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Abstract: This paper investigates the modelling of Korteweg-type fluids and hence the dependence
of the stress tensor on gradients of mass density. This topic, originating from the need for describing
capillarity effects, is mainly of interest in connection with nanosystems where the mean free path
may be comparable with the geometric dimensions of the system. In addition to the Korteweg fluid
model, the paper gives a review of the stress tensor function arising in quantum fluid hydrodynamics.
Next, thermodynamic consistency is established for a fluid involving first- and second-order density
gradients. The modelling investigated is a generalization of the classical Korteweg fluid and allows
a better understanding of previous thermodynamic restrictions. The restrictions determined for
the general scheme with second-order gradients are applied to the particular cases of the Korteweg
fluid and the quantum fluid. Further, to allow for discontinuity wave solutions with finite speed
of propagation, a model is established which involves higher-order derivatives and reduces to the
Korteweg fluid in stationary conditions.
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1. Introduction

The modelling of fluids through higher-order spatial derivatives has received re-
markable attention for several aspects. This attention is motivated by possible non-local
properties of materials which are modelled by higher-order gradients. As an outstanding
example, we mention that, to model the capillarity effects of liquids, Korteweg [1] proposed
a constitutive equation for the stress tensor as a function of the first- and second-order
gradients of the mass density. Likewise, in nanoscale systems, the mean free path may
become comparable to the geometric dimensions and higher-order derivatives seem to
be a reasonable way to set up a physically sound model [2]. As a comment, the (weak)
non-locality through the use of higher-order derivatives is handier and more effective than
that based on functionals on the whole region of the body.

Further, quantum models of diffusion are based on balance equations involving
higher-order gradients of the mass density [3]. Lately, quantum hydrodynamics have been
re-considered and investigated in a Korteweg-like form where the higher-order gradients
of the mass density have a central role [4–6].

As is expected with models involving higher-order gradients, the system of equations
pertaining to the Korteweg fluid or to quantum hydrodynamics are of parabolic character.
This means that a disturbance at any point in the body is felt instantly at every other point
or, otherwise, the speed of propagation of a disturbance is infinite. This feature can be
checked by looking for the existence of discontinuity waves (see, e.g., [7], §175; [8], ch. 6). It
seems natural that a physically sound model should be free from the paradox of infinite
speed of propagation. To follow this idea, and meanwhile to keep the properties related to
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higher-order gradients, one might inspect the introduction of suitable higher-order time
derivatives which, in stationary conditions, have no effect and yield the initial model.

The purpose of this paper is threefold. First, to review the pertinent equations and to
show that both Korteweg-type fluids and quantum diffusion equations are framed within
a common scheme of continuum mechanics. Secondly, to compute the possible restrictions
placed by the compatibility with the second law of thermodynamics. The presence of higher-
order gradients makes the continuum non-simple and requires that the thermodynamic
analysis is developed within appropriate schemes, e.g., refs. [9,10] involve an undetermined
entropy flux and ref. [11] allows for a vector field representing the interstitial working. Here,
we investigate a general model involving density gradients not the particular Korteweg
model. As an interesting particular case, the model of a Korteweg-type fluid is considered
subject to flow incompressibility. Thirdly, to allow for discontinuity wave solutions with
finite speed of propagation. This purpose is based on the observation that Korteweg-type
models result in a third-order equation for mass density and that this equation is not
compatible with discontinuity wave solutions. A model is established which involves
higher-order derivatives and reduces to the Korteweg fluid in stationary conditions. The
simplest method of generalization, that is considered in this paper, is to let the free energy
depend on the time derivative of the mass density.

2. Notation and Balance Equations

We consider a fluid occupying a time-dependent region Ω in the three-dimensional
space. The position vector of a point in Ω is denoted by x. Hence, ρ(x, t) and v(x, t) are the
mass density and the velocity fields at x, at time t ∈ R. The symbol ∇ denotes the gradient,
with respect to x, while∇· is the divergence operator. For any pair of vectors u, w, or tensors
A, B, the notations u ·w and A · B denote the inner product. Cartesian coordinates are used
and then, in the suffix notation, u ·w = uiwi, A · B = AijBij, the summation over repeated
indices being understood. Given a function g and a variable y, the symbol ∂yg denotes the
partial derivative of g with respect to y. A superposed dot denotes the total time derivative
and, hence, for any function f (x, t) on Ω×R we have ḟ = ∂t f + (v · ∇) f . The notation
a := b means a is defined to be equal to b. The symbol ∆ denotes the Laplacian operator,
1 is the second-order identity tensor, and ⊗ denotes the dyadic product. Further, T is the
Cauchy stress tensor, D the stretching, W the spin, ε the specific internal energy, q the
heat flux vector, r the heat supply, θ the absolute temperature, and η the specific entropy.
The symbols Sym and Skw denote the set of symmetric and skew-symmetric tensors. We
let tr denote the trace and hence for any tensor, e.g., D, we can write the decomposition,
D = D0 +

1
3 (tr D)1, tr D0 = 0.

The balance (conservation) of mass leads to the continuity equation in the form

ρ̇ + ρ∇ · v = 0 or ∂tρ +∇ · (ρv) = 0. (1)

By the balance of linear momentum it follows

ρv̇ = ∇ · T + ρb. (2)

It is standard to describe the viscosity effects via the Navier–Stokes model of the stress
tensor T. To account for capillarity effects, and hence for nonlocal properties, Korteweg [1]
proposed the constitutive equation for T in the form

T = (−p + α1∆ρ + α2|∇ρ|2)1 + α3∇ρ⊗∇ρ + α4∇∇ρ + 2µD + λ(∇ · v)1, (3)

where α1, ..., α4, the pressure p, and the viscosity coefficients µ, λ are functions of ρ. In this
case the system of differential Equations (1) and (2), along with appropriate initial and
boundary conditions, can be investigated in the unknowns ρ, v. If instead p and/or the
coefficients αi and µ, λ depend also on the temperature then a further equation (the balance
of energy) is in order.
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Irrespective of the form of the stress tensor, as, e.g., Equation (3), the balance of energy
is taken in the standard form

ρε̇ = T ·D−∇ · q + ρr, (4)

where ε is the energy density, q is the heat flux, and r is the heat supply.
Let θ be the absolute temperature and η the entropy density. Consistent with (2) and (4),

we state the second law of thermodynamics by saying that the Clausius–Duhem inequality

ρη̇ +∇ · j− ρr
θ

= ργ ≥ 0 (5)

has to hold for any thermodynamic process. Since the entropy flux j and the entropy
production γ are given by constitutive equations [12] then the thermodynamic process
consists of the functions ρ, v, ε, q, r, η, j, γ of (x, t) ∈ Ω×R.

