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Abstract: Implicit authentication (IA) transparently authenticates users by utilizing their behavioral
data sampled from various sensors. Identifying the illegitimate user through constantly analyzing
current users’ behavior, IA adds another layer of protection to the smart device. Due to the diversity
of human behavior, existing research tends to utilize multiple features to identify users, which is less
efficient. Irrelevant features may increase the system delay and reduce the authentication accuracy.
However, dynamically choosing the best suitable features for each user (personal features) requires a
massive calculation, making it infeasible in the real environment. In this paper, we propose EchoIA
to find personal features with a small amount of calculation by leveraging user feedback derived
from the correct rate of inputted passwords. By analyzing the feedback, EchoIA can deduce the true
identities of current users and achieve a human-centered implicit authentication. In the authentication
phase, our approach maintains transparency, which is the major advantage of IA. In the past two
years, we conducted a comprehensive experiment to evaluate EchoIA. We compared it with four
state-of-the-art IA schemes in the aspect of authentication accuracy and efficiency. The experiment
results show that EchoIA has better authentication accuracy (93%) and less energy consumption (23-h
battery lifetimes) than other IA schemes.

Keywords: implicit authentication; security; cloud computing; edge computing

1. Introduction

Recent years have witnessed the rapid growth of smart technologies such as smart-
phones, smart glasses, and smartwatches. On the one hand, people rely heavily on smart
devices to share information and gain services, which become primary elements of our
daily lives [1]. On the other hand, the security problem raised by smart devices has become
more important than ever before [2]. One of the most critical issues is user authentication,
especially in cloud and edge computing.

To identify users, most of the existing systems use explicit approaches (explicit authen-
tication), such as passwords, PINs, and draw patterns. However, explicit authentication
requires user-system interaction, which could be frustrating, especially when the users
possess many different passwords. A recent survey [3] shows 3% percent of people forget a
password at least once a week. Explicit authentication can also be circumvented and be
broken [4]. Therefore, researchers begin to study new authentication methods to enhance
explicit authentication.

Utilizing sensors’ data sampled by the smart device, implicit authentication (IA)
transparently identifies users by constantly comparing current users’ behavioral data with
historical legitimate users’ behavioral data [5]. The comparing or classification process
is usually achieved using various machine learning models, e.g., SVM. At the same time,
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most of the calculations and storage are generally offloaded to the cloud due to the energy
limitation of smart devices [6]. Furthermore, since users do not need to interact with
the system in the authentication, IA can be seamlessly applied to various authentication
systems, which adds another layer of protection to the smart device. If suspicious behaviors
were detected during the usage, IA will lock the device and ask users to perform a multi-
factor authentication, e.g., inputting passwords [7,8]. From the users’ aspect, due to IA’s
transparency, they will not notice IA until the device has been locked. In addition, implicit
authentication does not require user–system interaction, which releases users from tedious
password inputting and the burden of memorizing the passwords.

In implicit authentication (IA), the features used for the authentication are prede-
fined by the system, which will not be able to change during the usage [9,10]. To achieve
better coverage in user authentication, the existing approaches tend to use multiple fea-
tures [11–13], such as location, touch, and acceleration. However, only a small number
of the features (personal features) in the entire feature set are needed for a specific user.
Therefore, irrelevant features not only reduce the system’s efficiency, but decrease the
authentication accuracy as well. Nevertheless, due to the high complexity of human be-
havior, it requires a massive calculation to derive personal features, which is infeasible in
practice [14]. Hence, finding a suitable scheme that dynamically derives personal features
is critical for IA implementation.

This work introduces a human-centered implicit authentication (EchoIA), which uti-
lizes user feedback to pinpoint personal features during the usage with a small amount
of calculation. By comparing with current IA schemes, the experiment shows that our
method can significantly improve the authentication accuracy of traditional IA. In addition,
the proposed method is lightweight, which can be easily embedded into existing IA systems
as an add-on to achieve efficient authentication. As far as we know, we are the first group
that utilizes user feedback to improve authentication accuracy and energy efficiency in IA.

