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Abstract: Most modern communication systems, such as those intended for deployment in IoT
applications or 5G and beyond networks, utilize multiple domains for transmission and reception at
the physical layer. Depending on the application, these domains can include space, time, frequency,
users, code sequences, and transmission media, to name a few. As such, the design criteria of future
communication systems must be cognizant of the opportunities and the challenges that exist in
exploiting the multi-domain nature of the signals and systems involved for information transmission.
Focussing on the Physical Layer, this paper presents a novel mathematical framework using tensors,
to represent, design, and analyze multi-domain systems. Various domains can be integrated into
the transceiver design scheme using tensors. Tools from multi-linear algebra can be used to develop
simultaneous signal processing techniques across all the domains. In particular, we present tensor
partial response signaling (TPRS) which allows the introduction of controlled interference within
elements of a domain and also across domains. We develop the TPRS system using the tensor
contracted convolution to generate a multi-domain signal with desired spectral and cross-spectral
properties across domains. In addition, by studying the information theoretic properties of the multi-
domain tensor channel, we present the trade-off between different domains that can be harnessed
using this framework. Numerical examples for capacity and mean square error are presented to
highlight the domain trade-off revealed by the tensor formulation. Furthermore, an application of the
tensor framework to MIMO Generalized Frequency Division Multiplexing (GFDM) is also presented.

Keywords: tensors; multi-domain communication systems; Einstein product; tensor partial response
signaling; capacity; tensor channel

1. Introduction

As Internet of Things (IoT) gains prominence, the massive increase in the number of
devices requiring wireless connectivity along with extremely high data rates present signif-
icant challenges for future communication systems and networks, such as 5G and beyond.
To meet such competitive objectives, various technologies are being proposed including
Large multiple-input multiple-output (MIMO) [1], Millimeter-Wave [2], non-orthogonal
multiple-access schemes [3,4], machine-to-machine communications, and network densi-
fication [5]. These trends create the need for communication systems with transceivers
that incorporate an eclectic mix of domains. Addressing physical layer issues, such as
modulation, coding, waveform selection, equalization, etc., while keeping in mind the
gamut of transmission domains available, will be a major challenge. Accounting for the
distinct features of such domains in the design process of future communication systems
will be crucial.

Various multi-antenna and multi-carrier techniques are continuously being researched
to improve spectral efficiency and link reliability through space–time–frequency coding
methods that exploit diversity in all spatial, temporal, and frequency domains. A detailed
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survey of various multi-carrier candidate waveforms considered for 5G and beyond sys-
tems can be found in [6]. Furthermore, spectral efficiency can be increased with multiple
access schemes such as Power Domain Non-orthogonal Multiple Access (PD-NOMA) or
Sparse Code Multiple Access (SCMA) [7,8]. Thus, in addition to space, time, and frequency,
it could be useful to incorporate users or code sequences as additional domains in the
transceiver design process. The associated signal processing and coding required at the
transceivers will invariably span more than one domain of communication. Signals that span
multiple domains can be mathematically represented using multi-way arrays, more com-
monly known as tensors [9]. A generic unified mathematical framework that allows the
modeling of multi-domain communication systems can be developed using tensors.

A traditional method of mathematically representing multiple domains is via con-
catenation of various domain signals into a vector and treating the associated channel as
a matrix, thereby creating a virtual, albeit large, MIMO system model. However, the dis-
tinction between the domains is obscured in such a matrix-based degeneration and hence
does not allow for easy identification of the mutual coupling that may exist between the
various domains. A tensor-based approach maintains the natural multi-domain structure
of the system, and the inter-domain interactions are therefore retained and easily identi-
fied. Recently, a tensor framework for multi-linear complex MMSE estimation has been
developed in [10], which bypasses the need of any restructuring of the tensor signals for
estimation purposes.

In the past decade, the use of tensors for modeling communication systems has gained
much attention for analysis and the improvement of system performance, as it allows a
consolidated representation of multiple signaling domains [9–14]. In this paper, we show
that tensors can be used for signals and systems representation, and tools from multi-
linear algebra, such as the Einstein product, can be employed for developing a generic
system model. The framework developed using the Einstein product leads to multi-domain
channel modeling and aids in developing simultaneous signal processing techniques across
all domains. The Einstein product is a form of tensor contracted product [15]. Using the
properties of the Einstein product, several well-known linear algebra relations can be
extended to a multi-linear setting without the requirement of any tensor to vector/matrix
transformation. The multi-linear algebra notions developed using the Einstein product
preserves the natural tensor structure of the associated quantities and therefore has various
applications in engineering disciplines [10,15–18]. In our work, we consider a multi-linear
tensor framework that reveals the latent trade-off that exists between multiple domains.
The proposed tensor formulation also leads to joint domain signal processing to control
and combat interference across all domains. In [9], a multi-domain extension to Nyquist’s
criterion for zero interference is introduced. In this work, we explore the addition of
controlled inter-domain interference to manipulate the spectrum and cross-spectrum of the
transmitted tensor signals in the form of tensor partial response signaling (TPRS).

The objective of this paper is two-fold. Firstly, it presents original contributions in
the form of TPRS and it reveals the domain trade-off in communication systems via a
tensor information theoretic perspective. Secondly, in order to convey a more holistic
state-of-the-art picture, we also present an overview of closely related tensor concepts and
techniques used in communications from recent literature. Essentially, the primary goals of
this paper can be briefly summarized as follows:

• Propose a general tensor framework using the Einstein product to model multi-domain
communication systems with examples.

• Develop tensor partial response signaling for addition of controlled inter- and intra-
tensor domain interference for the purpose of spectral and cross-spectral shaping.

• Reveal the trade-off between multiple domains and develop a multi-domain beam-
forming approach through an information theoretic analysis of the tensor channel.

• Provide a review of some related tensor applications in communications found in
literature to further motivate the tensor perspective.
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The organization of this paper is as follows: In Section 2, we present a generic system
model using the Einstein product for a multi-domain communication system where the
channel is characterized using a higher order tensor. Several examples from multi-carrier,
multi-antenna, and multi-user systems are presented which can be modeled using the
proposed framework. In Section 3, we develop the notion of TPRS as a signal processing
technique to control the spectrum and cross-spectrum of transmitted signals. In addition,
we present a brief review of other tensor-based signal processing techniques found in the
literature. Section 4 presents an information theoretic analysis of the tensor channel, a few
numerical examples that illustrate the trade-off behavior between domains, and a multi-
domain beamforming approach for MIMO Generalized Frequency Division Multiplexing
(GFDM). The paper is concluded in Section 5.

2. Tensor System Model for Multi-Domain Communication Systems

Arrays whose elements are indexed by multiple indices are called tensors. The various
indices of a tensor are also known as modes. The order of a tensor is the number of its modes.
Thus, matrices where elements are indexed by 2 indices (row and column modes) can be
seen as an order 2 tensor, and vectors where elements are indexed by a single index can be
seen as order 1 tensors. A quick summary of basic tensor notations which we will use in
this paper are included in Table 1.

Table 1. Tensor notations used in this paper.

Notation Explanation

X ∈ CI1×···×IN Order N tensor of size I1 × · · · × IN with complex entries.
X ∈ CI×J and x ∈ CN×1 Matrix of size I × J and vector of size N × 1, respectively.
Xi1,...,iN Individual entries of tensor X denoted using indices

in subscript.
X:,i2,...,iN Colon in subscript indicates all the elements of a mode

(first mode in this case) corresponding to fixed other modes
(i2, . . . , iN in this case).

X [k] ∈ CI1×···×IN
k Sequence of order N tensors where each element is a function

of the discrete variable k.
X (t) ∈ CI1×···×IN

t Function tensor where each element of an order N tensor is
a function of continuous variable t.

