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Abstract: Obtaining the modal parameters of a tire with ground contact and rolling conditions
represents a challenge due to the complex vibration characteristic behaviors that cause the distortion
of the tire’s symmetry and the bifurcation phenomena of the natural frequencies. An in-plane rigid–
elastic-coupled tire model was used to examine the 200 DOF finite difference method (FDM) modal
analysis accuracy under non-ground contact and non-rotating conditions. The discrete in-plane
rigid–elastic-coupled tire model was modified to include the contact patch restriction, centrifugal
force and Coriolis effect, covering a range from 0 to 300 Hz. As a result, the influence of the contact
patch and the rotating tire conditions on the natural frequencies and modes were obtained through
modal analysis.

Keywords: Euler–Bernoulli beam; finite difference method; tire modal analysis; beam on elastic
foundation

1. Introduction

To describe in-plane tire mode shapes, wave propagation through the treadband/belt
must first be explored. The treadband exposes three types of waves: bending, longitudinal,
and rotational. The deformations of these waves are shown in Figure 1. The radial displace-
ment of the belt is affected by the bending wave, whereas the tangential displacement is a
consequence of the longitudinal wave; however, the rotational wave appears at a much
higher propagation speed of approximately 2500 Hz. Thus, the rotational wave can be
ignored if the analysis is in the frequency range of 0–500 Hz [1].

i

Figure 1. (a) Bending wave, (b) longitudinal wave, and (c) rotational wave. Reproduced with
permission from Kindt [2].

The rubber viscoelastic behavior limits the modal analysis to 500 Hz because the
rubber loss factor increases as the frequency increases, so at a high-frequency range, the
propagation waves generated from the excitation decay too quickly (see Figure 2). In an
out-of-plane tire, the belt/treadband cross-section can vibrate; hence, at each cross-sectional
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wavelength number, there is an infinite number of circumferential modes, as shown in
Figure 3.

lal b

Figure 2. Structural behavior of a tire: (a) low-frequency modal behavior; and (b) high-frequency
non-modal behavior. Reproduced with permission from Kindt [2].

Wheeler [3] used a notation for the tire structure modes labeled in two indices, [c, a].
The circumferential index, c, represents the number of circumferential bending wavelengths
of the belt or the circumferential mode number. The cross-section index, a, represents the
number of half-wavelengths in the axial direction of the treadband at a circumferential
location where the shape is at extreme radial displacement.

When n = 0, the breathing mode is the tangential zero mode, which can be categorized
as a constant radial deformation of the belt. The breathing mode is a function of the belt
membrane’s and radial sidewall’s stiffness. In the first circumferential mode, the rigid
mode, the belt moves as a rigid structure [4].
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Figure 3. Typical tire dispersion curves for bending and longitudinal waves. Reproduced with
permission from [5]. Copyright 2000 AIP Publishing.

Kindt [6] et al. extended the mode description to apply to the loaded tire modes. As
mentioned previously, the loaded tire breaks the symmetry, causing the split of doubled
poles that occur on the unloaded tire into two single poles. Two additional labels were
introduced, 0 and extr. The label 0 is added to the mode with a radial displacement of zero
in the middle of the tire/road contact area. The label extr is added for the mode with an
extreme radial displacement in the middle of the tire/road contact area. An illustration is
presented in Figure 4.
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Figure 4. Examples of the (4, a) modes of the loaded tire using the additional labels 0 and extr.

For the non-contact tire, there are two radial symmetric mode shapes rotated by 180
2n at