The major advantage of implicit authentication (IA) is its transparency, releasing
users from the tedious authentication process. However, it is challenging to gather user
feedback in a transparent environment since directly asking users’ input will break the
transparency. Even though we could have various user feedback, pinpointing the best
suitable features is also challenging. To this end, we propose a method that utilizes the
correct rate of inputted passwords to implicitly collect user feedback and find personal
features. In implicit authentication, the system will lock the device and deem current
users illegitimate when their behavior mismatches legitimate users’ historical behavior.
Legitimate users may be locked out due to the misidentification caused by using unsuitable
features, but they can input a correct password to unlock the device. Illegitimate users
may also input a valid password to unlock the device after several attempts, but their
correct rate of inputted passwords will be lower than legitimate users’. EchoIA can utilize
the correct rate of inputted passwords to deduce current users’ true identities and further
adjust feature sets to better match users’ behavior. The detailed procedure is discussed in
Section 2.

This paper makes the following contributions:

• We proposed EchoIA to find the best suitable features (personal features) for each
user by utilizing user feedback. EchoIA maintains the transparency of implicit au-
thentication, while can choose personal features for legitimate users based on their
recent behavior.

• We implemented EchoIA in a real environment using the Android system and multiple
servers. To evaluate the proposed method, we also implemented four state-of-the-art
implicit authentication schemes.

• We collected users’ behavioral data in the past two years. In addition, we evaluated the
proposed method in the aspect of authentication accuracy, computational efficiency,
and energy efficiency. In the experiment, EchoIA has a better authentication accuracy
and a lower energy cost.
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2. Related Work

To improve explicit authentication mechanisms such as PIN and passlocks, various
implicit authentication schemes have been proposed as secondary authentication mecha-
nisms [5,6,11,13,15–21]. Among them, leveraging different features, Shi scheme [6], Multi-
Sensor scheme [11], Gait scheme [19], and SilentSense scheme [20] are four different schemes
that represent four research directions of state-of-the-art implicit authentications [22,23].
In addition, current implicit authentication research tends to adopt all the available features
to achieve better authentication accuracy [11,14,24]. On one hand, due to the high complex-
ity of users’ behavior, utilizing only a specific behavior metric is not sufficient to identify
them in practice. On the other hand, to identify a specific user, only a small portion of the
total behavior metrics is needed [6,11,13,22,24]. Reducing the number of features can also
exponentially decrease the system’s energy and time consumption [25]. However, to find
personal features requires additional calculation [11,14], which increases time and energy
consumption. Leveraging user feedback, EchoIA can select the best suitable features for
different users. During the usage, the legitimate users can also notify the system to update
personal features if their behavior changed, e.g., injury.

Most of the existing research in implicit authentication utilizes the support vector
machine (SVM) [11,20,26–28] to identify users. Other classifiers, e.g., Gaussian mixture
model (GMM [25]), have also been used in implicit authentication [6]. We mainly adopted
SVM to achieve user authentication in this work.

3. The System Overview

Implicit authentication (IA) identifies users by constantly comparing current users’
behavioral data with legitimate users’ historical behavioral data. If current users’ behavioral
data is different, IA will lock the device and ask the users to input passwords. Due to the
noise and behavioral change, it is common that legitimate users are falsely blocked by the
device [14]. In implicit authentication, if users input correct passwords, they can continue
to use the device, where the setting of the original IA system will not change. In EchoIA,
however, if users input correct passwords and prove their identities, the system will unlock
the device and adjust the features to align with legitimate users’ behavior.

As shown in Figure 1, EchoIA contains two phases, Initialization and Authentication.
The Initialization phase only takes place for the first time of the usage. Meanwhile, we
assume the users at the Initialization phase are legitimate. In the Initialization phase, can-
didate features are sent to legitimate users, who may rank the features based on their
behavior. The combination of top-ranking features and system-default features is used as
personal features to identify users. Note that the personal features are dynamically adjusted
according to different users and devices. In the Authentication phase, EchoIA utilizes the
correct rate of inputted passwords to adjust personal features. Specifically, user feedback is
implicitly obtained through the process of inputting passwords (Section 3.1), which keeps
IA’s transparency. However, to prevent illegitimate users from taking advantage of the
system, it only updates personal features after users entered a correct PIN number, which
must be different from passwords used for unlocking the device. A secured channel is es-
tablished to transmit data between client and server. We adopted a Wind Vane module [14]
to optimize the data transmission efficiency.