The Einstein product of tensors is a form of contracted product where two tensors of
orders P + N and N + M contract over their N common modes to generate a tensor of
order P + M. For any N, the Einstein product is defined using the symbol ∗N as [15]:

(A ∗N B)i1,...,iP ,j1,...,jM = ∑
k1,...,kN

Ai1,i2,...,iP ,k1,...,kNBk1,...kN ,j1,j2,...,jM (1)

where A ∈ CI1×···×IP×K1×···×KN and B ∈ CK1×···×KN×J1×···×JM . For X ∈ CI1×I2×···×IN and
Y ∈ CJ1×J2×···×JM , the outer product X ◦ Y is an order N + M tensor defined as:

(X ◦ Y)i1,...,iN ,j1,...,jM = Xi1,...,iNYj1,...,jM (2)

Using properties of the Einstein product, many linear algebra concepts such as inver-
sion, identity, hermitian, trace, determinant, rank, and eigenvalue decomposition (EVD)
can be extended to a multi-linear setting. A detailed treatment of such tensor algebra
results can be found in [9,15–17,19–21]. The Einstein product can be effectively used for
representing multi-linear systems of equations, and has been recently employed to de-
velop the notion of multi-linear system theory [18,22]. In the following section, we use the
Einstein product to develop a system model for a multi-domain communication system.
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2.1. A Generic System Model

The modes of a tensor can represent various domains of transmission and reception
in a communication system. The input (transmit signal) and output (received signal) of a
multi-domain communication system with N transmit domains and M receive domains
can be defined as order N and M tensors, respectively. Let the input be represented by
X ∈ CI1×···×IN where the dimension (size) of the ith input domain is Ii. Let the output
be represented by Y ∈ CJ1×···×JM where the dimension of the jth output domain is Jj.
The channel H, defined as a multi-linear operator spanning all the transmit and receive
domains, can be represented using a tensor of size J1 × J2 × · · · × JM × I1 × I2 × · · · × IN .
Each element in the receive tensor Y is a linear combination of all the elements of the
transmit tensor X , where the coefficients of the combination are the elements of the channel
tensor H. Hence, the output Y can be written in terms of the Einstein product between
the channel and the input asH ∗N X . In the presence of noise, we can represent a generic
system model as:

Y = H ∗N X +N (3)

where N ∈ CJ1×···×JM represents the order M received noise tensor. The conventional
MIMO matrix model can be seen as a specific case of (3) where the input and output are
order 1 tensors (vectors) and the channel is an order 2 tensor (matrix) [10]. In such a case,
the Einstein product between the channel and the input by definition reduces to standard
matrix multiplication. System models for three different cases (in the absence of noise) are
illustrated in Figure 1. Each white block in the figure represents an input/output element,
while the yellow blocks represent the channel components. In the first case, the input
and output are order 1 tensors (vectors) of size 2, and the channel is an order 2 tensor
(matrix) of size 2× 2, as used in conventional MIMO systems. This model can be evolved
further to incorporate additional domains as illustrated in the second and third cases.
In the second case, the input and output are order 2 tensors of size 2× 2 each, while the
channel is an order 4 tensor of size 2× 2× 2× 2. Further, in the third case, the input
and output are order 3 tensors of size 2× 2× 2 and the channel is an order 6 tensor of
size 2× 2× 2× 2× 2× 2. The input indices are represented using i1, i2, i3 and the output
indices using j1, j2, j3. The multi-domain nature of the tensor channel and its coupling with
the input through the Einstein product in the system model allow us to perceive (3) as
an evolution of the MIMO matrix channel model, where the latter is just a special case of
the former.

2.2. Examples of Practical Systems

A few examples of domains that may exist in a system include space, time, frequency,
users, spreading sequence, channel multipath, and device index. Incorporating any addi-
tional domain of transmission in the unified system model can be carried out in an intuitive
and comprehensible manner using the tensor framework. For instance, it is shown in [19]
that a MIMO Orthogonal Frequency Division Multiplexing (OFDM) system can be repre-
sented using order 2 input and output tensors where both antenna and sub-carrier domains
are considered. Thereby, the effective channel can be represented using an order 4 tensor
with its domains corresponding to receive antenna, receive sub-carrier, transmit antenna,
and transmit sub-carrier. The output is then given using (3) where the Einstein product
is taken over the two transmit modes (∗2) between the channel and the input. Such a
representation allows us to jointly consider both inter-carrier and inter-antenna interference
in a single framework. Similarly, a MIMO Filter Bank multi-carrier (FBMC) system can
also be represented using order 2 input and output tensors and an order 4 channel tensor
where the antenna and sub-carrier domains are considered [9].
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Figure 1. The tensor system model and its evolution with the increase in order.

The system model can further be used for Generalized Frequency Division Multi-
plexing (GFDM) as well. GFDM is a flexible filtered multi-carrier modulation scheme
where out of band radiation of the transmit signal is controlled using pulse shaping filters
on each sub-carrier. GFDM uses a block-based transmission scheme where N = KM
data symbols are transmitted over a time–frequency block having K sub-carriers and M
timeslots called sub-symbols [23]. The traditional OFDM can be seen as a special case of
GFDM when M = 1 and the modulator matrix is a DFT matrix. GFDM can also be seen
as a generalization of single carrier FDM under suitable pulse shaping filter options [23].
Since GFDM is a generalization of other FDM schemes, it is called ‘Generalized’ FDM.
A detailed comparison of GFDM with OFDM and single carrier FDM can be found in [24].

For single antenna transmission, since components in each GFDM transmit block have
separate dependence on the sub-carrier and sub-symbol indices, it is more convenient to
represent the N = KM data symbols using an order 2 tensor of size K×M. Further, in a
MIMO GFDM system, the input and output can be represented as order 3 tensors indexed
by antenna/stream, sub-carrier, and sub-symbol indices. Consider a MIMO GFDM system
where S independent streams of data are transmitting KM data symbols each. The transmit
data symbols can be arranged in an order 3 tensor D ∈ CS×K×M where Ds,k,m corresponds
to the complex symbol on the kth sub-carrier, mth sub-symbol, and sth transmit stream.
Similarly the received signal and noise tensors can be represented using third order tensors
D̃ ∈ CS×K×M and N ∈ CS×K×M. Subsequently, the channel that couples the input D
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with the output D̃ can be seen as an order 6 tensor HE ∈ CS×K×M×S×K×M. Let NT and
NR denote the number of transmit and receive antennas, respectively. The tensor channel
considered here is the equivalent channel obtained from the cascading of the transmit
filter tensorHT ∈ CNT×N×S×K×M, physical channelHC ∈ CNR×N×NT×N , and the receive
filter tensor HR ∈ CS×K×M×NR×N , i.e., HE = (HR ∗2 HC ∗2 HT) ∈ CS×K×M×S×K×M.
The overall system model is represented using (3) as

D̃ = HE ∗3 D +N (4)

A detailed derivation of this system model for MIMO GFDM along with characteriza-
tion ofHT ,HC andHR can be found in [25]. The model in (4) shows the innate ability of
the tensor framework from (3) to incorporate additional domains in the system model.