each eigenvalue represented by a harmonic function, where n is the mode wavenumber
along the circumference. This symmetry of mode shapes will be destroyed for a deformed
tire and will generate a unique radial mode shape at each natural frequency (see Figures 5
and 6). Soedel and Prasad [7] extracted the tire mode shapes that are in ground contact
from the non-contact tire’s mode shapes and natural frequencies. This approach is based
on a small contact patch length (very low normal load) to ignore the shifting of the natural
frequencies caused by the loaded tire. In Kozhevnikov’s study, using the wheel with a
reinforced tire consisted of a rigid disk attached to sidewalls and tread without slipping.
The natural frequency for the loaded tire is a function of the contact patch length. As
the contact patch length increases, the tire mass attached to that region will be excluded
from the tire vibration mass; thus, the natural frequencies will rise up. Additionally, the
two identical mode shapes will be subdivided into two unique mode shapes, symmetric
and antisymmetric, under the deformed tire condition [8]. Matsubara et al. performed
an experimental modal analysis and applied a cylindrical shell model to realize the effect
of the contact patch restriction, which showed that the modal shape and the natural
frequency variation are due to contact tire boundary conditions. The natural frequencies
are greater in contact tires than in non-contact tires; this variation grows as the radial mode
number increases, and the half mode radial number (n = 1.5, 2.5, . . . ) can be used in the
cylindrical shell natural frequency as well as the harmonic eigenfunction to predict the
modal characteristics of a contact tire [9].

The boundary condition of the one-direction movement of the rim in the vertical
direction compared with a fixed rim shows an impact on the first radial natural frequencies
and has no effect on tangential natural frequencies. The first radial natural frequencies
(rigid mode) are split into two distinct frequencies under the rim movement boundary
condition. The split of the rigid mode observed by the elastic ring model is supported by
the elastic foundation and 12 DOF doubly curved, geometrically non-linear, thin shell finite
element model [10]. Tire mode shapes and natural frequencies depend on the patch and
spindle constraints as well as the tire’s construction properties. For the fixed patch, Richards
et al. found no distinction in the radial or tangential modes between fixed and pinned
wheel spindle constraints, but for a freewheel spindle boundary condition compared with
the fixed or pinned constraints, the first radial mode is different, illustrating the effect of the
mass wheel movement. The mass wheel movement becomes irrelevant for higher radial
modes. In torsional modes, a difference occurs among the pinned, fixed, and free wheel,
caused by inertia [11]. Rim movement was found to influence the breathing mode (n = 0)
and the first radial mode (n = 1).

A simpler rigid ring model, presented by Zegelaar, can be used to obtain the vibration
transmission between the contact point and the rim via the transfer function matrix. The
transfer function matrix relates the displacement response to the input forces. A vertical
residual stiffness at the contact patch is attached to the rigid ring in order to involve
the contribution of the higher-order radial modes in the total deformation of the tire.
Additionally, horizontal residual stiffness was introduced to obverse the slip contact model
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(brush model). This method used a rigid ring transfer function matrix to relate the contact
force to the rim movement, with an assumption that the contribution of the higher order
mode would be residual stiffness [12].

The influence of the tire parameters on the natural frequency was explored using a
thin cylindrical shell theory with the Rayleigh method. The contribution ratio of the tire
substructure parameters against the natural frequency showed that the first tire modes
were affected by the sidewall stiffness only because these modes are the rigid modes. For
higher modes, the contribution of the tension term becomes dominant. The torsion and
bending tread element does not influence tire vibration [13].

Shokouhfar and El-Gindy generated a 3D finite element model of a radial-ply truck
tire in LS-Dyna to predict the natural frequencies and corresponding mode shapes. The
nonlinear large deformation finite element theory includes the contribution of the stress
from the vertical load to tire stiffness matrix. The inflation pressure has an almost pro-
portional relationship with the natural frequencies, yielding greater impact on higher tire
modes. Likewise, the natural frequencies tend to increase with the greater vertical load.
Additionally, the rolling conditions show an effect on the dynamic tire stiffness [14].

Figure 5. Two identical radial mode shapes with arbitrary rotation and the circumferential wave
number n = 3. Reproduced with permission from [14]. Copyright 2016 Inderscience Enterprises Ltd.

Figure 6. The split of two identical radial mode shapes caused by tire deflection and the circumfer-
ential wave number n = 3. Reproduced with permission from [14]. Copyright 2016 Inderscience
Enterprises Ltd.