For later convenience we point out that the equation of motion (2) is often written in a
different form (see, e.g., [4]). Notice that

ρv̇ = ρ∂tv + ρ(v · ∇)v = ∂t(ρv)− v∂tρ +∇ · (ρv⊗ v)− v∇ · (ρv) = ∂t(ρv) +∇ · (ρv⊗ v)

where Equation (1)2 has been used. Hence, letting J = ρv we have the identity

ρv̇ = ∂tJ +∇ ·
( J⊗ J

ρ

)
.

Consequently, Equation (2) can be written in the form

∂tJ +∇ ·
( J⊗ J

ρ

)
= ∇ · T + ρb. (6)

Two remarks are in order. First, Korteweg’s starting point was an assumption of
the form

T + p1 = FFF(L,∇θ,∇ρ,∇∇ρ),

where p = p̂(ρ, θ). In view of objectivity, if Q is the time-dependent rotation tensor of a
Euclidean transformation [12] then the stress function FFF is subject to

QFFF(L,∇θ,∇ρ,∇∇ρ)QT = FFF(QDQT , Q∇θ, Q∇ρ, Q∇∇ρQT).

The particular case Q = −1 shows that only even-order terms in∇θ and∇ρ can occur.
That is why linear terms in ∇θ cannot appear. Yet, without giving any reason, Korteweg
dropped ∇θ from the set of variables.

Secondly, we observe that the statement associated with (5) is an assumption. Relative
to other approaches (see, e.g., [13], ch. 1, and refs therein), we do not distinguish formally
equilibrium and non-equilibrium variables. Moreover, we consider irreversible processes
as those providing γ > 0.

3. The Quantum Hydrodynamic System

The analogue of (1)–(3) holds in quantum hydrodynamics. To determine this analogue,
we follow a standard approach. Observe that, if a quantum particle moves in free space,
the wavefunction ψ evolves in time according to the Schrödinger equation

ih̄∂tψ =
(
− h̄2

2m
∆ + U

)
ψ, (7)

where m is the mass of the particle, ∆ is the Laplacian operator, and U is the potential of an
applied force field. Since the wavefunction ψ is complex-valued then we let
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ρ = ψψ∗

thus ascribing to ρ(x, t) the probability density, per unit volume, of finding the quantum
particle at the point x at time t. We then represent ψ in the polar form

ψ =
√

ρ exp(iS/h̄),

and hence S/h̄ = arg ψ. Both ρ and S are functions of x, t. Upon evaluation of ∂tψ and ∆ψ
and substitution in (7) we find

ih̄
[ 1

2 ρ−1/2∂tρ +
i
h̄

ρ1/2∂tS
]
= − h̄2

2m
[
− 1

4 ρ−3/2|∇ρ|2 + 1
2 ρ−1/2∆ρ

+
i
h̄

ρ−1/2∇ρ · ∇S− 1
h̄2 ρ1/2|∇S|2 + i

h̄
ρ1/2∆S + ρ1/2U

]
(8)

Notice that
ρ−1/2∇ρ · ∇S + ρ1/2∆S = ∇ · (ρ1/2∇S).

The imaginary part of (8) yields

∂tρ = −∇ · (ρv), v :=
1
m
∇S. (9)

Hence, the continuity Equation (1) is obtained by letting mv = ∇S. The real part of (8)
results in

∂tS = − 1
2m
|∇S|2 + h̄2

2m
[ 1

2 ρ−1∆ρ− 1
4 ρ−2|∇ρ|2]−U.

In light of the identity

1
2 ρ−1∆ρ− 1

4 ρ−2|∇ρ|2 = ρ−1/2∆ρ1/2

we have

∂tS +
1

2m
|∇S|2 =

h̄2

2m
ρ−1/2∆ρ1/2 −U. (10)

Notice that
∇|∇S|2 = 2(∇S · ∇)∇S.

Hence, applying the gradient operator to (10) and dividing by m we obtain

∂tv + (v · ∇)v = − 1
m
[∇Q +∇U], (11)

where

Q := − h̄2

2mρ1/2 ∆ρ1/2.

Equation (11) can be viewed as the equation of motion per unit mass; the function Q
is often referred to as the Bohm quantum potential [14]. Equations (9) and (11) are also
referred to as Madelung equations [15].

We now look for the continuum analogue of (2),

ρ[∂tv + (v · ∇)v] = ρ[− 1
m
∇Q− 1

m
∇U].

It is natural to identify −∇U/m with the body force b. We then look for a stress tensor
T such that

∇ · T = −ρ∇Q
m

.
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First, we notice that

∆ρ1/2 = ∇ · ∇ρ1/2 = ∇ · ( 1
2 ρ−1/2∇ρ) = − 1

4 ρ−3/2|∇ρ|2 + 1
2 ρ−1/2∆ρ

and hence

− 1
m
∇Q =

h̄2

m2 (
1

2ρ
∆ρ− 1

4ρ2 |∇ρ|2).

Letting K(ρ) = 1/2ρ we can write

− 1
m
∇Q =

h̄2

m2 (K(ρ)∆ρ + 1
2 K′(ρ)|∇ρ|2).

The Quantum Stress Tensor

If a nonzero pressure p(ρ) is allowed to occur then we can generalize the quantum
equation of motion in the form

ρv̇ = −∇p(ρ) + ν2ρ∇( f (ρ)∆ρ + 1
2 f ′(ρ)|∇ρ|2) + ρb,

where b = −∇U/m and ν = h̄/m. Now we show that there is a symmetric tensor K such
that the equation of motion reads

ρv̇ = −∇p(ρ) + ν2∇ ·K + ρb.

Indeed, for any function f (ρ) a direct check allows us to find that

ρ∇( f (ρ)∆ρ + 1
2 f ′(ρ)|∇ρ|2) = ∇ ·K,

where
K = [ρ f ′|∇ρ|2 + ρ f ∆ρ + 1

2 f |∇ρ|2 − 1
2 ρ f ′|∇ρ|2]1− f∇ρ⊗∇ρ. (12)

By defining the drift velocity

V =
√

f /ρ∇ρ,

the tensor ν2K can be given the form of the viscous stress tensor of Navier–Stokes fluids [5].
Here, we merely observe that ν2K is a Korteweg-like stress tensor where

α1 = ρ f , α2 = 1
2 ( f + ρ f ′), α3 = f , α4 = 0,

and account for viscosity in the classical way (3). In the particular case

f (ρ) =
1

2ρ

it follows f + ρ f ′ = 0. Hence, K simplifies to

K = ρ f ∆ρ 1− f∇ρ⊗∇ρ.