From the system’s point of view, inputting incorrect passwords will enhance its
confidence in using existing personal features; inputting correct passwords will reduce its
confidence in using existing personal features and encourage it to choose different features.
Since most of the time, the system is running at the Authentication phase, the users will
not be able to notice the existence of EchoIA during the usage. The following sections will
discuss the detail of the Initialization phase and the Authentication phase.
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Figure 1. EchoIA overview. (a) The Initialization phase. (b) The Authentication phase.

3.1. The Initialization Phase

As its name suggests, the Initialization phase mainly focuses on initializing personal
features and associated system settings. The users will spend a short time in this phase in
order to help the system to prepare the authentication.

As shown in Figure 1a, at the Initialization phase, EchoIA will send a message contains
all candidate features to the users. Based on their own behavior, the users will rank
candidate features, where the result will be sent back to the remote servers for further
processing. For each feature, there is an associated weight parameter, which will be
initialized at this phase. The total available features in the smart device are F. Note that the
elements in F are various for different devices, and can be updated during the usage once
new features are introduced.

F = { f1, f2, f3, ..., fn} (1)

To ensure reliability, some of the features are system preserved, which is not shown
in F. For example, a touch trajectory feature is preserved since it has high accuracy when
identifying most of the users. For each feature in F, the corresponding weight is predefined
in W.

W = {w1, w2, w3, ..., wn} (2)

The users may rank the features based on their routine. To this end, EchoIA will renew
the weight for each feature based on the users’ ranking.
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wn =
1
rn

, (3)

where wn is the weight of the nth feature; and rn is the associated ranking of the feature.
The top-ranking features only contain a part of elements in F and are dynamically changed
during the usage. For example, at some moments, the top-ranking features, Ftop, may only
contain 5 different features Ftop = { f2, f4, f5, f7, f8} ⊂ F. Personal features in this example
will have both Ftop and system reserved features.

In real usage, users may change their behavior, which is common in practice. To better
identify the users, the system also needs to adjust personal features according to the
behavioral change. The details of adjusting personal features will be discussed in the
next section.

3.2. The Authentication Phase

To dynamically adjust personal features, the system can directly send the message to
users to request new features, but this approach will break IA’s transparency. In addition, it
is difficult for the system to decide the “right time” to send the request, since the system
will not know the behavioral change unless it analyzed the data. In EchoIA, instead
of analyzing users’ behavioral data, the system leverages the correct rate of inputted
passwords to dynamically adjust personal features.

At the Authentication phase, as shown in Figure 1b, the system will reduce the weights
of each feature in Ftop if users input correct passwords. Since users only need to input
passwords when IA locks the device, correct passwords indicate current users have a large
chance of being legitimate. Similarly, the system will increase the weight of each feature in
Ftop if users input incorrect passwords. The new weight is updated by δn.

δn = δ
(C)
n − δ

(I)
n , (4)

where δ
(I)
n is the amount of weight increased for the feature n in Ftop; δ

(C)
n is the amount of

weight decreased for the feature n in Ftop. The new weight of the feature n is calculated by

wn + δn (δ(C)n indicates the system has less confidence in the current data samples).
In EchoIA, a predefined threshold ∆ is used to measure the significance of the weight

change. In practice, we choose ∆ by using k-fold cross-validation. If the change is significant,
δn > ∆, the system will challenge the users to input a PIN number, which is the number
different from passwords used to unlock the device. The users can choose the PIN number
at the Initialization phase. If the users type a correct PIN and agree with personal features’
change, EchoIA will update Ftop and personal features according to the new weights in
F. In this process, decayed features will be replaced by new features. The system will use
the updated personal features to identify the users until δn > ∆ again. We adopted the
support vector machine (SVM) to achieve the user classification and to identify legitimate
users. The parameters in the model are optimized by using k-fold cross-validation. We
have summarized the Authentication phase in Algorithm 1.
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Algorithm 1: EchoIA (Simplified).
Input: A Password Input, δn in the Previous Step
Output: δn in the Current Step

1 initialize psw:=A Password Input ;
2 initialize D[n]pre:=δn in the Previous Step ;
/* D[n]pre denotes the weight change amount of fn in the previous step. */