The Coriolis acceleration and centrifugal force need to be explored in the local frame
of reference. For a non-rotating flexible ring model, there exists only one frequency for each
mode. However, under rotation conditions, there are two frequencies for every mode. This
phenomenon is called “the bifurcation of the natural frequencies”, and is created by the
Coriolis effect if observed from the rotating coordinate [15] Huang and Soedel [16] showed
that the bifurcation is independent of the elastic foundation stiffness. The Coriolis effect
shows a higher impact on the natural frequencies compared with the centrifugal force.
The centrifugal force affects the tire stiffness but without any bifurcation of the natural
frequencies. It has two contributions on a rotating tire: first, it increases the radial load
on the rubber ring so that the pre-tension force on the tire is increased [17]. Second, it
created a spin-softening effect, acting as a negative contribution on the generalized stiffness
matrix [18].

The FEA model by Lardner [19] used a virtually tested tire on a 2.5 diameter circular
drum with a cleat acting as an excitation force to perform the vibration analysis under
various load and rolling conditions. The cylindrical shell theory model by Matsubara [20]
obtains the vibration characteristics of the contact and rolling conditions by applying the
receptance method, as well as the frequency equation and mode shape function.
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The rotating elastic beam under tension on an elastic foundation model [21] is used to
study the vibration characteristics under rotating conditions and to extract the mode shape
and natural frequencies from the eigenfunction and natural frequency equation. Tsotras [4]
introduced two discretized models, namely a truss and a beam-based model for a tire ring
model. The truss model is insufficient for radial analysis due to the lack of bending stiffness,
except at very low frequencies. The beam model performed better than the truss model,
but the inflation pressure effect as a pre-tension force cannot be implemented.

In this study, a 200 DOF discrete tire model was generated from an in-plane rigid–
elastic-coupled tire model using the FDM. The central difference theory discretized the
tire model equation of motion to generate stiffness, mass, and damping matrices. The
model comprises the tread as an Euler–Bernoulli beam, the sidewall as lumped masses
with two-sectional radial stiffness, and the inflation pressure simulated as the axis force.
The coupling between the sidewall lumped masses with the rim and the tread extends
the frequency band to 300 Hz; this makes the model more precise for use on roads with
relatively short and sharp unevenness.

The main issue with full modal models (FEA, for example) is the inability to inte-
grate the tire modal model with simulation software such as ADAMS and CarSim. Since
the majority of vehicle dynamics tuning (including suspension and steering system set-
tings) is achieved through simulations, having an accurate reduced order discrete modal
model allows the design of the experiment to tune the vehicle frequencies for the best ride
performance.

This study aimed to develop the discrete compact model of a pneumatic tire that is
able to be integrated with a complete vehicle simulation that covers the range 0–300 Hz,
predicting the change in the tire’s modal parameters caused by tire deformation and the
rolling condition. It has the ability to implement the contact patch length restriction, as well
as the Coriolis and centrifugal forces. The proposed model improved the in-plane rigid–
elastic-coupled tire model by including the ground contact restriction and rolling condition.
The extra radial stiffness was introduced and attached to the contact patch elements to
resolve the tread-ground contact difficulty. The Coriolis force generates a skew-symmetric
damping matrix to be added to the system, which gives a better understanding of the
concept of the bifurcation of the natural frequencies of tires. However, the centrifugal force
affects the generalized stiffness matrix by changing the pre-tension force and acting as a
spin softener. The mass, stiffness, and damping matrices produced from the FDM were
applied to build a tire model with 200 DOF under ground contact, rolling, and fixed rim
boundary conditions. In order to estimate the natural frequencies and mode shapes, a
modal analysis simulation was performed.

2. The Undeformed Tire

Liu et al. [22] presented the in-plane rigid–elastic-coupled tire model, which consists
of three main structure treads simulated as an Euler–Bernoulli beam, a sidewall simulated
as the two-sectional radial stiffness, and the inertia force and inflation pressure simulated
as the axis force of the Euler–Bernoulli beam, as shown in Figure 7. Coupling the belt with
the rim using the sidewall stiffness will give a precise transfer function prediction within
the 180 Hz range. However, adding the sidewall as a lumped mass with two-sectional
sidewall radial stiffness will expand the transfer function’s prediction to 300 Hz.
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Figure 7. The in–plane rigid–elastic-coupled tire model. Reproduced with permission from [23].
Copyright 2019 Elsevier.