The present outline of quantum hydrodynamics gives the minimal content associated
with the Korteweg fluid. Quantum hydrodynamics is developed in [16,17] in connection
with superfluidity, where the model is based on coupled hydrodynamic equations for the
superfluid and the normal fluid component. Also, quantum hydrodynamics enters the
Bose–Einstein condensate [18,19] as a state that is formed when a gas of bosons at very low
densities is cooled to temperatures close to absolute zero.
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4. Thermodynamic Restrictions

We now examine the thermodynamic restrictions placed by thermodynamics on
Korteweg-like stress tensors. For the sake of generality, or for an alternative approach, we
do not require from the beginning that T is just in the form (3) or (12).

Let j = q/θ + k and hence k represents the extra-entropy flux. Thus the Clausius–
Duhem inequality (5) can be written in the form

ρη̇ +
1
θ
(∇ · q− ρr) +∇ · k− 1

θ2 q · ∇θ = ργ ≥ 0.

Substitution of ∇ · q− ρr from (4) and use of the Helmholtz free energy ψ = ε− θη
result in

−ρ(ψ̇ + ηθ̇) + T ·D + θ∇ · k− 1
θ

q · ∇θ = ρθγ ≥ 0. (13)

Based on the interest in constitutive equations of the Korteweg type (3), we might as-
sume Γ̃ = (θ, ρ,∇θ,∇ρ, ρ̇,∇∇ρ, D) is the set of variables. Now, by the continuity equation
and the decomposition of D,

ρ̇ = −ρ∇ · v, D = D0 +
1
3 (tr D)1, tr D = ∇ · v, (14)

We avoid redundancies by letting ρ, ρ̇ account also for the dependence on∇ · v. Hence,
we assume

Γ = (θ, ρ,∇θ,∇ρ, ρ̇,∇∇ρ, D0)

is the set of variables, and let ψ, η, T, q, k, and γ be (constitutive) functions of Γ.
As for the constitutive function for the stress T, we might take T as given by the

Korteweg-type stress (3) or the quantum stress tensor (12). Yet, it is more interesting to
regard T, as well as the other constitutive quantities, as functions of Γ functions and next to
examine the results in connection with (3) and (12).

Decompose the stress T in the standard way,

T = −p1 + TTT ,

where p is the thermodynamic pressure, derived via a thermodynamic restriction. Hence,
we compute ψ̇ and ∇ · k and substitute in (13) to obtain

−ρ(∂θψ + η)θ̇ + ρ2∂ρψ∇ · v− ρ∂∇θψ · (∇θ)̇− ρ∂∇ρψ · (∇ρ)̇− ρ∂ρ̇ψρ̈− ρ∂D0 ψ · Ḋ0

−∂∇∇ρψ · (∇∇ρ)̇− p∇ · v + TTT ·D− 1
θ

q · ∇θ + θ∇ · k = ρθγ, (15)

and recall that ρ̇ = −ρ∇ · v. To derive some necessary conditions placed by (15), we recall
the identity (see Appendix A)

(∇g)̇ = ∇ġ− LT∇g (16)

for any differentiable function g(x, t). Moreover, since L = D + W, it follows

(∇g)̇ = ∇ġ−D∇g + W∇g. (17)

Further,
(∇∇g)̇ = ∇∇ġ− (LT∇)⊗∇g−∇[LT∇g].

Hence, if g = ρ using (1) we find

(∇∇ρ)̇ = −(∇∇ρ)∇ · v− 2∇ρ⊗∇(∇ · v) + ρ∇∇(∇ · v)− (LT∇)⊗∇ρ−∇⊗ [LT∇ρ]. (18)
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If g = θ we have (∇θ)̇ = ∇θ̇ − LT∇θ. Hence, −ρ∂∇θψ · ∇θ̇ is the unique term that
depends (linearly) on ∇θ̇. The arbitrariness of ∇θ̇ implies that

∂∇θψ = 0. (19)

Further, the linearity and arbitrariness of θ̇ imply

η = −∂θψ. (20)

By (18), (∇∇ρ)̇ contains the term ρ∇∇(∇ · v) and this term occurs in (15) only through
(∇∇ρ)̇. The linearity and arbitrariness of (∇∇ρ)̇ imply that

∂∇∇ρψ = 0. (21)

Since
ρ̈ = ρ(∇ · v)2 − ρ(∇ · v)̇

the linearity and arbitrariness of (∇ · v)̇ imply that

∂ρ̇ψ = 0. (22)

Likewise, by the occurrence of ∂D0 ψ · Ḋ0 and the arbitrariness of Ḋ0, we conclude that

∂D0 ψ = 0. (23)

Consequently,
ψ = ψ(θ, ρ,∇ρ).

For isotropic continua, the dependence of ψ on ∇ρ is through |∇ρ|. For formal
convenience, we consider

ξ = 1
2 |∇ρ|2

and let
ψ = ψ̃(θ, ρ, ξ). (24)

Hence, we have
∂∇ρψ = ∂ξ ψ̃∇ρ. (25)

In view of the restrictions (19)–(23), we can consider the simplified form of (15) and
divide throughout by θ to obtain

1
θ
(ρ2∂ρψ− p)∇ · v− ρ

θ
∂∇ρψ · (∇ρ)̇ +

1
θ
TTT ·D− 1

θ2 q · ∇θ +∇ · k = ργ. (26)

As for the term in (∇ρ)̇, we notice that

(∇ρ)̇ = ∇ρ̇− LT∇ρ

and
−ρ

θ
∂∇ρψ · ∇ρ̇ = −∇ · (ρ

θ
∂∇ρψρ̇) + [∇ · (ρ

θ
∂∇ρψ)]ρ̇.

Hence, (26) can be written in the form

1
θ
(ρ2δρψ− p)∇ · v +

ρ

θ
(∇ρ⊗ ∂∇ρψ) · L +

1
θ
TTT ·D− 1

θ2 q · ∇θ +∇ · (k− ρ

θ
ρ̇∂∇ρψ) = ργ, (27)

where
δρψ = ∂ρψ− θ

ρ
∇ · (ρ

θ
∂∇ρψ).

