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Abstract: Diabetes mellitus (DM), a disorder rapidly growing in prevalence, is linked to the retinal
microvasculature complication diabetic retinopathy (DR). As one of the leading global causes of
vision impairment and loss, imaging techniques to detect and monitor DR must continue to improve
in order to address this growing burden. Optical coherence tomography angiography (OCTA) is a
nascent imaging modality that generates three-dimensional visualizations of the retinal and choroidal
microvasculature. Compared to fluorescein angiography, the gold-standard imaging modality for
retinal vessels, OCTA offers the advantages of being non-invasive, quick, and able to resolve the
multiple plexuses within the retina. Quantitative OCTA studies have explored parameters such
as vessel density (VD), foveal avascular zone (FAZ), acircularity index, vessel tortuosity (VT), and
fractal dimension (FD) amongst DR patients. This review synthesizes the main trends emerging from
quantitative OCTA-based studies of DR and interrogates them within the context of DR pathophysi-
ology. We offer a glimpse into how analysis techniques have shifted in the years since OCTA came
into existence, while speculating on its future role in clinical practice.

Keywords: optical coherence tomography angiography; diabetes mellitus; diabetic retinopathy;
choriocapillaris; vessel density; foveal avascular zone; acircularity index; vessel tortuosity; fractal
dimension

1. Introduction

Diabetes mellitus (DM) is a substantial public health crisis that is projected to rise in
prevalence, mortality, and burden throughout the next century. Current studies estimate
that anywhere from 463 to 476 million individuals live with DM today, representing over
6% of the global population [1–3]. Forecasts from the International Diabetes Federation
predict that global DM prevalence will grow to nearly 700 million individuals by the year
2045 [4]. DM is a major cause of morbidity and mortality, coming in as the 15th leading
cause of years of life lost in 2015, demonstrating an increase of 25.4% from 2005 [5]. Costs
of DM also represent a significant economic burden at 1.8% of the global gross domestic
product (GDP) in 2015, with projections for DM-related costs reaching an estimated 2.2%
of global GDP by the year 2030 [6,7]. With the global DM landscape becoming increasingly
dire, so too are DM-related complications.

Poor glycemic control amongst individuals with DM results in damage to the systemic
macro- and micro-vasculature, including the condition diabetic retinopathy (DR). DR can
be divided into non-proliferative (NPDR) and proliferative (PDR) stages. Characteristic
features of NPDR include intraretinal hemorrhages, hard exudates, microaneurysms, and
capillary non-perfusion [8]. Hypoxic changes can cause progression to PDR, an advanced
stage of the disease hallmarked by neovascularization, which is the abnormal growth of
new vessels [9]. Neovascularization precipitates severe vision impairments when new
vessels cause retinal detachment or vitreous hemorrhage [10]. DR affected 103 million
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adults in 2020, a number that is expected to grow to 160 million by the year 2045 [11].
Worldwide, DR was the 5th leading cause of moderate to severe vision impairment and the
5th leading cause of blindness in 2020 [12]. Diabetic macular edema, which can occur at any
stage of DR, is characterized by fluid accumulation due to the occurrence of blood-retinal
barrier breakdown and represents the leading cause of blindness amongst the diabetic
population [13]. Given the rising prevalence of DM and DR and that vision impairment
and blindness stemming from DR can be prevented with early detection and treatment in a
vast majority of patients, the development of an efficient and cost-effective DR screening
program represents a promising opportunity in the years to come.