2.1. The Equation of Motion for the Euler–Bernoulli Beam Coupled with the Sidewall Lumped Mass

The equation of motion of the Euler–Bernoulli beam is subject to crucial assumptions
that the cross-section is perpendicular to the bending line, there is no rotation of the cross-
section due to shear deformation, and the stress in terms of thickness is ignored. The
dynamics of the tread based on force and moment balance (see Figure 8) are expressed
in the following equation where P is the axial (tension) load, M is the bending moment,
f is the external force per unit length, V is the shear force, and ρAdx is the mass of the
differential element:

V − (V +
∂V
∂x

dx) + f dx + (P +
∂P
∂x

dx) sin(Θ + dΘ)− P sin Θ = ρAdx
∂2ur

∂t2 (1)

For small angles and constant inflation pressure P, the force balance becomes:

− ∂V
∂x

+ f + P
∂2ur

∂x2 = ρA
∂2ur

∂t2 (2)

Applying the moment balance equation:

(M + dM)−M− (V + dV)(dx)− f dx
(

dx
2

)
= 0 (3)

∂V
∂x

=
∂2M
∂x2 (4)
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From the elementary theory of bending at beams where I is a constant moment of
inertia and E is a beam elastic modulus:

∂2M
∂x2 = EI

∂4ur

∂x4 (x, t) (5)

The Euler–Bernoulli beam equation of motion under tension with no internal damping:

ρA
∂2ur(x, t)

∂t2 + EI
∂4ur(x, t)

∂x4 − P
∂2ur(x, t)

∂x2 = f (x, t) (6)

Let the length of the beam L = 2πR, where R is the inflated tire radius, so x = Rθ:

ρA
∂2ur(θ, t)

∂t2 +
EI
R4

∂4ur(θ, t)
∂θ4 − P

R2
∂2ur(θ, t)

∂θ2 = q(θ, t) (7)

where (7) is the equation of motion expressed in polar coordinates. Now, the Euler–
Bernoulli beam is attached to the lumped sidewall masses ms with two different values of
sectional sidewall stiffness kr1 and kr2. As shown in Figure 7, q(θ, t) represents the forces
from the elastic foundation of the beam, where ur,j is the belt radial displacement and usr,j
is the sidewall lumped mass radial displacement:

q(θ, t) = kr1(usr,j − ur,j) (8)

The axial pretension force of the flexible tread/belt due to inflation pressure derived
from Figure 9 is shown as follows:

P = FN =
1
2

∫ π

0
(pb)R sin θdθ = poRb (9)

where p is the inflation pressure and po the total pressure applied to the tire width b. The
in-plane rigid–elastic-coupled tire model equation:

ρA
∂2ur(θ, t)

∂t2 +
EI
R4

∂4ur(θ, t)
∂θ4 − pob

R
∂2ur(θ, t)

∂θ2 = kr1(usr,j − ur,j) (10)

Figure 8. Free body diagram for the Euler–Bernoulli beam differential element with axial force.
Reproduced with permission from [24]. Copyright 2007 John Wiley and Sons.
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Figure 9. Pre-tension force due to inflation pressure. Reproduced with permission from [23]. Copy-
right 2019 Elsevier.

Applying Newton’s second law to the sidewall lumped masses will produce a second
equation coupled with the Euler–Bernoulli governing equation:

ms
∂2usr,j

∂t2 = kr1(ur,j − usr,j)− kr2usr,j (11)

2.2. Analytical Solution for the Mode Shape and Natural Frequencies

For proportional damping, Equations (10) and (11) were used to obtain the natural
frequencies and mode shapes. Let ur = Rr(θ)eiωnt, where Rr(θ) = Acos(n(θ − φ)) is the
tread harmonic eigenfunction, and usr = Rsr(θ)eiωnt, where Rsr(θ) = Bcos(n(θ − φ)) is the
sidewall harmonic eigenfunction. ωn is the natural frequency, Aamp and Bamp are the mode
shape amplitudes, n is the modal number and φ is the arbitrary angle, which depends on
the excitation orientation. Thus, the equations are re-written in matrix form as follows:[