We then let
k =

ρ

θ
ρ̇∂∇ρψ
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and look for the validity of the remaining condition. Since L = D + W, then we have

ρ

θ
(∇ρ⊗ ∂∇ρψ) ·W + . . . ≥ 0,

the dots denoting terms independent of W. The arbitrariness of W ∈ Skw implies that

∇ρ⊗ ∂∇ρψ ∈ Sym

and then
∂∇ρψ ∝ ∇ρ;

this condition holds identically for the function ψ(θ, ρ, ξ). Consequently, upon multiplica-
tion by θ, we can write the remaining part of (27) in the form

(ρ2δρψ− p)∇ · v + [ρ(∇ρ⊗ ∂∇ρψ) + TTT ] ·D− 1
θ

q · ∇θ = ργ, (28)

Notice that, since (24) and (25), we compute δρψ to find

δρψ = ∂ρψ̃− θ
ρ∇ · (

ρ
θ ∂ξ ψ̃∇ρ)

= ∂ρψ̃− θ∂θ(
1
θ ∂ξ ψ̃)∇θ · ∇ρ− 1

ρ ∂ρ(ρ∂ξ ψ̃)|∇ρ|2 − ∂2
ξ ψ̃∇ξ · ∇ρ− ∂ξ ψ̃∆ρ

(29)

while
∇ξ · ∇ρ = ∇ρ · (∇ρ · ∇)∇ρ = (∇ρ⊗∇ρ) · ∇∇ρ. (30)

For later purposes, we let

δρψ = δρψ− θ∂θ(
1
θ

∂ξ ψ̃)∇θ · ∇ρ,

thus defining δρψ.
We notice also that

(∇ρ⊗ ∂ξ ψ̃∇ρ) ·D = ∂ξ ψ̃(∇ρ⊗∇ρ) ·D0 +
1
3 ∂ξ ψ̃|∇ρ|2∇ · v.

Further consequences of (28) follow depending on appropriate assumptions about TTT
and q.

(1) Assume TTT = TTT el + TTT vis, with TTT vis → 0 as D → 0, and q is independent of the
stretching D.

The linearity and arbitrariness of D imply that

TTT el − p1 + ρ2δρψ 1 + ρ∂ξ ψ̃∇ρ⊗∇ρ = 0.

Hence, we can obtain a non-negative entropy production by letting TTT vis be the classical
viscous stress so that

T = TTT − p1 = −ρ2δρψ1 + ρ∂ξ ψ̃∇ρ⊗∇ρ + 2µD + λ(tr D)1, (31)

q = −κ∇θ,

where µ(θ, ρ), λ(θ, ρ), κ(θ, ρ) are subject to the the standard relations µ ≥ 0, λ + 2µ/3 ≥ 0,
κ ≥ 0.

The decomposition of T in TTT el and −p1 is not unique unless we fix trTTT or p. For defi-
niteness, we might assume p = p(θ, ρ) and then

p = ρ2∂ρΨ, ψ = Ψ(θ, ρ) + ψ̂(θ, ξ).
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Hence, using (29) and (30), we obtain from (31) that

TTT = [ρ2θ∂θ(
1
θ

∂ξ ψ̂)∇θ · ∇ρ + ρ∂ρ(ρ∂ξ ψ̂)|∇ρ|2 + ρ2∂2
ξ ψ̂(∇ρ⊗∇ρ) · ∇∇ρ

+ρ2∂ξ ψ̂∆ρ]1− ρ∂ξ ψ̂∇ρ⊗∇ρ + 2µD + λ(tr D)1. (32)

(2) The heat flux q is allowed to depend on∇ · v while TTT = TTT el +TTT vis, with TTT vis → 0
as D→ 0 and ∂∇θTTT = 0, ∂∇θ p = 0.

Let ∇θ = 0. We then write (28) in the form

(ρ2δρψ− p)∇ · v + [ρ∂ξ ψ∇ρ⊗∇ρ + TTT ] ·D− [ρ2θ∂θ(
1
θ

∂ξ ψ)∇ · v∇ρ +
1
θ

q] · ∇θ = ρθγ. (33)

Let ∇θ = 0. If we let p = ρ2∂ρΨ, by assumption then it follows from (33) that

T = −ρ2[∂ρΨ− 1
ρ

∂ρ(ρ∂ξ ψ̂)|∇ρ|2 − ∂2
ξ ψ̂(∇ρ⊗∇ρ) · ∇∇ρ− ∂ξ ψ̂∆ρ]1

−ρ∂ξ ψ̂∇ρ⊗∇ρ + 2µD + λ(tr D)1. (34)

The remaining condition has to hold for arbitrary values of ∇θ and this happens if

q + ρ2θ2∂θ(
1
θ

∂ξ ψ̂)∇ · v∇ρ = −κ∇θ;

if ∂ξ ψ̂ = θ then the standard Fourier law follows.
As an aside, depending on the assumption on the heat flux q and the stress tensor T,

the entropy production

−ρ∂θ(
1
θ

∂ξ ψ̂)∇θ · ∇ρ∇ · v

is viewed as the effect of the partial pressure

−ρ2θ∂θ(
1
θ

∂ξ ψ̂)∇θ · ∇ρ

or the effect of the partial heat flux

−ρ2θ2∂θ(
1
θ

∂ξ ψ̂)∇ · v∇ρ.

5. Relation to Korteweg-Type Stress Tensors

The constitutive functions (32) and (34) for the stress are derived within a thermo-
dynamic setting where the free energy ψ and the stress T are considered from the start
as functions of (θ, ρ, . . . ). Instead, as it happens, e.g., in [10,11], we can investigate the
thermodynamic consistency of the stress T directly in Korteweg form. It is then of interest
to contrast the present results with those obtained directly with the constitutive function (3).

It is worth remarking the differences in the approaches of [10,11]. The analysis in [11]
is developed by allowing for an extra-energy flux ascribed to interstitial working and no
extra-entropy flux. Instead, ref. [10] allows for an extra-entropy flux and investigates the
thermodynamic consistency by applying the Liu procedure [20] to a Korteweg-type stress
function with the additional term α5(∇ · v)1+ α6L. The occurrence of α5(∇ · v)1 looks here
inessential in that the stress involves the viscous term λ(∇ · v)1. The occurrence of α6L is
quite subtle in that objectivity would require that TTT be independent of the spin W.