Optical coherence tomography angiography (OCTA) has, in just a few short years,
revolutionized the field of ophthalmic imaging. OCTA offers a quick, non-invasive, and
depth-resolved method of imaging the retinal and choroidal micro-circulation. OCTA is an
extension of optical coherence tomography (OCT), which is built on the principle of light
interference [14]. A beam of light is applied to the retina and subjected to backscattering,
reflection, or absorption by structures within the posterior segment of the eye. A reference
beam of light is compared to a beam of light that “samples” the retina, with differences
between these two light paths yielding a depth profile of the retina [15]. In OCTA imaging,
a series of B-scans are captured at the same position within the retina, and differences in
these successive B-scans are analyzed. Given that the retina is a static tissue, any differences
between B-scans are expected to arise from the movement of red blood cells within the
circulation only. These differences are termed the decorrelation signal, and a map of
the decorrelation signal represents the vascular anatomy of the retina [16]. A complete
three-dimensional view of the vasculature is captured by performing B-scans in a raster
pattern that fully covers the retina. Since their introduction into the commercial market
in 2016, OCTA instruments have been used in numerous studies that have furthered our
understanding of a wide range of chorioretinal diseases [17,18]. Its application in the study
of DR holds particular promise.

In this review, we evaluate the clinical utility of OCTA quantitative metrics as they
relate to the diagnosis, staging, and the pathophysiology of diabetic retinopathy.

2. OCT Angiography and Fluorescein Angiography
2.1. General Comparison of OCT Angiography and Fluorescein Angiography

Fluorescein angiography is considered the gold standard in evaluating the retinal
microvasculature in cases of DR [19]. However, one of the main drawbacks of fluorescein
angiography is that it requires the intravenous injection of dye, which causes anaphylactic
reactions in rare cases [20,21]. OCTA, on the other hand, is completely non-invasive and
acquires angiograms of the retinal and choroidal vasculature within seconds. This makes
OCTA an appealing option to longitudinally track the progression of DR and its response
to treatment. OCTA is also depth-resolved, giving it the ability to visualize the vasculature
of the middle (MCP) and deep capillary plexuses (DCP) (Figure 1), while fluorescein
angiography is mainly limited to the superficial capillary plexus (SCP) [22]. The SCP
supplies the ganglion cell layer and inner plexiform layer, while the MCP is located at the
border of the inner plexiform layer and inner nuclear layer, and the DCP is found between
the border of the inner nuclear layer and outer plexiform layers [23,24]. Commercial
OCTA machines utilize both spectral domain (SD-OCTA) and swept source (SS-OCTA),
with the latter enabling better visualization of the choroidal circulation. Hence, OCTA is
able to precisely locate changes occurring at each of the capillary plexuses as well as the
choriocapillaris due to DR.

One of the limitations of OCTA is its comparably smaller field of view. Several studies
have demonstrated the use of SS-OCTA, which has faster scanning speeds compared
to SD-OCTA, to capture 12 × 12 mm single scan sizes with up to a 100-degree field of
view [25–27]. However, this does not compare to the 200-degree field of view that can
be captured with ultra-widefield fluorescein angiography [28,29]. This is an important
limitation of OCTA devices, as it confines their applicability to diseases primarily affecting
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the macula. For these reasons, fluorescein angiography will likely remain the superior
choice for evaluating changes in the peripheral microvasculature in DR.
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Figure 1. Optical coherence tomography angiography (OCTA) custom segmentation of the three capillary plexuses as
seen by 3 × 3 mm en-face angiograms (top row) and cross sectional B-scans (bottom row). Green and red lines on B-scans
correspond to segmentation boundaries used. (A) The superficial capillary plexus (SCP) was segmented from the internal
limiting membrane to 10 µm above the inner plexiform layer; (B) The middle capillary plexus (MCP) was segmented from
10 µm above to 30 µm below the inner plexiform layer; (C) The deep capillary plexus (DCP) was segmented from 30 µm
below the inner plexiform layer to 10 µm below the outer plexiform layer.

2.2. OCT Angiography Artifacts

OCTA is also susceptible to a variety of artifacts. Motion artifacts stem from the
movement of a patient’s eye, head, or body during the image acquisition process. These
movements create a false decorrelation signal that is not representative of moving erythro-
cytes. While programs exist to correct for these movements, they too can generate artifacts
that stretch or double vessels, which presumably artificially inflates quantitative OCTA
metrics [30].