EI
R4 n4 + pob

R n2 + kr1 − ρAω2
n −kr1

−kr1 −msω2
n + kr1 + kr2

]
×
[

Aamp
Bamp

]
=

[
0
0

]
(12)

The characteristic equation is:

Aρmsω4
n −

(
EIn4

R4 + kr1 +
pobn2

R

)
mS + ρA(kr1 + kr2)ω

2
n+(

EIn4

R4 +
pobn2

R
+ kr1

)
(kr1 + kr2) = 0

(13)

The solution of Equation (13) for every mode number n ≥ 0 offers two frequency
values and two mode shapes (in-phase and out-phase). Substituting the calculated natural
frequency functions from (13) in Equation (12) yields the mode shape amplitude for the
tread and sidewall stiffness. The positive and negative ratio between these two amplitudes
decides which natural frequency functions represent the in-phase or out-phase frequencies:

ρAmSω4 − Bω2 + C = 0 (14)

C = (kr1 + kr2)

(
EIn4

R4 +
pobn2

R
+ kr1

)
−mS

(
EIn4

R4 +
pobn2

R
+ kr1

)
(15)

B = −ρA(kr1 + kr2) (16)

ωn,in−phase =

√
2
√

ρAmS

(
B−

√
−4ρAmSC + B2

)
2ρAmS

(17)
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ωn,out−phase =

√
2
√

ρAmS

(
B +

√
−4ρAmSC + B2

)
2ρAmS

(18)

2.3. Approximate Solution Using the Finite Difference Method

In mathematics, FDMs are numerical methods for solving differential equations by
approximating them with difference equations. Finite difference equations approximate the
derivatives based on the Tylor series expansion. Thus, FDMs are discretization methods.
FDMs convert a linear (non-linear) ODE/PDE into a system of linear (non-linear) equations,
which can then be solved by matrix algebra techniques. There are three main techniques
for FDM: backward, forward, and central difference methods [25]. Using the central FDM:

∂ur

∂θ
=

ur,j+1 − ur,j−1

δθ
(19)

∂2ur

∂θ2 =
ur,j+1 + ur,j−1 − 2ur,j

δθ2 (20)

∂4ur

∂θ4 =
ur,j−2 − 4ur,j−1 + 6ur,j − 4ur,j+1 + ur,j+2

δθ4 (21)

where δθ = 2πR
N and N is the number of elements around the tire’s circumference. Substi-

tuting Equation (19) through (21) in Equation (10) yields the discrete equation of the beam
in the form of ordinary differential equations:

α1ur,j+2 + α2ur,j+1 + α3ur,j + α2ur,j−1 + α1ur,j−2 − usr,jkr1 + ρA
∂2ur,j

∂t2 = 0 (22)

where α1 = EI
δθ4R4 , α2 = −( pob

Rδθ2 +
4EI

R4δθ4 ) and α3 = 6EI
R4δθ4 +

2pob
Rδθ2 + kr1.

Rewriting Equations (22) and (11) in a matrix form yields the following:[
Mt 0
0 Ms

][
ür,j
üsr,j

]
+

[
Kur Kurs
Kurs Kus

][
ur,j
usr,j

]
= 0,

Mt =


ρA 0 0 0 0
0 ρA 0 0 0
0 0 ρA 0 0
0 0 0 ρA 0
. . . . .



Ms =


ms 0 0 0 0
0 ms 0 0 0
0 0 ms 0 0
0 0 0 ms 0
. . . . .

,

Kurs =


−kr1 0 0 0 0
0 −kr1 0 0 0
0 0 −kr1 0 0
0 0 0 −kr1 0
. . . . .
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Kur =



α3 α2 α1 0 0 α1 α2
α2 α3 α2 α1 0 0 α1
α1 α2 α3 α2 α1 0 0
. . . . . . .
. . . . . . .
α1 0 0 α1 α2 α3 α2
α2 α1 0 0 α1 α2 α3


,

Kus =


kr2 + kr1 0 0 0 0
0 kr2 + kr1 0 0 0
0 0 kr2 + kr1 0 0
0 0 0 kr2 + kr1 0
. . . . .