Look at Equation (32) for the stress TTT . Observe that the ∇θ · ∇ρ term in TTT occurs
simply because we allow ψ to depend jointly on ∇ρ (through ξ) and θ. This effect is
avoided if we assume ψ = Ψ(θ, ρ) + ψ̂(ξ). Hence, we omit writing the ∇θ · ∇ρ term
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and the standard viscous terms 2µD + λ(tr D)1. The constitutive Equation (32) is then
simplified to

TTT = [ρ∂ρ(ρ∂ξ ψ̂)|∇ρ|2 + ρ2∂2
ξ ψ̂(∇ρ⊗∇ρ) · ∇∇ρ + ρ2∂ξ ψ̂∆ρ]1− ρ∂ξ ψ̂∇ρ⊗∇ρ. (35)

The analogous expressions of Korteweg stress tensor TTT K and the quantum stress tensor
TTT Q = ν2K are

TTT K = (α1∆ρ + α2|∇ρ|2)1 + α3∇ρ⊗∇ρ + α4∇∇ρ, (36)

TTT Q = ν2{[ρ f ∆ρ + 1
2 ( f + ρ f ′)|∇ρ|2]1− f∇ρ⊗∇ρ}. (37)

Both [10,11] find that α4 = 0. This result is consistent with the expression (35) where
the tensor ∇∇ρ does not occur. Instead, and consistent with [11], ∇∇ρ occurs through the
scalar (∇ρ⊗∇ρ) · ∇∇ρ, not, by definition, in the Korteweg stress (36).

The tensor ∇ρ⊗∇ρ as such occurs consistently in the present derivation (35) and in
the Korteweg stress (36).

Further, both |∇ρ|2 and ∆ρ occur in (35) and (36).
Differences arise for the quantum stress tensor TTT Q relative to TTT and TTT K in that it is

free of ∇∇ρ in any form. Rather, TTT Q contains even |∇ρ|2 and ∆ρ as it happens for TTT and
TTT K. In summary, comparing (36) and (37) with (35), we have

TTT K : α1 = ρ2∂ξ ψ̂, α2 = ρ∂ρ(ρ∂ξ ψ̂), α3 = −ρ∂ξ ψ̂, α4 = 0,

TTT Q : ν2ρ f = ρ2∂ξ ψ̂, 1
2 ν2( f + ρ f ′) = ρ∂ρ(ρ∂ξ ψ̂), ν2 f = ρ∂ξ ψ̂. (38)

Differences and analogies justify the view of the quantum stress tensor TTT Q as a
Korteweg-like stress tensor. Yet the quantum stress TTT Q enjoys a peculiar property in that,
if f = 1/2ρ, then

f + ρ f ′ = 0

and TTT Q simplifies to
TTT Q = ν2[ρ f ∆ρ 1− f∇ρ⊗∇ρ].

We still need a formulation of the second law of thermodynamics for quantum systems
within a continuum context. This suggests that we investigate the consistency of the
correspondences (38) and hence look for a potential ψ̂ of quantum systems. The first and
the third correspondences yield ν2 f = ρ∂ξ ψ̂. Substitution in the second correspondence
results in

ρ f ′ = f

whence
f = cρ, ψ̂ = ν2cρ,

c being a constant. This shows that the assumption f + ρ f ′ = 0 leads to a contradiction of
the requirement (38).

6. Dynamic Properties of the Korteweg Fluid

The unknown triplet (ρ, v, θ) of a dynamic problem is determined by the balance
equations along with the constitutive equation for the stress T. For definiteness, we
consider the constitutive Equation (31) and, for simplicity, we let the fluid be inviscid so
that µ = 0 and λ = 0. Moreover, we let

ψ = Ψ(θ, ρ) + ψ̂(ξ).

Hence, we have

ε = Ψ(θ, ρ) + ψ̂(ξ)− θ∂θΨ(θ, ρ) = ε(θ, ρ,∇ρ).
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and
T = −ρ2δρψ1 + ρ∂ξ ψ̂∇ρ⊗∇ρ

while

δρψ = ∂ρΨ +
1
θ

∂ξ ψ̂∇θ · ∇ρ− 1
ρ

∂ξ ψ̂|∇ρ|2 − ∂2
ξ ψ̂(∇ρ⊗∇ρ) · ∇∇ρ− ∂ξ ψ̂∆ρ.

Consequently,

T = T1(θ, ρ,∇θ,∇ρ) + [ρ2∂2
ξ ψ̂(∇ρ⊗∇ρ) · ∇∇ρ + ρ2∂ξ ψ̂∆ρ]1 + ρ∂ξ ψ̂∇ρ⊗∇ρ, (39)

where

T1 = [−ρ2∂ρΨ− ρ2

θ
∂ξ ψ̂∇θ · ∇ρ + ρ∂ξ ψ̂|∇ρ|2]1.

It follows that

∇ · T = f(θ, ρ,∇θ,∇ρ,∇∇θ,∇∇ρ) + ρ2[∂2
ξ ψ̂(∇ρ⊗∇ρ)∇∇∇ρ + ∂ξ ψ̂∇∆ρ].

Hence, the dynamic equations can be written in the form

ρ̇ = −ρ∇ · v,

ρv̇ = f(θ, ρ,∇θ,∇ρ,∇∇θ,∇∇ρ) + ρ2[∂2
ξ ψ̂(∇ρ⊗∇ρ)∇∇∇ρ + ∂ξ ψ̂∇∆ρ] + ρb,

(ρε̇)(θ, ρ,∇ρ, θ̇, ρ̇, (∇ρ)̇) = T(θ, ρ,∇θ,∇ρ,∇∇ρ) ·D
−(∇ · q)(θ, ρ,∇θ,∇ρ,∇∇θ,∇∇ρ) + ρr,

where b and r are assumed to be known functions of x and t. The dynamic equations
constitute a system of third-order differential equations in the unknowns ρ, x, θ, with ẋ = v.
The system is of parabolic character in that it involves the highest order through the terms
∇∇∇ρ and ∇∆ρ. To give evidence to the parabolic character consider possible third-order
discontinuity waves ([7], §175) where

(1) At any time t ∈ R the third-order and all higher-order derivatives of ρ, x, θ suffer
jump discontinuities across a time-dependent surface σ(t) ∈ Ω but are continuous
everywhere else;

(2) The functions ρ, x, θ and their derivatives up to second order are continuous functions
across σ(t).

Let [[·]] denote the jump of a quantity across σ. If, for formal simplicity, we consider a
one-dimensional setting so that σ is a plane wave moving along the x direction, we find the
jump condition

0 = (2ξ∂2
ξ ψ̂ + ∂ξ ψ̂) [[∂3

xρ]]

while the other relations are satisfied identically. It follows that

[[∂3
xρ]] = 0.