3 initialize D[n]cur:= D[n]pre ;
/* D[n]cur denotes the weight change amount of fn in the current step. */

/* The system will not update Ftop if D[n]cur ≤ ∆. */

4 if (psw==PSW_LEGITIMATE_USER) then
/* The current user inputs the correct password. */

5 f[n]=f[n]-C ;
/* Reducing the weight of corresponding feature. */

6 temp_change=C ;
/* The amount of change in the current step (Usually a positive value). */

7 else
/* The current user inputs the wrong password. */

8 f[n]=f[n]+I ;
/* Increasing the weight of corresponding feature. */

9 temp_change=-I ;
/* The amount of change in the current step (Usually a negative value). */

10 D[n]cur=D[n]cur+temp_change ;
/* The total amount of weight changes until the current step. */

11 return D[n]cur ;
/* The system will update Ftop if D[n]cur > ∆. */

4. Implementation

We implemented EchoIA by using the Android system and multiple servers. The sys-
tem architecture is shown in Figure 2. The data collection is achieved at the user-end,
in which an application is created to collect users’ behavioral data. The user-end appli-
cation constantly samples users’ behavioral data from various sensors and sends it to
the Control Server by using a secured channel. As shown in Figure 2, multiple users
can connect with the Control Server at the same time. The Control Server contains three
main components, Control Unit, Authentication Unit, and Message Unit. As mentioned
in Section 3, the Control Unit is responsible for updating the weight parameter associated
with each feature. The Authentication Unit leverages implicit authentication to constantly
monitor users’ behavior and compare it with legitimate users’ historical behavior. In order
to compare EchoIA with other IA schemes, we also implemented four state-of-the-art IA
schemes in the Authentication Unit, called Shi-IA [6], Multi-Sensor-IA [11], Gait-IA [19],
and SilentSense-IA [20]. Finally, the Message Unit is used to communicate with users
during the Initialization phase and the Authentication phase. All users’ data is formatted
and stored in the Database Server.
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Figure 2. The system architecture of EchoIA. Data flow: 1. Implicit authentication is achieved by comparing
current users’ data with their historical data. IA will lock the device and asks users to input passwords if it fails
to identify the current user. 2. The system utilizes the inputted passwords to adjust personal features. It will
request users’ PINs to update weights for Ftop and personal features by exchanging messages with legitimate
users. 3. Feature’ weights are initialized and used to authenticate users. 4. After inputting a correct PIN, users can
update Ftop. 5. Users can reinitialize the system when inputting a correct PIN. 6. The Control Unit will constantly
update the Database Server if the current users are deemed legitimate.

5. Evaluation

In the real experiment, we tracked the usage of 17 participants during the past two
years. Each user was in turn selected as the legitimate user, while another user was deemed
as illegitimate users. Illegitimate users were required to use the device at least 10% of the
total usage time. Utilizing our system, we gathered rich information from all users under
different environments. In the experiment, we mainly use the following 12 features to
achieve user authentication: accelerometer, orientation, magnetometer, gyroscope, touch,
light, pressure, temperature, GPS, microphone, battery usage, and WiFi status.

To compare EchoIA with other state-of-the-art IA schemes [22], we implemented
Shi-IA [6], Multi-Sensor-IA [11], Gait-IA [19], and SilentSense-IA [20]. We used the rec-
ommended settings of the original papers [6,11,19,20] in the experiment. In addition,
the feature selection strictly follows the descriptions of the original works, while the param-
eters were optimized by using k-fold cross-validation. Finally, we tested the performance
of different schemes by using the same data.

In the experiment, we evaluated the authentication accuracy, CPU utilization, memory
utilization, and energy consumption for each IA schemes, including EchoIA. The experi-
ment details are described in the following sections.