Let MG =

[
Mt 0
0 Ms

]
,KG =

[
Kur Kurs
Kurs Kus

]
and CG is the proportional damping

matrix.

Let ü =

[
ür,j
üsr,j

]
, u̇ =

[
u̇r,j
u̇sr,j

]
and u =

[
ur,j
usr,j

]
.

The general equation of motion in matrix form becomes:

[MG]ü + [CG]u̇ + [KG]u = 0 (23)

Substituting q = [MG]
1/2u(t) in Equation (23) and multiplying with [MG]

−1/2 gives:

Iq̈ + [MG]
−1/2[CG][MG]

−1/2q̇ + [MG]
−1/2[KG][MG]

−1/2q = 0 (24)

Iq̈ + C̃G q̇ + K̃Gq = 0 (25)

The proportional damping system can be represented with real modes where
K̃G = [MG]

−1/2[KG][MG]
−1/2 is the mass normalized stiffness matrix in k/m. K̃G is a

symmetric, positive definite, and generates real and distinct eigenvalues. The eigenvalues
of K̃G are the squares of the system’s natural frequencies. However, in this case, the eigen-
vectors of K̃G are related to the mode shapes by φi = M1/2 pi where φi are the mode shapes
and pi are the eigenvectors of K̃G [26].

3. The Deformed Tire

In practice, the contact forces in the contact patch are unknown because they are
determined by the treadband displacement. To resolve the treadband contact difficulty, a
minor modification to the physical model is required. A small change to tire tread rubber in
the contact patch area, and an extra component (radial stiffness, kcw) is added to the model
in the radial direction around the outside surface of the tread circumference. The height of
these added components is assumed to be zero. The extra radial stiffness component that
linked the tread with the road can be considered extremely high because the road surface
has sufficiently higher stiffness than the tire (see Figure 10).

The discrete equations introduced in (22) and (11) were used to implement α3 =
6EI

R4δθ4 +
2pob
Rδθ2 + kr1 for non-contact elements and α3

′ = 6EI
R4δθ4 +

2pob
Rδθ2 + kr1 + kcw for contact

patch elements in the stiffness matrix Kur. The matrix was resolved for eigenvalues and
eigenvectors to obtain the natural frequencies and mode shapes under the deformed tire. It
was assumed that kcw = 5.93× 108 N/m was large enough to constrain a zero deflection of
the tire mode shapes in the contact patch area.
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Figure 10. Loaded tire with the extra components (radial stiffness) attached in the contact patch
length.

4. The Rotating Tire in Body Frame

In this section, we consider a rotating tire with a constant rotational velocity Ω. Addi-
tional complexity is added to the system due to fictitious forces generated in a non-inertial
frame (i.e., a rotating body frame attached to the tire origin). The three fictitious forces in
the non-inertial reference frame are the centrifugal force, the Coriolis force, and the Euler
force. In tire research, a constant velocity of the tire is always assumed, so the Euler force is
not considered.

Y′ 

Ω

Figure 11. The rotating body frame of reference.
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The equation of motion in the rotating reference frame can be derived by transforming
the stationary reference frame equation of motion into the moving coordinate frame (see
Figure 11). This transformation relates the acceleration in the rotating reference frame to
the acceleration in the stationary reference frame. Let {u} =

[
ur,j usr,j

]T be the position

vector in a fixed frame of reference for a non-rotating system; {q} =
[

qr,j qsr,j
]T is the

position vector in a rotating body frame. The transformation from a stationary frame to a
rotating frame is given by

{q̈} = {ü} − 2{Ω} × {q̇} − {Ω} × ({Ω} × {q})− {Ω̇} × {q} (26)

The Euler force is zero for a constant spin speed:

FE = {Ω̇} × {q} = 0 (27)

The Coriolis force is:
Fc = 2{Ω} × {q̇} = 2[G]{q̇} (28)

where G = blockdiag ([Ω]) with size 2n× 2n and [Ω] =

[
0 −Ω3

Ω3 0

]
For centrifugal force:

Fg = {Ω} × ({Ω} × {q}) = [D]{q} (29)

where D = blockdiag ([Ω̂]) with size 2n× 2n, [Ω̂] =

[
−Ω2

3 0
0 −Ω2

3

]
The discrete equation in the rotating frame:

[MG]{q̈}+ ([CG] + 2[MG][G]){q̇}+ ([K∗G] + [MG][D]){q} = {F} (30)

[K∗G] =
[

K∗ur Kurs
Kurs Kus

]
(31)

where α∗3 = 6EI
R4δθ4 +

2P∗
R2δθ2 + kr1 and P∗ = pobR + ρAR2Ω2 is the pre-tension force on the

tread due to the inflation pressure and the centrifugal force:

K∗ur =



α∗3 α2 α1 0 0 α1 α2
α2 α∗3 α2 α1 0 0 α1
α1 α2 α∗3 α2 α1 0 0
. . . . . . .
. . . . . . .
α1 0 0 α1 α2 α∗3 α2
α2 α1 0 0 α1 α2 α∗3


[MG]{q̈}+ ([CG] + 2[MG][G]){q̇}+ ([K∗G] + [MG][D]){q} = 0 (32)

The state space form:

{q̇} =
[

q̇1
q̇2

]
=

[
0 I

−M−1
G
(
[K∗G] + [MG][D]

)
−M−1

G (2[MG][G] + [CG])

][
q1
q2

]
= Aq (33)

Equation (33) can be solved to find the natural frequencies and mode shapes, where
[MG],[CG] and [KG] are the symmetric matrix orthogonal to the mode shape Φ:

[CG] = α[MG] + β[KG] (34)
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5. Results

The results shown in this section are based on the parameters presented in Tables 1 and 2.

Table 1. Known geometrical and structural parameters of a GL073A tire [27].

Parameters Symbol Unit Value

Tread width b m 0.35
Inflation pressure p0 N/m2 7.9× 105

Tire radius R m 0.65
Density per rad of sidewall ms kg/rad 10
Density per line of tread ρA kg/m 19.64

Table 2. Under-identified geometrical and structural parameters of the GL073A tire [27].

Parameters Symbol Value Unit

Radial stiffness connecting the sidewall and tread kr1 6.686× 106 N/m
Radial stiffness connecting the sidewall and rim kr2 4.431× 106 N/m
Bending stiffness of tread E·I 25.697 N/m
Proportional coefficient of mass matrix α 8.2× 10−5 N/(m/s)
Proportional coefficient of stiffness matrix β 1.1× 10−4 N/(m/s)

5.1. Undeformed Tire

The finite difference method’s (FDM) accuracy was tested with the analytical solution
for an undeformed non-rotating tire. The FDM model was built with 200 DOF (100 elements
for the tread and 100 elements for the sidewall). Figure 12 compares the mode shapes
between FDM and analytical harmonic eigenfunctions, representing the in-phase mode 3
and mode 4; however, all in-phase modes are located between 0 and 180 Hz. The outer line
expresses the deformation of the tread, whereas the inner line is the sidewall deformation.
For lower modes, using a 200 DOF FDM model estimates a good harmonic shape for both
the sidewall and tread. On the other hand, Figure 13 shows the comparison between modes
for the out-of-phase state, and all out-of-phase modes are placed between 180 and 300 Hz.
As shown in Figure 14, the number of elements plays a vital role in the higher natural
frequency values. For 40 tread elements, the natural frequencies below mode 5 for the
in-phase and out-phase show a good approximation with the exact solution; however,
above mode 5, the number of elements must be increased to approximately 200 segments
to provide a good approximation for higher modes. Furthermore, the mode shapes and the
natural frequencies were experimentally obtained by Liu et al. [22] and agreed with the
FDM and analytical results obtained here.
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Figure 12. In–phase comparison between the analytical solution using the eigenfunction and FDM.
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Figure 13. Out–phase comparison between the analytical solution using the eigenfunction and FDM.
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Figure 14. The relationship between the number of elements of the tire with the natural frequencies
compared with the exact solution.