Segmentation artifacts, a consequence of errors in separating the vascular layers, have
also been reported to occur in higher rates amongst patients with DM, NPDR, or PDR
compared to healthy controls, representing another potential source of confounding [31,32].
These artifacts likely arise from the distorted or abnormal retinal architecture that can arise
in states of ocular disease. While these segmentation artifacts can be corrected manually,
this is an intensely time-consuming process [33].

Projection artifacts describe the appearance of superficially situated vessels in the
deeper vascular layers of the retina. A variety of programs have been implemented to
remove these projections occurring in the deeper capillary plexuses [34,35]. One would
presume that the removal of projection artifacts would consistently decrease measurements
of vessel density (VD) at the DCP. However, projection removal has had a varying effect
on VD measurements at the DCP depending on the severity of DR, suggesting a likely
interplay with the pathophysiology of the disease state [36].
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2.3. Comparison of Morphological Characteristics of Diabetic Retinopathy Seen by OCT and
Fluorescein Angiography

In general, morphological features of DR that had been previously visualized by
fluorescein angiography have been replicated by OCTA imaging. Microaneurysms are
detected as focally dilated capillaries that appear as pinpoint hyperfluorescent lesions in
fluorescein angiography and as saccular, pedunculated, or fusiform in OCTA imaging
(Figure 2A,B) [37]. Multiple studies comparing the two imaging modalities have observed
that fluorescein angiography detects a greater number of microaneurysms compared to
OCTA [37–41]. Histopathological studies have identified subtypes of microaneurysms
lacking blood flow [42]. Furthermore, measurements of relative blood speeds revealed
slower flow in microaneurysms [43]. Given that OCTA relies on moving blood flow, these
findings provide possible explanations for the lower detection rate of microaneurysms.
An advantage of OCTA is that it enables the precise localization of microaneurysms. A
custom algorithm has been developed that provides three-dimensional visualizations of
microaneurysms, elaborating on their architecture and orientation [44].
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Figure 2. Representative morphological features of diabetic retinopathy visualized by 3 × 3 mm OCTA. (A) Selected
microaneurysms shown with yellow arrows in the SCP of a patient with non-proliferative diabetic retinopathy (NPDR); (B)
Selected microaneurysms shown with yellow arrows in the DCP of the same NPDR patient.

Neovascularization of the retina (NVE) or optic disc (NVD) are hallmarks of the pro-
liferative stage of DR. In the later phases of fluorescein angiography, these vessels will
demonstrate characteristic leakage of circulating dye [45]. However, leakage can mask
clear resolution of neovascular complexes. OCTA’s quick scan time prevents this effect
from occurring, offering enhanced visualization of neovascularization. In OCTA, neovas-
cularization appears as abnormally tangled vessels with flow above the optic disc (NVD)
or above the internal limiting membrane in the retinal area (NVE) [46]. Numerous studies
have demonstrated the effectiveness of OCTA to image both NVD and NVE [47–54]. Other
studies have extended the use of OCTA as a tool to longitudinally track the therapeutic
benefit of anti-VEGF agents or panretinal photocoagulation (PRP) in treating neovascular-
ization in PDR [55–59]. Compared to ultra-widefield fluorescein angiography, a wide-angle
OCTA device demonstrated 100% sensitivity and 97% specificity in the detection of neo-
vascularization, albeit in a limited number of eyes [26]. In a separate study of 37 eyes,
widefield-OCTA was found to have 79% sensitivity and 96% specificity for neovasculariza-
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tion detection compared to fluorescein angiography [60]. Collectively, these studies suggest
that OCTA is a viable alternative to fluorescein angiography for identifying and tracking
neovascularization during PDR. In fact, it may be preferentially indicated in circumstances
of repeated use due to its advantages in the fields of comfort and image acquisition speed.