We first compared the authentication accuracy of different IA schemes, where results
are shown in Figure 3. In the figure, users’ data was divided into ten parts based on the
timeline. The first part of the data was used to train the models (The first parts contain 15%
of the total data since the training data of this size optimizes the authentication accuracy
across all five IA schemes). We then calculated the authentication accuracies for different
schemes by using the other parts of the data. The authentication accuracy was calculated
by ACC = TR+TA

TR+TA+FR+FA , where true accept (TA) indicates the legitimate user has been
correctly identified; the false reject (FR) indicates the legitimate user has been incorrectly
identified to be the illegitimate user; the true reject (TR) indicates the illegitimate user
has been correctly identified; the false accept (FA) indicates the illegitimate user has been
incorrectly identified to be the legitimate user. The ultimate goal of the authentication is to
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reduce both FR and FA to 0, where the system will achieve 100% accuracy. We also adopted
the retraining techniques discussed in our previous work [7] to improve the authentication
accuracy for all five schemes.

10 20 30 40 50 60 70 80 90 100

Data percentage (%)

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Shi-IA
Multi-Sensor-IA
Gait-IA
SilentSense-IA
EchoIA

Figure 3. Accuracies for different IA schemes.

5.1. Authentication Accuracy

EchoIA has the highest authentication accuracy in most of the tests, as shown in
Figure 3. Multi-Sensor-IA also has a high authentication accuracy compared to other IA
schemes. In the experiment, most of the schemes reach to more than 90% accuracy after
using 80% of the data except SilentSense-IA. Note that there are some fluctuations in
different IA schemes due to behavior changes, where both Multi-Sensor-IA and Gait-IA
have an accuracy drop at the point of 30%. We analyzed the data of Multi-Sensor IA at
that point, which shows that most users traveled to different places that did not appear
in the training phase. The machine learning model cannot separate users based on the
given training data. Since, for some users, the traveling and staying time is non-negligible,
it becomes harder for Multi-Sensor IA to make a decision based on the previous training
data. After the behavioral data in this new location is collected and stored in training
data, the accuracy of Multi-Sensor IA eventually increases and becomes similar to other
IA schemes. However, this behavior change does not affect the proposed EchoIA since
the system automatically updates users’ personal features during usage. In such a case,
the accuracy curve for EchoIA is much smoother than the other schemes. As literature
usually does in template updating related research [22,29,30], we measured the EERs and
ROCs for EchoIA, Multi-Sensor-IA, Gait-IA, SilentSenseIA, and Shi-IA, which provide more
reliable results. The EERs for EchoIA, Shi-IA, Muti-Sensor-IA, Gait-IA, and SilentSense-IA
are 0.1428, 0.2200, 0.1635, 0.2700, and 0.2720, respectively; and corresponding AUCs are
0.8991, 0.8588, 0.9244, 0.8103, and 0.8013, respectively.

In EchoIA, we calculated an average authentication accuracy for 17 users by utilizing
all the data spanned two years. The result is shown in Figure 4, where the average accuracy
across all users is 93.23%.
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Figure 4. The accuracy for each user.
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5.2. CPU Utilization and Memory Utilization

In addition, we evaluated the CPU usage and memory usage for different schemes.
In the experiment, we recorded the CPU utilization of different IA schemes at three stages,
Start, Sampling, and Authentication. The experiment results are shown in Figure 5a. At the
Sampling stage, the CPU utilization of EchoIA is the second-lowest for all five schemes.
At the Authentication stage, the CPU utilization of EchoIA is the lowest among all the
schemes. Since most of the time the users are at the Authentication stage, the total amount
of CPU utilization of EchoIA is the smallest for all the schemes. In the experiment, Multi-
Sensor-IA has the highest CPU utilization, but it also has a high authentication accuracy
similar to EchoIA.

Starting Sampling Authentication

Stage

1

1.5

2

2.5

3

3.5

4

C
P

U
 U

til
iz

at
io

n 
(%

)

EchoIA
Shi-IA
Multi-Sensor-IA
SilentSense-IA
GaitIA

(a)

Starting Sampling Auth.