5.2. Deformed Tire

In Section 3, the mode shapes and natural frequencies for the deformed tire are
illustrated. The addition of an extra element (radial stiffness, kcw) in the contact patch
length modified some diagonal elements of the global stiffness matrix, as discussed in
Section 2. The contact patch length specifies the number of diagonal elements that must be
adjusted. As shown in Figures 15 and 16, the two identical mode shapes for each eigenvalue
can be subdivided into two unique mode shapes: symmetric and anti-symmetric. This
phenomenon can be observed in both in-phase and out-of-phase modes. Figure 17 identifies
the increase in natural frequencies due to the deformed condition, calling attention to the
fact that the increase in natural frequencies depends on the contact patch length; thus,
the vertical load. The symmetric mode shows a change of approximately 2% compared
with the undeformed condition and approximately 10–12% in the anti-symmetric mode.
These results are validated by the study of Lopes et al. [28]. Another factor that controls
the number of elements, in addition to the modes of interest, is the contact patch length.
The precise contact patch length requires more elements to accurately predict the shifting
natural frequencies.
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Figure 15. The split of in–phase mode shapes for mode 3 due to tire deformation.
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Figure 16. The split of out–phase mode shapes for mode 3 due to tire deformation.
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Figure 17. The shifting in natural frequencies as a function of contact patch length.

5.3. Rotating Tire

Figure 18 shows the dispersion relation obtained by solving the system under rotation.
Note that the x axis is the radial wave number, kφ, related to the radial mode number, n, by
kφ = n/R. The natural frequencies in the y axis are observed from the local body frame
when the rotation speed value = 20π rad/s. The frequency of the deformed tire is higher
than that of the undeformed condition at the same wavenumber, kφ, which means that the
tire’s deformation increases its stiffness. The phase velocity of the flexural wave moves
faster in stiffer tires; this aspect is observed by comparing the slope of the dispersion curve
between the deformed and undeformed tires. However, adding the rotation effect to the
system increases the pre-tension force due to the centrifugal force; thus, the tire stiffness
increases. Although there is a spin-softening effect, the positive centrifugal impact is higher
on the pre-tension. The rotation causes the dispersion curve to be asymmetric; this is called
the “bifurcation” effect. This means that if the rotating tire is excited at any given point,
two opposite wave propagations throughout the tread will be created with various phase
speeds (positive wave and negative wave). The change in the wave propagation speed
breaks its physical symmetry, although the rotating tire’s geometric symmetry is still intact;
as a result, standing waves cannot be produced from a single frequency under rotation
conditions, as shown in Figure 19.
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Figure 18. The bifurcation in the dispersion curve caused by the Coriolis effect Ω = 20π rad/s for an
undeformed and a deformed truck tire with a contact patch length = 20.4 cm.
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Figure 19. The bifurcation in natural frequencies caused by the Coriolis effect Ω = 20π rad/s for an
undeformed and a deformed truck tire with a contact patch length = 20.4 cm.

6. Conclusions

• A compact, discrete, in-plane rigid–elastic-coupled tire model was developed and
modified to include the contact patch length restriction and the tire rolling conditions.

• The results compare favorably with those found in the literature for undeformed,
deformed, and rotating tires.

• The proposed model is able to be integrated with vehicle models and covers a 0–300 Hz
frequency range without ignoring the change in the tire’s modal parameters caused
by tire deformation and rolling conditions. It has the ability to implement the contact
patch length restriction as well as the Coriolis and centrifugal forces.

• The proposed tire model has several advantages: (1) it can give a prediction of the
changes in natural frequencies under rolling and ground contact conditions; and (2) it
is easy to change the tire’s boundary and operating conditions and to allow the user
to define the number of discrete elements to be used.

• Predicting the change in the tire’s modal parameters under various conditions gives a
better estimation of the transfer function between the road and vehicle when attached
to a complete vehicle model. In future studies, the model can be used to build a modal
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model for the tire/vehicle to investigate the complete dynamic behavior of the vehicle
under various road and operating conditions.
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