This indicates that a more realistic model of the Korteweg type should maintain the
dependence of the stress on the second-order density gradients but, at the same time,
should contain suitable time derivatives so that the wave propagation condition is satisfied.
The intrinsic features of the Korteweg fluid, namely the dependence of the stress tensor on
the second-order derivatives of the mass density, would be conserved by letting the added
terms vanish in stationary conditions.

The structure (39) shows that the stress tensor T is the sum of an isotropic term and a
dyadic dependence ∇ρ⊗∇ρ. Hence, the boundary condition between a Korteweg fluid
and, e.g., a rarefied gas modelled as an ideal gas would require the continuity of Tn and



Dynamics 2023, 3 574

hence the vanishing of (∇ρ · n)∇ρ. This in turn is satisfied by the vanishing of the normal
derivative ∇ρ · n.

7. A Fluid Model with Second-Order Space and Time Derivatives

The Korteweg fluid and the model of quantum hydrodynamics is based on a stress
tensor which is linear in the second-order density gradient. While the dependence on
second-order gradients is often motivated by the modelling of nanosystems, an analogous
dependence on time derivatives might be required to account for propagation properties. It
is worth remarking that hyperbolicity is mainly motivated by the conceptual requirement
of finite wave speed along with the fit of experimental wave speeds. It may happen though
that parabolic equations sometimes allow a better fit of wave profiles.

In essence, the Korteweg stress tensor comprises a dependence on ∇∇ρ and we look
for an additional dependence on ρ̈. We recall that a dependence on the second-order time
derivative of the strain occurs in the Burgers fluid model (see, [12], §6.4.1) but this is framed
within a relation for the second-order rate of the stress. Hence, a different scheme is in
order. Further, we try to establish a thermodynamic derivation so that the possible result
would be thermodynamically consistent.

For the sake of simplicity, we neglect heat conduction and then the entropy inequality
is written in the form

−ρ(ψ̇ + ηθ̇) + T ·D + θ∇ · k = ρθγ ≥ 0. (40)

Still, we let
T = −p1 + TTT ,

where p is the thermodynamic pressure and then has to be determined through the thermo-
dynamic analysis.

Hence, we set up a thermodynamic scheme where

Γ = (θ, ρ,∇ρ, ρ̇,∇∇ρ, ρ̈, D)

is the set variables. The stress tensor T = −p1 + TTT , the entropy η, the entropy flux k,
and the entropy production γ are continuous functions of Γ, and the free energy ψ is
continuously differentiable. Upon computation of ψ̇ and substitution in (40), we have

−ρ(∂θψ + η)θ̇ − ρ∂ρψρ̇− ρ∂∇ρψ · (∇ρ)̇− ρ∂ρ̇ψρ̈− ρ∂∇∇ρψ · (∇∇ρ)̇− ρ∂ρ̈ψ
...
ρ

−ρ∂Dψ · Ḋ− p∇ · v + TTT ·D + θ∇ · k = ρθγ ≥ 0. (41)

We first notice that
...
ρ , (∇∇ρ)̇, and Ḋ occur linearly in (41) and can take arbitrary

values. Hence, it follows that

∂ρ̈ψ = 0, ∂∇∇ρψ = 0, ∂Dψ = 0.

Further, the linearity and arbitrariness of θ̇ imply that

η = −∂θψ.

We cannot conclude that ∂ρ̇ψ = 0 in that T, k, and γ are allowed to depend on ρ̈.
Indeed, based on the aim of obtaining the result that T depends on ρ̈, we assume

∂ρ̇ψ = α(θ, ρ)ρ̇. (42)

Divide the remaining inequality by θ and replace ρ̇ with −ρ∇ · v to obtain

1
θ
[ρ2∂ρψ + αρρ̈− p]∇ · v− ρ

θ
∂∇ρψ · (∇ρ)̇ +

1
θ
TTT ·D +∇ · k = ργ.
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Using the identities

(∇ρ)̇ = ∇ρ̇− LT∇ρ = ∇ρ̇−D∇ρ + W∇ρ

−ρ

θ
∂∇ρψ · ∇ρ̇ = −∇ · [ρ

θ
∂∇ρψ ρ̇] + [∇ · (ρ

θ
∂∇ρψ]ρ̇

we can write

1
θ
[ρ2δρψ + αρρ̈− p]∇ · v +

ρ

θ
(∇ρ⊗ ∂∇ρψ) ·W +

1
θ
[TTT + ρ∇ρ⊗ ∂∇ρψ] ·D

+∇ · [k− ρ

θ
∂∇ρψρ̇] = ργ ≥ 0.

Consequently, apart from a useless divergence-free term, we can take the entropy flux
k in the form

k =
ρ

θ
∂∇ρψρ̇.

The linearity and the skew symmetry of W imply that

(∇ρ⊗ ∂∇ρψ) ∈ Sym, ∂∇ρψ ∝ ∇ρ. (43)

To distinguish the contributions of the pressure p from that of trTTT , we assume p is
independent of ∇ · v and let

p = ρ2δρψ + αρρ̈. (44)

In light of (43), we let
∂∇ρψ = β∇ρ

and let β depend on θ and ρ. The remaining inequality

[TTT + ρ∇ρ⊗ ∂∇ρψ] ·D ≥ 0

implies that
TTT = −ρβ∇ρ⊗∇ρ + O(D).

Indeed, the inequality holds with a nonzero stretching tensor D if, e.g., the Navier–
Stokes constitutive equation is generalized in the form

TTT = −ρβ∇ρ⊗∇ρ + 2µD + λ(tr D)1,

where µ ≥ 0, λ + 2µ/3 ≥ 0.
As a consequence of thermodynamics, the free energy is independent of ρ̈,∇∇ρ,

and D so that
ψ = ψ(θ, ρ,∇ρ, ρ̇).

Further, as with the Korteweg model, the assumed isotropy of the fluid implies that ψ
depends on ∇ρ through |∇ρ| and hence for formal convenience we keep the dependence
on ξ = 1

2 |∇ρ|2. Moreover, by (42), it follows

ψ(θ, ρ,∇ρ, ρ̇) = ψ0(θ, ρ, ξ) + 1
2 α(θ, ρ)ρ̇2.

Consequently, the free energy involves only the first-order derivatives∇ρ and ρ̇ of the
mass density.