In addition to spatial, temporal, and frequency domains, different users can also be
considered as a domain in the system model. Consider the uplink of a multi-user MIMO
system where a base station (BS) equipped with NR antennas is receiving information from
K users, each having NT antennas. Using the standard matrix notation, the received signal
vector y ∈ CNR×1 at the base station can be written as

y =
K

∑
k=1

H(k)x(k) + n (5)

where x(k) ∈ CNT×1 is the signal transmitted by the kth user, n ∈ CNR×1 is the received
noise vector, and H(k) ∈ CNR×NT is the channel matrix between the kth user and the BS.
Such a system can be equivalently represented in the tensor framework using a third
order channel tensor. We define the multi-user MIMO tensor channel as an order 3 tensor
H ∈ CNR×NT×K where each H(k) forms a slice of the third order tensor as H:,:,k = H(k).
The input signal can be defined as an order 2 tensor X ∈ CNT×K, where each x(k) forms a
column of the matrix X. Hence, the system model in (5) can be equivalently represented as:

y = H ∗2 X + n (6)

Furthermore, in cellular networks, the notion of domains in the system model can
be expanded to include the cell index as well. In such a case, the channel tensor will
incorporate terms corresponding to the inter-cell interference also. Consider a K cell MIMO
interfering broadcast channel (IBC) as in [26], where each cell consists of a base station
with M antennas and U users with L antennas each. The channel matrix between the
kth base station to the uth user in the ith cell is denoted by a matrix H(k,i,u) ∈ CL×M. Let
s(k) ∈ CM×1 be the broadcast transmitted signal vector by the kth base station intended to
be received by all the users within its cell. Then, the received signal vector at the uth user
in the ith cell is given as [26]:

y(i,u) =
K

∑
k=1

H(k,i,u)s(k) + z(i,u) (7)

where z(i,u) ∈ CL×1 denotes additive noise vector for the uth user in the ith cell. Note that
the summation in (7) includes the desired term (corresponding to k = i), and also the inter-
ference terms received by a user from a base station outside its cell (inter-cell interference
corresponding to k 6= i). The system model in (7) can be represented using the tensor
framework from (3). Consider the transmit signal corresponding to K base stations, each
with M antennas as an order 2 tensor S ∈ CM×K, where each vector s(k) forms a column
of the matrix S. Similarly, the output and noise received by U users in each of the K cells
with L antennas per user can be defined as order 3 tensors Y ∈ CL×K×U and Z ∈ CL×K×U ,
respectively such that Y:,i,u = y(i,u) and Z:,i,u = z(i,u). The channel can subsequently be
defined as an order 5 tensor H ∈ CL×K×U×M×K such that H:,i,u,:,k = H(k,i,u). Thus, the
system model from (7) can be equivalently written using the Einstein product as:
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Y = H ∗2 S +Z . (8)

Other examples of using tensors to represent multi-domain signals can be found
in the literature. For example, a Direct-Sequence Code Division Multiple Access (DS-
CDMA) system [11] uses an order 3 tensor for signal representation accounting for antenna,
temporal and spreading domains. Furthermore, [12] represents the signals using order
5 tensors in a MIMO OFDM CDMA system with antenna, data streams, sub-carriers,
time blocks, and chips as the domains. Multi-domain index modulation as advocated
in [27], uses transmission over spatial, temporal, frequency, coding, as well as a hybrid
combination of such domains to exploit all the indices of transmit resources. Thus tensors
are an effective tool for multi-domain signal representation.

Note that several such multi-domain communication systems can also be represented
using a degenerate setup employing vectors and matrices. The signals corresponding
to different domains can be concatenated to be represented as vectors, and the channel
can be modeled as a matrix. Since multiple indices of signals are collapsed into a single
index using such concatenations, it leads to a cluttered and not an intuitive system model.
The ease of representation through the tensor framework becomes even more prominent
as the number of domains required to be incorporated in the system model increases.
Furthermore, since the tensor representation preserves the structure of the signals, it helps
in developing signal processing schemes which harness the structural properties of the
signals. In addition, there can be cases where signals or data are represented as tensors for
storage efficiency using the Tensor Train (TT) format [28], thereby restricting the flexibility
to reshape the tensors into a vector or matrix. We elaborate on such advantages of the
tensor formulation in the next section. We present some signal processing techniques
that make use of various tools from multi-linear algebra to simultaneously exploit all the
domains that exist within a communication system.

3. Simultaneous Signal Processing Across Domains

Signals and systems representation using tensors leads to the notion of tensor-based
multi-domain filtering. The structure of the tensor plays a key role in such operations.
A square tensor is an even order tensor of order 2N where the dimensions of the first N
domains are the same as that of the last N domains. A square tensor of size I1 × I2 × · · · ×
IN × I1 × I2 × · · · × IN , whose elements are indexed by variables i1, i2, . . . , iN , j1, j2, . . . , jN ,
is called pseudo-diagonal if non-zero elements occur only when i1 = j1, i2 = j2, . . . , iN = jN .
Note that this structure is different from a diagonal tensor, where non-zero elements only
occur when all the indices are equal. Hence, diagonal elements are a subset of the pseudo-
diagonal elements. An illustration of the pseudo-diagonal elements of a fourth order
3× 3× 3× 3 tensor is presented in Figure 2. The green blocks, where i1 = j1 and i2 = j2,
are the pseudo-diagonal elements. The diagonal elements, where i1 = j1 = i2 = j2, are
represented by green blocks marked with a white X. More details on pseudo-diagonal
tensors can be found in [9]. An identity tensor denoted as I is a pseudo-diagonal tensor
with all non-zero entries being 1. The pseudo-diagonal structure helps us classify TPRS
and understand its spectrum and cross-spectrum shaping capabilities, as discussed in the
next sub-section. As a precursor to TPRS, we first explain the notion of spectrum and
cross-spectrum in tensor framework.
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Figure 2. Pseudo-diagonal elements of a tensor of size 3× 3× 3× 3.

Consider a tensor sequence X [k] ∈ CI1×...IN
k which is a function tensor with discrete

argument k. The D transform of X [k] is a tensor function defined as:

X̆ (D) = ∑
k
X [k]Dk (9)

with components X̆i1,...,iN (D) = ∑k Xi1,...,iN [k]D
k, where D is the delay operator.

A tensor X ∈ CI1×···×IN is said to be random if its components Xi1,...,iN are ran-
dom variables. Similarly, a tensor sequence X [k] ∈ CI1×···×IN

k is called a random ten-
sor sequence if its components are random processes indexed by variable k. The ex-
pected value (mean) of such a tensor sequence X [k] is defined asM[k] = E[X [k]] where
Mi1,...,iN [k] = E[Xi1,...,iN [k]]. In addition, the auto-correlation of the tensor sequence X [k]
denoted asRX [k, i] ∈ CI1×···×IN×I1×···×IN

(k,i) is defined as an order 2N function tensor where
each component is a function of two discrete variables k and i. It can be described using
the outer product as:

RX [k, i] = E[X [k] ◦ X ∗[k− i]] (10)

which can be written component wise as:

RX i1,...,iN ,i′1,...,i′N
[k, i] = E[Xi1,...,iN [k] · X

∗
i′1,...,i′N

[k− i]] (11)

where ()∗ denotes complex conjugate. Subsequently, a tensor sequence is called wide sense
stationary (WSS) if its mean M[k] is independent of k and its auto-correlation RX [k, i]
depends only on i. The spectrum tensor of a WSS X [k] ∈ CI1×...IN

k is an order 2N tensor
function SX (ω) ∈ CI1×...IN×I1×...IN

ω where each component is a function of the variable ω.
The D transform of the auto-correlation is given as:

S̆X (D) = ∑
i
RX [i]Di (12)

and the spectrum tensor is defined as:

SX (ω) = S̆X (D)
∣∣∣
D=ejωT

(13)
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where T is the tensor symbol interval. Thus, the spectrum tensor corresponding to X [k] is
a tensor function of order 2N whose pseudo-diagonal elements SX i1,...,iN ,i1,...,iN (ω) are the
spectrum of each component of X and the off pseudo-diagonal elements SX i1,...,iN ,i′1,...,i′N

(ω)

are the cross-spectrum between two different components Xi1,...,iN and Xi′1,...,i′N
.

3.1. Tensor Partial Response Signaling

Correlative coding, otherwise known as Partial Response Signaling, is a transmission
method where correlation is introduced between successive symbols through the addition
of a controlled amount of inter-symbol interference [29]. The objective is to shape the
spectrum of the signal using correlative codes to achieve desirable properties. Frequency
domain correlative coding has been also applied in MIMO OFDM systems to mitigate the
effects of time-selective fading [30].