Stage

50

100

150

200

250

300

350

400

M
e

m
o

ry
 U

til
iz

a
tio

n
 (

M
B

)

EchoIA
Shi-IA
Multi-Sensor-IA
SilentSense-IA
GaitIA

(b)

Figure 5. CPU Utilization and Memory Utilization (User-End). (a) CPU utilization. (b) Memory
utilization. At the Starting stage, the user-end application and services begin to launch. At the Sam-
pling stage, sensors’ data is sampled and periodically uploaded to the server. The Initialization phase
is at the Sampling stage. At the authentication stage, utilizing the model returned from the server,
the current user will be classified into two categories, legitimate or illegitimate. The Authentication
phase is at this stage. Note that we connected different stages using lines in the figure to improve the
readability. The stages are actually independent data points.
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We recorded the memory utilization of various schemes at different stages. The result
is shown in Figure 5b, in which the EchoIA has the lowest memory utilization among all
the five schemes. Since EchoIA only uses a small portion of features to train the model and
to authenticate users, the total amount of memory used to store the data is smaller than
other schemes. As shown in Figure 5b, the memory utilization of Multi-Sensor-IA is the
highest since it uses all the features and associated sensors’ data on the device.

In the experiment, we evaluated the battery consumption for different schemes. The re-
sult is shown in Figure 6. We measure the battery usage of different schemes by calculating
the average working hours of battery after fully charged. As shown in Figure 6a, EchoIA
has the longest battery lifetime, 23 h on average. The Multi-Sensor-IA has the shortest
battery lifetime, four hours on average.
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Figure 6. Battery Utilization. (a) Battery utilization of different schemes. M.S. denotes Multi-Sensor-
IA. S.S. denotes SilentSense-IA. (b) Battery utilization of different participants.

We also calculated the average battery lifetime of each participant by using EchoIA.
Figure 6b shows the battery lifetime derived from the data of seven different participants.
They are randomly selected. We calculated an average battery lifetime across all participants’
data for comparison purposes, which is 23 h. There are large differences in the battery
utilization between users. As shown in the figure, participant 2 has the shortest battery
lifetime, which is 16 h. Participant 7, however, has the longest battery lifetime, which is
30 h.
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5.3. Energy Consumption of the User-End Application

We also tracked the performance of the user-end application. In the experiment,
we compared EchoIA with popular applications, such as Instagram, Facebook, Twitter,
eBay, and LinkedIn. We continuously tracked CPU utilization and memory utilization for
different applications during the usage. The result is shown in Table 1. Please note that
in Figure 5, we calculated the CPU and battery utilization only based on the data at the
sampling and authentication stages. In Table 1, we also gathered data from other stages,
e.g., switching to a different application.

Table 1. CPU and memory consumption.

Instagram Facebook Twitter LinkedIn eBay EchoIA

CPU Avg% 7.1 11.6 6.0 5.9 5.3 1.3

CPU Max% 10.0 16.5 10.3 9.6 8.6 3.9

Mem.
Max(MB) 121.2 157.0 101.4 138.2 111.6 103

Note that the purpose of this table is to demonstrate that EchoIA will not cost too much energy and calculation in
daily usage. We do not claim that EchoIA is better than any of those social media apps listed above. The result
may vary for different users. Please refer to Figure 5 for an accurate evaluation.

Table 1 shows the average and maximum CPU consumption for each application.
EchoIA has the lowest average CPU consumption compared to other applications, which is
1.3%. Similarly, EchoIA also has the lowest maximum CPU consumption, which is 3.9%.
EchoIA also consumes a small amount of memory in real usage, which only occupies a
maximum of 103 MB memory.

6. Conclusions

We proposed EchoIA to find the best suitable features (personal features) for different
users by utilizing user feedback. To achieve better coverage, the existing works in implicit
authentication tend to use many different features to identify users, which is less efficient
and may decrease the authentication accuracy. Without using additional calculations, it is
difficult to dynamically choose personal features due to the transparency of IA. Leveraging
the correct rate of inputted passwords, EchoIA implicitly gathers user feedback to choose
personal features, while maintaining the transparency of IA. To evaluate the proposed
method, we implemented EchoIA and four state-of-the-art IA schemes by using the Android
system and multiple servers. The results show that EchoIA has better authentication
accuracy (93%) and less energy consumption (23-h battery lifetimes) than other IA schemes.
EchoIA can automatically update the personal feature for each user when their behavior
changes, which significantly boosts IA’s accuracy and usability. In addition, the low
energy consumption makes EchoIA suitable for most smart devices, such as smartphones,
smartwatches, and smart glasses. In the future, to benefit associated research, we will share
the system’s source code, parameter settings, and dataset on our lab website.
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