7.1. The Detailed Structure of the Stress Tensor

In the Korteweg model of fluid, as well as in the present model, the stress TTT comprises
a dissipative part (the classical Navier–Stokes part 2µD + λ(tr D)1) and a conservative part

−ρ∂ξ ψ∇ρ⊗∇ρ.



Dynamics 2023, 3 576

As is apparent, the dependence on the derivatives is only through the gradient ∇ρ.
This stress is induced by the dyadic product ∇ρ⊗∇ρ and is related to the free energy
through the partial derivative ∂ξψ.

Things are more involved with the pressure p. First, observe that the new term αρρ̈ is
linear in ρ̈ and is related to the free energy in that α = ∂ρ̇ψ/ρ̇ though ψ is independent of ρ̈.
The other term, ρ2δρψ, is common to the Korteweg fluid. For definiteness, let

ψ = Ψ(θ, ρ) + ψ̂(ξ) + 1
2 αρ̇2.

It follows

p = ρ2δρψ + αρρ̈

= ρ2∂ρΨ + ρ2

θ ∂ξ ψ̂∇θ · ∇ρ− 1
ρ ∂ξ ψ̂|∇ρ|2 − ρ2∂2

ξ ψ̂(∇ρ⊗∇ρ) · ∇∇ρ− ρ2∂ξ ψ̂∆ρ + αρρ̈.

7.2. Dynamics and Discontinuity Waves

For a simple check of the present model we assume the fluid is inviscid (µ = 0, λ = 0).
Hence, the dynamic equations are

ρ̇ = −ρ∇ · v,
ρv̇ = −∇p−∇ · (ρ∂ξ ψ̂∇ρ⊗∇ρ) + ρb,
ρε̇ = −p∇ · v− ρ∂ξ ψ̂(∇ρ⊗∇ρ) ·D + ρr.

(45)

Further, to avoid lengthy calculations, we select ψ̂ = κξ and hence

∂ξ ψ̂ = κ, ∂2
ξ ψ̂ = 0.

Consequently,

p = ρ2∂ρΨ +κ ρ2

θ
∇θ · ∇ρ− 2κ

ρ
ξ −κρ2∆ρ + αρρ̈.

Notice that
∇ξ = (∇ρ · ∇)∇ρ.

Thus, we have

∇p = ∇(ρ2∂ρΨ +κ ρ2

θ
∇θ · ∇ρ) +

2κ
ρ2 ξ∇ρ− 2κ

ρ
(∇ρ · ∇)∇ρ− 2κρ∆ρ∇ρ + αρ̈∇ρ

−κρ2∇∆ρ + αρ∇ρ̈,

∇ · (ρ∂ξ ψ̂∇ρ⊗∇ρ) = ∇(κρ∇ρ⊗∇ρ) = 2κ ξ∇ρ +κρ(∇ρ · ∇)∇ρ +κρ∇ρ ∆ρ,

and
ε = (Ψ− θ∂θΨ)(θ, ρ) +κξ + 1

2 αρ̇2.

Third-Order Discontinuity Waves

Relative to the unknowns ρ, x, θ, the system (45) shows that the highest-order deriva-
tives are ∇∆ρ and ∇ρ̈ which occur in ∇p. We then look for third-order discontinuity wave
solutions by assuming that:

(1) At any time t ∈ R, the third-order and all higher-order derivatives of ρ, x, θ suffer
jump discontinuities across a time-dependent surface σ(t) ∈ Ω but are continuous
everywhere else;

(2) The functions ρ, x, θ and their derivatives up to second order are continuous functions
across σ(t).
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We denote by [[·]] the pertinent jump across σ, and observe that the first and third
equations of the system (45) result in two identities while the second equation yields

0 = −κρ2[[∇∆ρ]] + αρ[[∇ρ̈]]. (46)

Observe that ∇∆ρ = ∆∇ρ, ahead of and behind σ, but

∇ρ̈ 6= (∇ρ)̈ .

Now, by direct computation of ∇ρ̈ (see Appendix A), we find that, if ∇ρ, v, ∂tv, L
vanish, ahead of and then behind σ, it follows

[[∇ρ̈]] = [[∇∂2
t ρ]] = [[∂2

t∇ρ]].

Since [[∇ρ]] = 0, then the geometrical and kinematical conditions of compatibility (see,
e.g., [8], ch. 6) yield

[[∆∇ρ]] = [[∂2
n∇ρ]], [[∂2

t∇ρ]] = u2[[∂2
n∇ρ]],

where ∂n is the normal derivative and u is the speed of propagation of σ. Thus, Equation (46)
results in

(−κρ + αu2)[[∂2
n∇ρ]] = 0.

Non-trivial discontinuities occur with speed of propagation

u2 =
κρ

α
.

8. Constitutive and Dynamic Equations in Incompressible Flows

A simpler, practical case is obtained by restricting the model to incompressible flows;
a similar model is examined in [21] through an implicit relation for the Cauchy stress.
We assume

ρ̇ = 0, ∇ · v = 0,

but, to maintain the interest in a Korteweg-type stress, we let

∇ρ 6= 0.

The coexistence of ρ̇ = 0 and ∇ρ 6= 0 suggests that we review briefly the thermody-
namic derivation.

Notice that tr D = ∇ · v = 0 and hence D = D0. The pressure p is assumed to be
given by a function of θ and ρ. Hence, we let

TTT := T + p(θ, ρ)1.

Let (θ, ρ,∇θ,∇ρ, D0) be the set of variables. The Clausius–Duhem inequality reads

−ρ(∂θψ + η)θ̇ − ρ∂∇θψ · (∇θ)̇− ρ∂∇ρψ · (∇ρ)̇− ρ∂∇∇ρψ · (∇∇ρ)̇− ρ∂D0 ψ · Ḋ0

+TTT ·D0 −
1
θ

q · ∇θ + θ∇ · k = ρθγ ≥ 0. (47)

The linearity and arbitrariness of θ̇, (∇θ)̇, Ḋ0 imply

∂∇θψ = 0, ∂D0 ψ = 0, η = −∂θψ.

Notice that, since ∇ · v = 0, we have

(∇∇ρ)̇ = −LT∇⊗∇ρ−∇⊗ LT∇ρ;
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the arbitrariness of (∇∇ρ)̇ then implies that

∂∇∇ρψ = 0.

Since now k is independent of ρ̇, then no generality is lost by assuming k = 0. Hence,
inequality (47) simplifies to

TTT ·D0 + ρ(∇ρ⊗ ∂∇ρψ) · (D0 + W)− 1
θ

q · ∇θ = ρθγ ≥ 0. (48)

The arbitrariness of W ∈ Skw implies

∇ρ⊗ ∂∇ρψ ∈ Sym, ∂∇ρψ ‖ ∇ρ, ψ = ψ(θ, ξ), ξ = 1
2 |∇ρ|2.

