pronounced when sliding comes to a rest during compression
or restitution.

7. Conclusions

Post-impact parameters are analyzed for three-dimensional impact. A procedure
is developed to approximate direction of the frictional forces along the impact plane.
Simulations are conducted using both Poisson’s and energetic models. It is observed
that the three-dimensional results follow closely from two-dimensional impact results,
with more sliding observed for three-dimensional impact. The mode of impact is primarily
influenced by friction and orientation of the body. It is not affected by the coefficient of
restitution for two-dimensional impact and is affected minimally for three-dimensional
impact. The velocity and energy ratios before and after impact are primarily affected by the
coefficient of restitution. These two conclusions regarding coefficient of restitution apply
to both the Poisson and energetic models. The Poisson and energetic models yield very
similar results but, in a limited number of cases, there may be up to a 20% difference in
post-impact velocities. A closed-form solution is developed for the modes of motion for
two-dimensional impact.
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