In such a system, the correlation introduced is restricted to one domain. Using the
tensor framework, it is possible to extend this concept to a multi-domain system and control
both the spectrum as well as the cross-spectrum of the transmitted signal tensor. Such a
method, dubbed Tensor Partial Response Signaling (TPRS), makes use of tensor correlative
codes to introduce a controlled amount of inter-tensor interference (between successive
tensor symbols) and intra-tensor interference (between the domains of one tensor symbol).

Consider a WSS discrete sequence of zero mean uncorrelated data tensors
D[m] ∈ CI1×···×IN

m with the corresponding S̆D(D) as an identity tensor of order 2N. To
introduce correlation and alter the input spectrum tensor, we pass D[m] through a linear
discrete time invariant system F [m] ∈ CI1×...IN×I1×...IN

m . Hence, the output of the system,
denoted by X [k] ∈ CI1×···×IN

k is given using discrete contracted convolution between F [m]
and D[m], defined as [9]:

X [k] = ∑
m
F [k−m] ∗N D[m] (14)

which in the D transform domain can be written as:

X̆ (D) = F̆ (D) ∗N D̆(D) (15)

The objective of F̆ (D) is to introduce correlation in the transmitted data tensor;
hence, we refer to F̆ (D) as a TPRS system. Since the data tensor sequence is assumed WSS,
we can relate the tensor S̆X (D) to F̆ (D) by:

S̆X (D) = F̆ (D) ∗N S̆D(D) ∗N F̆H(D−1) (16)

A detailed derivation of (16) can be found in [31]. The relation in (16) when evaluated
at D = ejωT shows that the spectrum tensor of the transmit data tensor can be manip-
ulated to alter both the spectrum and the cross spectrum among all the components by
suitably changing the structure of the TPRS system F̆ (D). The data streams in most digital
communication systems consist of independent and identically distributed (i.i.d) symbols
drawn from a specific constellation, implying that such sequences have a flat spectrum.
For a tensor system with data tensors whose components are i.i.d, all components of the
spectrum are the same. The cross-spectrum is zero as the individual components are
not correlated, making S̆D(D) a multiple of identity tensor. In this case, (16) reduces to
S̆X (D) = F̆ (D) ∗N F̆H(D−1). Hence, by using a TPRS system, it is possible to shape the
spectrum and cross-spectrum of the different components of the data tensor by employing
distinct codes. This means that the components of the transmitted signal tensor can have
different spectral shapes even though the original data tensor has components that are i.i.d.

Depending on how the interference is introduced, TPRS systems can be broadly
classified into different classes. Controlled interference from within the same tensor symbol
(intra-tensor interference) changes the level of the spectrum and cross-spectrum while
maintaining a flat spectral power density. Such systems are dubbed Degenerate TPRS
systems and are used in multi-carrier transmission schemes where some inter-carrier
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interference is allowed in order to achieve better error performance without compromising
the spectral efficiency of the overall system [30]. On the other hand, pseudo-diagonal
TPRS systems contain controlled interference from successive data tensors (inter-tensor
interference) only and can be used to change the shape of the spectrum and cross-spectrum
of the transmitted signal tensor. When combining these two classes of TPRS systems it
is possible to create spectrum tensors where certain components have a desired spectral
shape while others have a flat spectrum at a desired height.

In Figures 3 and 4, we illustrate the spectral components of transmitted signal tensor
for two different cases. The transmitted signal is a 2× 2 matrix and the corresponding
spectrum tensor is of size 2× 2× 2× 2. Each box in Figures 3 and 4 corresponds to a
particular component of the transmitted signal tensor denoted by the row and column
indices j1, j2. The x-axis labeled as index in the figures represents the indices corresponding
to the components of the spectrum tensor, the y-axis labeled as ω represents the angular
frequency, and the z-axis labeled as |SX (ω)| represents the spectrum magnitude. The green
line represents the spectrum of component j1, j2 and other colors represent the cross-
spectrum between j1, j2 and another component of the transmitted signal. For example,
the shape at index (2, 2, 1, 1) represents the cross-spectrum between component (1, 1)
and (2, 2) of the 2× 2 matrix. The degenerate TPRS system contains only intra-tensor
interference. Hence, all the components of the spectrum tensor are flat. In contrast, for TPRS
with both inter- and intra-tensor interference, the spectral components have different shapes
due to the addition of controlled inter-tensor interference. The corresponding correlative
codes for Figures 3 and 4 are included in Table 2. The TPRS system for these examples is
an order 4 tensor F̆ (D) ∈ C2×2×2×2

D , where each component F̆i1,i2,j1,j2(D) corresponding
to Figures 3 and 4, is listed in the second and third columns of Table 2, respectively.

Figure 3. Degenerate TPRS.
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Figure 4. TPRS with inter- and intra-tensor interference.

Table 2. Structure of the TPRS system.

Component Figure 3 Figure 4

F̆1,1,1,1 1 1 + D
F̆1,1,1,2 0.5 0
F̆1,1,2,1 0.25 0.5(1 + D)
F̆1,1,2,2 0.125 0
F̆1,2,1,1 0.5 0.5(1− D)
F̆1,2,1,2 1 (1− D)
F̆1,2,2,1 0.125 0.125
F̆1,2,2,2 0.25 0.25
F̆2,1,1,1 0.25 0.25
F̆2,1,1,2 0.125 0.125
F̆2,1,2,1 1 (1− D2)
F̆2,1,2,2 0.5 0.5(1− D2)
F̆2,2,1,1 0.125 0
F̆2,2,1,2 0.25 0.5(1− D4)
F̆2,2,2,1 0.5 0
F̆2,2,2,2 1 (1− D4)

3.2. Tensor-Based Receiver Designs

Tensor equalization has been considered in [9] as a technique of reducing interference
in multi-domain communication systems. In particular, [9] presents multi-linear minimum
mean square error (MMSE) and zero forcing equalizers, while [31] also presents tensor-
based decision feedback equalizers. Such techniques can be used to design receivers
which simultaneously combat the effects of interference from different domains (Multi-
Domain Interference) such as inter-carrier interference (ICI), inter-symbol interference (ISI),
inter-antenna interference (IAI), and inter-user interference (IUI). An application of such a
tensor-based equalizer in a multi-user MIMO GFDM receiver is considered in [9], where it
is shown that such tensor-based equalizers outperform the per-domain equalizers which
do not exploit the information on interfering terms from other domains.
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The tensor framework can also be used to develop estimation techniques for receiver
design in communication systems. In (3), if the channel tensor is known, a multi-linear
receiver which operates on the received signal tensor Y producing X̂ = G ∗M Y , can
be used to provide an estimate X̂ of the transmitted tensor X . We can find the tensor
G ∈ CI1×···×IN×J1×···×JM such that the mean square error between X and X̂ , defined as

MSE = E[||X − X̂ ||2] = E[||X − G ∗M Y||2] (17)

is minimized. The notation ||.|| denotes Frobenius norm. This leads to a tensor multi-linear
MMSE receiver which is specified by:

G = CX ∗N HH ∗M (H ∗N CX ∗N HH + CN )−1 (18)

where CX = E[X ◦ X ∗] and CN = E[N ◦ N ∗] are order 2N and 2M covariance tensors
of input and noise, respectively (assuming that X and N are zero mean). A detailed
derivation of (18) can be found in [19]. An application of such a tensor-based receiver in
a MIMO OFDM system is considered in [10] where a comparison with per sub-carrier
estimation which ignores the inter-carrier interference terms for estimation is presented. It
is shown that as interference from other sub-carriers becomes dominant, the performance of
per sub-carrier receiver deteriorates significantly, while the tensor receiver’s is significantly
better since it makes use of the interference terms for data estimation.