If TTT is assumed to be independent of ∇θ, then it follows from (48) that

T = −p(θ, ρ)1− ρ∂ξψ∇ρ⊗∇ρ + µD0, µ ≥ 0

q · ∇θ = −ρθ2γq

where ρθγq = ρθγ− µD0 ·D0 ≥ 0.
The evolution equations consist of the equations of motion and of the balance of energy.

To compute ∇ · T, we notice that

∇ · (ρ∂ξψ∇ρ⊗∇ρ) = [(∂ξ ψ + ρ∂2
ξ ψ)|∇ρ|2 + ρ∂ξ ψ∆ρ]∇ρ + ρ∂ξ ψ(∇∇ρ)∇ρ

while to represent the balance of energy we employ the relations

T ·D0 = −ρ∂ξ ψ(∇ρ⊗∇ρ) ·D0 + µD0 ·D0,

∂θε = θ∂θη,

ξ̇ = ( 1
2 |∇ρ|2 )̇ = −(∇ρ⊗∇ρ) ·D0.

We can then write the evolution equations in the form

ρv̇ = −∇p(θ, ρ)− [(∂ξ ψ + ρ∂2
ξ ψ)|∇ρ|2 + ρ∂ξ ψ∆ρ]∇ρ− ρ∂ξ ψ(∇∇ρ)∇ρ + µ∇ ·D0 + ρb,

ρθ∂θηθ̇ = ρθ∂ξ η(∇ρ⊗∇ρ) ·D0 −∇ · q + ρr.

9. Conclusions

This paper addresses materials with constitutive equations embodying higher-order
gradients. The motivation for this topic arises from two remarkable schemes where the
constitutive equation for the stress tensor involves higher-order gradients of the mass
density. Within continuum mechanics this is the case of the Korteweg fluid. In quantum
hydrodynamics this dependence follows from the assumption of the quantum potential in
the form that traces back to Bohm. In this paper, we have reviewed the derivation of both
stress tensors.

Next, we have investigated the thermodynamic consistency of stress tensors with
dependencies on density gradients up to second order. The results (32) and (34) give
possible constitutive equations for the stress tensor with second-order gradients. It is an
advantage of this general approach that the coefficients of the representation are appropriate
functions of ρ and θ, determined by a thermodynamic potential, here ψ(θ, ρ, ξ), ξ = 1

2 |∇ρ|2.
This in turn allows the coefficients to be related to a single potential function.

A detailed comparison with previous results is made, both with the Korteweg-type
stress and the quantum stress. The connection is also established with other approaches,
namely, that involving the interstitial working [11] and that applying Liu’s procedure for
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the Clausius–Duhem inequality [10]. A direct application of thermodynamic requirements
to quantum hydrodynamics shows open questions for future developments.

Finally, upon the observation that Korteweg-type stress tensors are not compatible
with wave propagation, at a finite speed, an improvement of the model is attempted so
that the finite speed occurs in a thermodynamically consistent model. The thermodynamic
approach shows that an additive term αρρ̈ of the pressure is allowed. Though more refined
improvements might be desirable, it follows that this additive term of the pressure allows
the propagation of third-order discontinuity waves, [[∇∇∇ρ]] 6= 0, and allows the recovery
of the Korteweg stress tensor in stationary conditions.
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Appendix A

Representation of (∇g)̇ and (∇∇g)̇.
To prove the identities (17), (18) it is convenient to use the suffix notation. By definition,
if g ∈ C2(Ω×R), then

(∂xi g)̇ = ∂t∂xi g + vk∂xk ∂xi g
= ∂xi ∂tg + vk∂xi ∂xk g
= ∂xi ∂tg + ∂xi (vk∂xk g)− (∂xi vk)∂xk g
= ∂xi ġ− Lki∂xk g

whence (17) follows.
Likewise, if g ∈ C3(Ω×R), we compute

(∂xi ∂xj g)̇ = (∂t + vk∂xk )∂xi ∂xj g
= ∂xi ∂xj ∂tg + vk∂xi ∂xj ∂xk g
= ∂xi ∂xj ∂tg + ∂xi (vk∂xj ∂xk g)− (∂xi vk)(∂xj ∂xk g)
= ∂xi ∂xj ∂tg + ∂xi ∂xj(vk∂xk g)− ∂xi [(∂xj vk)∂xk g]− (∂xi vk)(∂xj ∂xk g)
= ∂xi ∂xj(∂tg + vk∂xk g)− ∂xi [Lkj∂xk g]− (∂xi vk)(∂xj ∂xk g)

to obtain
(∂xi ∂xj g)̇ = ∂xi ∂xj ġ− ∂xi (LT

jk∂xk g)− (LT
ik∂xk )∂xj g.

Replacing g = ρ and ρ̇ = −ρ∇ · v, we have

(∂xi ∂xj g)̇ = −(∂xi ∂xj ρ)∇ · v− 2∂xi ρ ∂xj∇ · v− ρ∂xi ∂xj∇ · v

−(∂xi ∂xj vk)∂xk ρ− LT
jk∂xi ∂xk ρ− LT

ik∂xj ∂xk ρ

and the expression (18) follows.

Representation of ∇g̈.

Notice that

g̈ = (∂t + v · ∇)(∂tg + v · ∇g)
= ∂2

t g + ∂t(v · ∇g) + (v · ∇)∂tg + (v · ∇)(v · ∇g)
= ∂2

t g + ∂tv · ∇g + 2v · ∂t∇g +∇g · Lv + (v⊗ v) · ∇∇g
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or
g̈ = ∂2

t g + (∂tvj)∂xj g + 2vi∂xi ∂tg + (∂xj g)Ljivi + vivj∂xi ∂xj g.

Hence, we obtain

∂xk g̈ = ∂2
t ∂xk g + (∂t∂xk vj)∂xj g + (∂tvj)∂xj ∂xk g + 2(∂xk vi)∂t∂xi g + 2vi∂t∂xi ∂xk g

+(∂xj ∂xk g)Ljivi + (∂xj g)(∂xi ∂xk vj)vi + (∂xj g)Lji∂xk vi

+(∂xk vi)vj∂xi ∂xj g + vi(∂xk vj)∂xi ∂xj g + vivj(∂xk ∂xi∂xj g).
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