3.2.1. Complexity of Tensor Multi-Linear MMSE Receiver

The process of finding the multi-linear MMSE operator G using (18) involves per-
forming the Einstein product and tensor inversion. We now assess the computational
complexity of finding G. We refer to a single floating point operation (addition, subtrac-
tion, multiplication, or division) as a flop. For simplicity of explanation, we assume the
channel to be a square tensor, i.e., N = M and J1 = I1, · · · , JM = IN . The Einstein product
(∗N) between two tensors of size I1× · · · × IN × I1× · · · × IN each requiresO((∏N

n=1 In)3)
flops [19]. Note that if the number of flops required for any step is polynomial in variable
n, we state the complexity as O(np) where p is the degree of the polynomial. The process
of calculating G can be broken down into sequential steps which are listed in Table 3 along
with the computational cost of each step.

Table 3. Computational complexity of a tensor multi-linear MMSE receiver.

Step Complexity

FindH ∗N CX ∗N HH O((∏N
n=1 In)3) .

Find (H ∗N CX ∗N HH + CN ) O((∏N
n=1 In)2).

Find (H ∗N CX ∗N HH + CN )−1 O((∏N
n=1 In)3).

Find CX ∗N HH ∗M (H ∗N CX ∗N HH + CN )−1 O((∏N
n=1 In)3).

The first step in Table 3 is calculating two Einstein products; hence, its complexity
is O((∏N

n=1 In)3). The next step performs an element-wise addition of two tensors with
(∏N

n=1 In)2 elements in each; hence, it requires O((∏N
n=1 In)2) operations. Note that in

several cases where the noise tensor contains uncorrelated elements, the noise covariance
will be a pseudo-diagonal tensor. In such a case, the number of non-zero elements in
the noise covariance tensor would be ∏N

n=1 In; hence, the cost of this step would become
O(∏N

n=1 In). Further, the next step calculates the inverse of an order 2N tensor. Tensor
inverse can be calculated using the Newton’s method which solves an iterative equation
involving the Einstein product with a complexity of O((∏N

n=1 In)3) as described in [10].
The final step again requires two Einstein products, and therefore has a complexity of
O((∏N

n=1 In)3). If we add all the complexities in Table 3, we see that finding G requires an
overall O((∏N

n=1 In)3) operations, which is cubic in the number of input/output tensor
elements, ∏N

n=1 In. It is to be noted that many of these operations can be computed
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using parallel processors to significantly reduce the time complexity of executing them. A
detailed description of parallel and faster implementation of the Einstein product and the
tensor inversion using Newton’s method can be found in ([10], Appendix D). Several other
algorithms to compute tensor inverse, without any need of tensor transformation to matrix
or vector, have been considered in literature [15,16] which rely on the Einstein product. For
instance, [15] presents a higher order bi-conjugate gradient method, and [16] presents an
elimination method using tensor triangular decompositions.

3.2.2. Application of Tensor Train Decomposition and Tensor Networks

Algorithms which allow to perform various tensor operations without reshaping the
tensors provide an important feature as matrix or vector transformation of the tensors is
not desirable in many applications. Very often, large data are stored using Tensor Train
(TT) decomposition for reducing storage complexity [28,32]. In TT format, a higher order
tensor is written in terms of a set of sparsely connected lower order tensors called cores.
For a tensor A of size J1 × J2 × · · · × JM, the TT decomposition is specified by:

Aj1,...,jM = ∑
r0,r1,...,rN

A(1)
r0,j1,r1

· A(2)
r1,j2,r2

· · · A(M)
rM−1,jM ,rM

(19)

where each core A(m) is a third order tensor of size Rm−1 × Jm × Rm and Rm denote the
TT ranks with R0 = RM = 1 and Rm ≥ 1 for m = 1, . . . , M− 1 [28]. Since the TT ranks
determine the storage consumption of the tensor, the structure of the core tensors A(m)

with low TT ranks is exploited for reducing the storage complexity. In such a process,
rather than storing the entire tensor, only the tensor cores along with the information on
the modes to be contracted are stored. Hence, any mathematical operation to be performed
on the tensor should be able to act on the cores itself without reconstructing the entire
tensor. This restricts any reshaping of the data. A tensor in TT format can be graphically
represented through a Tensor Network (TN) containing nodes and edges [32]. Each core is
represented by a node, and a contraction between two cores is represented by connecting
the nodes through an edge. The free edges emerging from a core correspond to the modes
which are not contracted. Any mathematical computation between two tensors can be
expressed in terms of their TNs. For instance, contracted product between two different
tensors can be achieved using TNs by connecting the free edges corresponding to the
modes to be contracted of the two tensors. A detailed description and examples of different
tensor operations using TN representation is provided in [32]. Consider the system model
presented for order 3 input output tensors and order 6 channel tensors in Figure 1. A TN
representation of this model is illustrated in Figure 5. It shows the representation of the
Einstein product between the third order input X ∈ CI1×I2×I3 and the sixth order channel
H ∈ CJ1×J2×J3×I1×I2×I3 in TT format. The operation Y = H ∗3 X can be written in terms of
the cores ofH and X as

Yj1 ,j2 ,j3 = ∑
i1 ,i2 ,i3

(
∑

r0 ,r1 ,...,r6

H(1)
r0 ,j1 ,r1

· H(2)
r1 ,j2 ,r2

· · · H(6)
r5 ,i3 ,r6︸ ︷︷ ︸

orange nodes

)
·
(

∑
s0 ,s1 ,s2 ,s3

X (1)
s0 ,i1 ,s1

· X (2)
s1 ,i2 ,s2

· X (3)
s2 ,i3 ,s3︸ ︷︷ ︸

green nodes

)
(20)

The summation over indices i1, i2, i3 in (20) is reflected in the edges connecting the
green and the orange nodes in Figure 5. Specific algorithms to compute the Einstein
product, which act directly on the cores of the tensor train format are presented in [33].
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Figure 5. TN representation of a multi-domain communication system model with sixth order
channel tensor.

More recently, the concept of tensor networks has been also considered for developing
error-correcting codes such as a generalization of polar codes. The notion of polar codes
was first introduced in [34] as a class of capacity-achieving codes for binary memoryless
symmetric channels. The use of such channel codes can significantly enhance the trans-
mission reliability of wireless communication systems. Hence, polar codes have found
applications for channel coding in 5G wireless systems [35]. A family of codes, known as
branching MERA codes, developed using tensor networks and tensor contraction which
generalizes polar codes, has been presented in [36]. Essentially, the encoding sub-system is
represented as an even order tensor. At the receiver, the sequential cancellation decoding
operation is modeled as a contraction that is represented by a TN. Further, [36] shows that
such a generalization of polar codes using TN outperforms traditional polar codes in its
error-correcting ability. Another generalization is presented in [37] which develops the
decoding algorithm using TN for polar and convolutional polar codes. The use of tensor
formalism for the development of error-correcting encoding and decoding algorithms
emerges as a novel and interesting research trend that integrates tensors and channel
coding for communication systems.

3.2.3. Applications of other Tensor Decompositions

A receiver based on (18) assumes that the channel is known. However, even in the
absence of complete channel state information, the structure of the received signal can be
exploited through several tensor decomposition schemes for designing blind/semi-blind
receivers [11,12,14]. Such receivers can perform joint symbol and channel estimation. In fact,
one of the initial applications of tensors for wireless communication signal processing was
considered in [11] for a blind receiver design where the signal in a DS-CDMA system is
modeled as a third order tensor. Information is extracted from the received signal using
tensor canonical polyadic (CP) decomposition, also known as parallel factors (PARAFAC)
decomposition. The CP decomposition breaks a tensor into a linear combination of rank
one tensors. By making use of the uniqueness of the three-way PARAFAC decomposition,
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ref. [11] presents a blind receiver for user separation, equalization, and detection in a
DS-CDMA system. The work in [11] and several other blind receiver design schemes rely
on the uniqueness of the PARAFAC decomposition of third order tensors, and therefore
cannot be accomplished in a degenerate setting comprising vector or matrix formulations.
Another common tensor tool is the Tucker decomposition which has primary applications
in finding low rank structures, classification, and feature extraction in high dimension
data [32,38]. Some suitable variations of PARAFAC and Tucker decompositions lead to
the development of many related tensor decompositions which can be used to model
signals and develop coding techniques in multi-antenna communication systems as shown
in [12,13] and references within. For instance, a tensor space–time–frequency coding
technique for a MIMO OFDM CDMA system is developed in [12], where the coding
tensor is represented using a fifth order tensor. The baseband equivalent received signal
is also represented as a fifth order tensor which under some suitable assumptions on
the channel admits a generalized PARATUCK (a combination of PARAFAC and Tucker)
model. Based on this model, semi-blind receivers are then used for joint symbol and
channel estimation. A short summary of a few of the important tensor tools along with
some applications can be found in Table 4. More details on various tensor decompositions
and their numerous applications can be found in [14,21,38,39]. A tensor singular value
decomposition (SVD) is described in [15] which decomposes a tensor into two unitary
tensors and a pseudo-diagonal tensor connected via the Einstein product. Note that both
PARAFAC and Tucker decompositions can equivalently be represented using the Einstein
product-based tensor SVD if the components of the unitary tensors are obtained using a
product of the elements of the factor matrices in PARAFAC and Tucker decompositions as
described in ([15] Lemma 3.20 and 3.22).

Table 4. Tensor tools and applications.

Tensor Tool Example of Applications

PARAFAC (CP) Model received signal in DS-CDMA and develop
blind receiver methods [11]

Tucker Decomposition Data mining, Computer Vision, finding low rank
structures in high dimensional data [32]

PARATUCK Semi blind receivers for joint channel estimation
and data detection in MIMO OFDM CDMA sys-
tems [12]

Tensor Train Decomposition Reducing storage complexity in Big Data applica-
tions [32], space–time coding for MIMO OFDM
relay systems [40]

Tensor Inversion Joint multi-domain equalization in systems such
as MIMO GFDM [9]

Tensor EVD using Einstein product Multi-linear system theory [22], finding tensor
channel capacity [25]

Block Constrained PARAFAC Blind multi-user detection and equalization
for over-sampled, DS CDMA and OFDM sys-
tems [41]

PARAFAC with Linear Dependen-
cies (PARALIND)

Blind receiver for MIMO OFDM in the presence
of carrier frequency offset [42]

All such tensor-based receiver designs rely on exploiting the received signal structure
by simultaneously processing multiple domains. Simultaneous signal processing across
domains reveals the trade-off between these domains, which can be used for efficient
resource utilization, as discussed in the next section.
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4. Harnessing the Domain Trade-Off

The trade-off between domains in a communication system can be explored through
an information theoretic analysis of the tensor channel from (3) which is presented next.

4.1. Capacity of a Tensor Channel

The MIMO matrix channel can be decomposed into parallel non-interfering scalar
channels using matrix eigenvalue decomposition (EVD). The optimum input power allo-
cation is done by the classical water-filling solution applied to the decomposed parallel
channels to achieve capacity [43]. The unitary matrix obtained from the channel EVD is
used to prescribe a transmit precoding. However, these power allocation and precoding
operations are restricted to the transformation of transmit vectors in the antenna domain
only. The tensor framework extends these operations to multiple domains.

For the system model defined in (3), assuming X and N are zero mean independent
and the channel tensor H is known, the covariance tensor of the output Y denoted as
CY ∈ CJ1×···×JM×J1×···×JM can be written as:

CY = E[Y ◦ Y∗] = H ∗N CX ∗N HH + CN (21)

where CX and CN are the input and noise covariance tensors, respectively. Assuming
the noise tensor contains circular symmetric zero mean complex Gaussian entries with
covariance tensor as identity, i.e., CN = I , it can be shown (using ([25] Lemma 1)) that the
mutual information between input and output tensors satisfies:

I(X ;Y) ≤ log det
(
H ∗N CX ∗N HH + I

)
(22)

where equality is achieved only if Y is Gaussian. Here we consider log to the base 2,
and the det(.) operation is the tensor determinant of the enclosed entity, defined as the
product of the tensor eigenvalues [16]. For a fixed channel, it can be shown that in the
presence of zero mean circular symmetric Gaussian noise, the output Y from (3) will also
be zero mean circular symmetric complex Gaussian if X is so. Hence, for maximizing
the mutual information, we consider X to be circular complex Gaussian with covariance
CX . The capacity of the tensor channel can be then found through the following convex
optimization problem:

max
CX

log det
(
H ∗N CX ∗N HH + I

)
s.t. tr(CX ) ≤ P, CX � 0,

(23)

where tr(CX ) denotes the sum of the pseudo-diagonal elements of CX . The inequality
constraint tr(CX ) ≤ P represents a sum power constraint on the input, and CX � 0 means
that the input covariance tensor is positive semi-definite. Such an optimization problem
and can be solved using the Karush–Kuhn–Tucker (KKT) conditions resulting in the optimal
input covariance and the capacity as:

C(opt)
X = V ∗N

(
µ−1I −D−1

)+
∗N VH (24)

C = ∑
i1,...,iN

(
log
(di1,...,iN

µ

))+
(25)

More details on the derivation of (24) and (25) can be found in [25]. The unitary tensor
V and the pseudo-diagonal tensor D are obtained from the tensor EVD of (HH ∗M H),
given as (HH ∗M H) = V ∗N D ∗N VH . Such decomposition can be computed using tensor
EVD methods presented in [15–17]. The eigenvalues of (HH ∗M H) which are the pseudo-
diagonal elements ofD are denoted by di1,...,iN . The constant µ is chosen to satisfy the power
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constraints, and ()+ indicates that each element in the enclosed entity is non-negative,
i.e., (a)+ = max{0, a}.

The solution in (24) can be seen as a higher order generalization of the classical water-
filling solution for the MIMO channel to a tensor setting. Assigning the optimum covariance
tensor to the input performs power allocation across all the domains and also prescribes a
multi-domain input precoding strategy. Notice that the eigenvalues of (HH ∗M H) depend
on the multitude of domains in the tensor channel. This paves the way for certain flexibility
to exploit the trade-off between different domains, depending on the specific tensor channel
eigenvalues. The capacity is obtained by summation of a log function over all such multi-
domain eigenvalues. The lack of resources in a specific domain can be compensated with
resources in alternate domains, which would allow a more judicious and efficient resource
allocation mechanism. In the next section, we elaborate on such a domain trade-off through
numerical examples.

4.2. Numerical Examples

We find the capacity of a tensor channel with i.i.d zero mean and unit variance circular
complex Gaussian entries, under total power constraint. We assume that the channel
realizations are known at the transmitter and receiver. The results presented are averaged
over 100 different channel realizations. Furthermore, we assume additive white Gaussian
noise (AWGN) with zero mean. The signal to noise ratio (SNR) is defined as the ratio of
the transmit power to the noise variance. Capacity is calculated at 8 dB SNR using (25).
Both input and output are order 2 tensors of size X×Y each, where X and Y denote the
dimensions of the individual domains. Thereby the channel is a fourth order tensor of
size X×Y× X×Y. Figure 6 presents the capacity of such a fourth order tensor channel
against X and Y. As X and Y increase, the capacity of the tensor channel increases. It can
be further observed that different configurations of X and Y can achieve same capacity,
allowing a trade-off between available resources in the two domains. For instance, an input
and output tensor of 12× 1, 1× 12, 6× 2, 2× 6, 4× 3 or 3× 4, all achieve the same capacity.
Each line curve on the surface plot in Figure 6 represents different configurations of X×Y
which achieve similar capacity. The design of any multi-domain communication system
needs to consider the restrictions on the size of individual domains due to bandwidth or
antenna limitations or other domains specific constraints.

Figure 6. Capacity vs. dimensions (X×Y) of order two input and output tensors.
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The domain trade-off is further apparent in Figure 7 which illustrates the behavior of
the capacity under sum-power constraint against SNR. The transmitter employs a vector
input, i.e., a single domain of dimension 8 and the output is a tensor of various number of
domains. The channel capacity curves show an increase in the capacity achieved when the
number of receive domains is increased. It can also be observed that the capacity achieved
by an 8× 8 channel is the same as that of the capacity achieved by an 8× 2× 2× 2 channel.
This implies that even with limited resources in one domain, increasing the number of
domains can give higher capacity by exploiting the trade-off between multiple domains.
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Figure 7. Capacity vs. SNR for different domain configurations at the receiver.

Similar trade-off can be observed between domains in the mean square error (MSE)
performance at the receiver when joint signal processing is performed across all the do-
mains using the tensor multi-linear MMSE approach. Figure 8 shows the MSE results for
different configurations of input and output. The transmit tensor X has i.i.d. components
drawn from a 4-QAM constellation with unit energy such that the transmit covariance
is a scaled identity tensor σ2

s I , with σ2
s = 1. The channel entries are i.i.d zero mean unit

variance circular complex Gaussian. Further, the channel is normalized to make the av-
erage received signal power the same as the total transmit power P = tr(σ2

s I) = LTσ2
s ,

where LT denotes the number of elements in the transmit tensor. We assume the noise
tensor has i.i.d. zero mean and variance σ2

n circular complex Gaussian entries. Since the
channel is normalized to provide unit power gain, the signal to noise ratio is defined as
SNR = P/(LR · σ2

n) = (LT · σ2
s )/(LR · σ2

n), where LR denotes the number of elements in
the output tensor. A tensor-based multi-linear MMSE receiver from (18) is employed to
estimate the transmitted signal. With input X and its estimate X̂ , the normalized mean
square error is defined as MSE=||X − X̂ ||2/LT . The plotted results are averaged over
100 different channel realizations, with 500 different noise and input realizations for each
channel. The input has a single domain of dimension 8, and output has a variable number
of domains. It can be observed that better MSE performance is achieved as the number of
domains at the receiver is increased. When the output has a single domain of dimension
2, the MSE is fairly high as the number of elements in the output are far less than the
number of transmit elements. As the number of domains at the receiver increases, we
get better MSE performance. Further, the performance of a system with three domains of
dimension 2 at the receiver is the same as the performance of a system with a single domain
of dimension 8 at the receiver. Hence, performance improvements can be achieved by
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addition of domains rather than having to increase the dimensions of individual domains.
Such domain trade-off is exploited through the tensor multi-linear MMSE receiver which
jointly estimates the signal across all the domains.
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Figure 8. MSE vs. SNR for different domain configurations at the receiver.

So far in these examples, we have observed that the individual domain’s dimensions
can be flexibly interchanged if the overall size of input and output remains constant.
However, it is important to note that such a behavior is observed over an average of
100 iterations when all the tensor channel entries are i.i.d. Gaussian, which has been the
case in our numerical examples so far. For any two given channel tensors with the same
overall size but different dimensions of individual domains, the capacity may not always
be exactly same. The exact nature of such a domain trade-off would depend on the specific
tensor channel eigenvalues. The example of a channel with i.i.d. Gaussian entries without
tagging specific physical meaning to the domains incorporated was put forward only to
illustrate the basic idea of trade-off. Further, to understand such trade-off in a more realistic
set-up, we consider the example of a MIMO GFDM system from (4), where the channel is
represented as an order 6 tensor of size S×K×M× S×K×M. The system model follows
the representation from (4) in Section 2.2. The model is further illustrated in Figure 9,
where order 3 tensors are denoted using cubes and higher order tensors are denoted using
double edge squares with the order mentioned on top right corner.
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Figure 9. Tensor system model for MIMO GFDM.
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Let the number of transmit and receive antennas be NT and NR, respectively, with
NT = NR = S. Such an order 6 tensor channel associated with MIMO GFDM is considered
in [25], where capacity behavior with respect to the different pulse shaping filter options
is explored. Here, we use the simulation set-up from [25] and analyze the capacity for
different number of data streams, sub-carriers, and sub-symbols, denoted by S, K, and M,
respectively, to explore the trade-off between these domains. The channel is generated as a
cascade of transmit filter, physical channel and receive filter. In this example, we use a raised
cosine transmit pulse shaping filter with roll off factor 1 at the transmitter. The receive filter
is matched to the transmit filter and the entries of the physical channel are generated using
i.i.d. complex Gaussian with zero mean and unit variance. Furthermore, the entries of the
equivalent channel H are normalized to ensure that the average received power is same as
the transmit power P. The noise tensor N contains zero mean and unit variance circular
symmetric Gaussian entries such that noise covariance is N0I with N0 = 1. With channel
gain normalized to one, the signal to noise ratio is defined as SNR = (NTEs)/N0 [44],
where Es is the transmit energy per element defined as P/(NTKM). We assume that H
is known at the receiver and the transmitter. The tensor framework gives us the capacity
in bits/tensor symbol, where in this case a tensor symbol contains elements across all the
sub-carriers, sub-symbols, and antennas. Hence, we normalize the capacity of the MIMO
GFDM channel by the number of sub-carriers and sub-symbols as in [25,44]. Figure 10
shows the normalized capacity against SNR for different values of S, K, and M. It can
be seen that for a fixed value of KM, as S increases we get higher capacity. In addition,
for a fixed S, choosing different configurations of K and M, such that the product KM
is constant, leads to almost similar capacity results. The capacity when K = 4, M = 10
is almost the same as the capacity with K = 8, M = 5, and slightly lower than with
K = 2, M = 20. This exhibits the latent trade-off between the sub-carrier and sub-symbol
domains, which can be harnessed using the tensor framework.

0 5 10 15 20 25 30

SNR in dB

0

2

4

6

8

10

12

14

16

18

20

N
o
rm

a
liz

e
d
 C

a
p
a
c
it
y

S = 2, K = 2, M = 20

S = 2, K = 4, M = 10

S = 2, K = 8, M = 5

S = 3, K = 2, M = 20

S = 3, K = 4, M = 10

S = 3, K = 8, M = 5

S = 3

S = 2

Figure 10. Capacity vs. SNR for MIMO GFDM.

A domain trade-off can exist in many multi-domain communication systems. Another
specific example of domain trade-off is presented in [45] which considers a layered max-
imum likelihood detection scheme for MIMO systems. Assuming a frequency selective
fading channel, [45] considers a multipath component in every transmit–receive antenna
pair as a virtual transmit antenna. Hence, the word ‘layer’ is used for the group of virtual
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antennas transmitting the same stream of data in its actual and delayed versions. The trans-
mit signal is represented using a matrix (order 2 tensor) with domains corresponding
to antennas and delay. Further, [45] uses over-sampling at the receiver which increases
the dimension of the received signal to compensate for the lack of antennas, and thereby
represents the output also as a matrix (order 2 tensor) corresponding to time and space
domains. Thus, by harnessing the trade-off between the space and time domains at both
the input and the output, [45] develops a maximum likelihood receiver for a MIMO OFDM
system, which leads to an improved error rate performance.

4.3. Multi-Domain Beamforming (Precoding)

Assigning the optimal covariance to the input based on (24) can be seen as com-
prising of two parts: power allocation and transmit precoding. It performs a multi-
domain power allocation using tensor water-filling based on the pseudo-diagonal tensor
P = (µ−1I − D−1)+. It also performs transmit precoding using the unitary tensor V

to multi-linearly transform the input signal. The tensors P and V are essentially the
pseudo-diagonal and the unitary tensors in the tensor EVD of the optimal covariance,
respectively. Assume an input tensor X̃ ∈ CI1×···×IN which has zero mean unit variance
i.i.d elements. To generate the transformed input tensor with the optimal covariance given
by (24), we perform:

X = V ∗N P1/2 ∗N X̃ (26)

where ()1/2 denotes the square root of a tensor [46]. For a pseudo-diagonal tensor with real
non-negative elements, the square root is simply an element wise square root. Since X̃ has
zero mean and identity covariance tensor, it can be readily verified that the covariance of
X from (26) is indeed given by (24).

The unitary tensor V is obtained via the tensor EVD of (HH ∗M H), and it is the same
as the right unitary tensor obtained from the tensor singular value decomposition (SVD) of
H. For details on tensor SVD, please refer to [15,47]. The multi-linear transformation of
the input through the tensor V can be seen as multi-domain beamforming, where V is the
beamformer tensor. The traditional beamforming approach makes use of the unitary matrix
from MIMO matrix channel SVD which leads to beamforming in spatial (antenna) domain
only, and hence can be seen as single domain beamforming. Multi-domain beamforming,
which results naturally in the tensor framework, extends this operation to be performed
jointly across all the transmission domains. For instance, consider the MIMO GFDM
system from (4). The multi-domain beamformer will be obtained by solving for optimal
input covariance CD ∈ CS×K×M×S×K×M which achieves the capacity of the MIMO GFDM
equivalent channelHE ∈ CS×K×M×S×K×M. Thus, the beamforming tensor operates across
all the spatial, temporal, and frequency domains and accounts for not just the physical
channel but also the transmit and receive filter parameters. The choice of the optimal
covariance depends on the power constraint at the input. Under a sum-power constraint,
the solution is given by (24). However, in a practical system we may have constraints on
each transmit antenna [48]. Such per antenna power constraints can be naturally accounted
for in the tensor framework.

In a practical MIMO system, each antenna may be connected to a separate power
amplifier with finite dynamic range on the individual RF chain, creating the need for
per antenna power constraints. Another scenario where such constraints are common is
distributed MIMO which has transmit antennas located at different physical locations that
do not share the same power source [48]. Hence, in a MIMO system, per antenna power
constraints rather than a sum-power constraint is an important consideration which is of
practical interest [48,49]. Consider a MIMO GFDM system represented by (4) with 2 trans-
mit and receive antennas. For simplicity of explanation, we assume S = NT = NR = 2.
Rather than a sum-power constraint P on the entire input symbol, we may have different
power budgets P1 and P2 for the transmit antennas separately. In a MIMO system model
where the input is a vector corresponding to a single domain (antenna), this constraint
becomes a per element power constraint on the input vector. However, in a multi-domain
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system such as MIMO GFDM, corresponding to each antenna we have data symbols over
K sub-carriers and M sub-symbols. The tensor framework defines the input D as a third
order tensor, and thereby its covariance as a sixth order tensor CD = E[D ◦D∗]. Hence, the
per antenna power constraints can be defined as a set of constraints on the pseudo-diagonal
elements of the covariance:

∑
k,m

(CD)1,k,m,1,k,m︸ ︷︷ ︸
sum over all sub-carriers

and sub-symbols
correspoding to antenna 1

≤ P1 and ∑
k,m

(CD)2,k,m,2,k,m︸ ︷︷ ︸
sum over all sub-carriers

and sub-symbols
correspoding to antenna 2

≤ P2. (27)

Subsequently, finding the optimal covariance with per antenna power constraints
to achieve capacity requires finding a positive semi-definite covariance tensor CD subject
to (27) such that log det(HE ∗3 CD ∗3HH

E + I) is maximized. Since the constraints from (27)
are linear, finding the optimal CD still remains a convex optimization problem that can be
solved using the KKT conditions. Such solution yields a multi-domain beamformer with
per antenna power constraints.

Several beamforming techniques are suggested in [50] for MIMO GFDM systems using
matrix SVD. The system model in [50] combines all the domains of transmission to form
vectorized signals, and represents the channel using a matrix. Using such a model, ref. [50]
suggests a scheme where beamforming is performed after GFDM modulation. The input,
which is represented as a vector d ∈ CN×1 with N = KM symbols, is first modulated using
a modulator matrix G ∈ CN×N and then multiplied by a transmit beamforming matrix
BT ∈ CNT N×N to generate the transmit vector as x = BTGd across all the NT transmit
antennas. The model implicitly assumes that the same GFDM modulator matrix is used
for all the antennas. The beamforming matrix BT is chosen based on the SVD of the
matrix channel H ∈ CNR N×NT N , where H represents the channel between the output of the
GFDM modulator and the received signal. Another scheme presented in [50] performs the
beamforming before the GFDM modulator, thereby accounting for not just the physical
channel but also the modulator matrix. In this scheme, the modulator matrix is defined
as a block diagonal matrix Ḡ ∈ CNT N×NT N where main diagonal blocks are G. The input
is generated using the beamformer matrix as x = ḠBTd, where the matrix BT is obtained
using the SVD of matrix HḠ. In addition, a sub-optimal scheme presented in [50] considers
single antenna selection for transmission without any beamforming across the sub-carriers
and sub-symbols. The antenna selection is done such that the received SNR is maximized.
The transmit beamformer matrix corresponding to the antenna selected is an identity
matrix of size N × N, denoted by IN×N , and for every other antenna it is an all zero matrix
of size N × N, denoted by 0N×N . Hence, the structure of the beamformer matrix is given
as BT = [0N×N , . . . , 0N×N , IN×N , 0N×N , . . . , 0N×N ]

T , and the transmit signal is generated
as x = ḠBTd. This can be seen as single domain degenerate beamforming.

The first two beamforming techniques presented in [50] can also be seen as multi-
domain beamforming albeit in a vector/matrix framework. These account for all the
domains of transmission by concatenating the input signals across various domains to form
a vectorized input. Hence, as far as finding the beamforming operation under a sum-power
constraint is concerned, the vectorized approach is conceptually equivalent to the tensor
approach. However, under practical constraints such as per antenna power constraints, the
tensor model has a significant advantage over the vectorized model. In the vectorized input
signal various indices corresponding to all the antennas, sub-carriers, and sub-symbols
have been reduced to a single index. This makes the incorporation of any per domain
constraints difficult and not intuitive, as the domains are not separated by different indices.
On the other hand, the tensor model allows to keep the structure of the channel and
the input/output intact, and thus can easily incorporate practical constraints which are
domain specific, as in (27), while designing the transceiver schemes. The proposed tensor
framework is intuitive and flexible, allowing for convenient incorporation of such power
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constraints for any number of antennas, and even extend the constraints to per sub-carrier
or per sub-symbol in MIMO GFDM or per user in a multi-user system.

5. Conclusions

This paper presents a tensor-based perspective on multi-domain communication sys-
tems. Multi-domain communication systems can be considered as an evolution of MIMO
where the presented tensor framework leads to the exploitation of not only the space
domain through multiple antennas, but also joint use of various other domains. A generic
system model where the input and output are represented using tensors, which are linked
through a tensor multi-linear channel using the Einstein product, was presented. The pro-
posed system model can be used to model many practical communication systems. As a
demonstration of the use of our framework for multi-domain signal processing in com-
munication systems, we considered the notion of TPRS which allows the introduction
of controlled inter-domain interference for shaping the spectrum and cross-spectrum of
multi-domain signals. Further tensor-based multi-linear MMSE detection, which utilizes
the interference terms for joint data estimation across all the domains, was also presented.
It was shown that for a fixed transmit tensor, better MSE performance is achieved with
an increase in the number of receive domains. In addition, the tensor framework is best
suited to unravel the latent trade-off that exists among domains. This was illustrated
through an information theoretic analysis of the tensor channel. We presented numerical
examples demonstrating the domain trade-off benefits in the capacity and mean square
error performance. It was shown that the dimensions of the individual domains can be
mutually adjusted while maintaining the same performance, depending on the tensor
channel eigenvalues. It was also shown that a multi-domain transmit precoding can be
easily devised using the tensor framework which can be seen as a beamforming operation
across all the domains under both sum-power and per antenna power constraints. While
in this work we focus on the physical layer, this framework can be extended to include also
higher layers, providing a convenient basis for communication system cross-layer design
and signal processing. In particular, the use of such tensor framework for multi-domain
resource allocation can be of considerable interest.
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