3. Quantitative OCT Angiography Biomarkers in Diabetic Retinopathy

A wealth of quantitative OCTA metrics have been described as possible biomarkers for
the detection and progression of both DM and DR. These parameters include measurements
of vessel density (VD) or vessel length density (VLD); the area, perimeter, and acircularity
of the foveal avascular zone (FAZ); fractal dimension (FD); vessel tortuosity (VT); and flow
deficits and areas of non-perfusion within the choriocapillaris. While measurements of
VD and FAZ parameters are built into some commercially available OCTA devices, they
are inconsistently used in the literature, with some groups opting to use custom software
packages in their analysis [61–64]. These biomarkers show immense promise for detecting
DR, monitoring disease severity, and tracking response to treatment. Both thoroughly
reported and emerging OCTA findings in the settings of DM and DR are discussed below.

3.1. Perfusion and Vessel Density

Perfusion (PD) or vessel density (VD) measurements are some of the most widely
reported OCTA parameters in the literature. VD relies upon a binarization algorithm,
whereby the total area of pixels corresponding to blood vessels is calculated. This value is
then divided by the total area of the scanned area of interest. Measures of skeletonized VD
or vessel length density (VLD) binarize the image and perform an additional skeletonizing
process that reduces the width of each blood vessel to 1 pixel. The skeletonized VD
then quantifies the proportion of cumulative vessel length within the area of interest.
This process has several advantages and limitations compared to the VD measurement.
Skeletonized VD equally weighs the contribution of large vessels and smaller capillaries
to density measurements and may, thus, better capture changes that are occurring in the
retinal microvasculature compared to a VD measurement [65]. Given that DR manifests
primarily as a disease of the microvasculature, this could be especially advantageous for
detecting changes occurring at the capillary level [66]. Without additional information, VD
measurements may prove difficult for interpreting changes in the vasculature correctly.
Compensatory vasodilation can be observed with capillary drop-out, failing to noticeably
alter VD. However, the skeletonizing process loses information about the size of blood
vessels, so it does not capture the full picture either. An underreported parameter in the
literature that may solve this dilemma is vessel diameter index (VDI), which is calculated by
dividing the area occupied by blood vessels in the binarized image by the length of blood
vessels in the skeletonized image. This parameter is, thus, a measure of the vessel caliber
and can be easily localized to pinpoint areas of vascular abnormalities [65]. Vessel caliber
could be used to track a number of physiologic processes, such as the release of vasoactive
substances, metabolic and pressure autoregulation, and hypoxia [67–69]. Furthermore,
this measurement may be uniquely primed to detect regional disparities between the
central macula and peripheral retina when it comes to arteriolar diameter responses to
ischemia [70]. With this in mind, the trio of OCTA-based VD, skeletonized VD, and VDI
measurements collectively provide robust insights into the vasculature changes occurring
in DR.

In all three capillary plexuses (SCP, MCP, and DCP), decreasing VD and VLD have
both been found to be associated with increasing severity of DR (Figure 3) [71–78]. Fur-
thermore, diminishing VD has been linked to poorer visual acuity in patients with DR,
heightening the functional significance these parameters may bear out [79,80]. Studies of
OCTA metrics utilize a variety of analysis techniques and devices (including SD-OCTA,
SS-OCTA, and Widefield-OCTA); segmentation boundaries of the capillary plexuses; and
patient populations. Initial studies focused on the SCP and DCP as sites of interest, as
manual segmentation techniques were not well-described at the time, nor was projection-
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artifact software fully optimized and implemented. Following SS-OCTA imaging of a
3x3mm area centered on the fovea, Tang et al. used an automated customized program to
analyze the VD and VDI at the SCP of 434 eyes from 286 patients with diabetes [71]. They
found decreasing VD and increasing VDI were associated with worsening severity of DR,
suggesting capillary drop-out accompanied by vasodilation [71]. Similarly, Nesper et al.
and Li et al. found decreasing VD at the parafovea (defined as the area between an inner
1 mm ring and outer 2.5 mm or 3 mm ring centered on the fovea) of the SCP and DCP as DR
staging advanced with the use of a SD-OCTA device [73,74]. Nesper et al. also identified
that VD at the DCP correlated most strongly with DR severity [74]. In the segmentation
scheme used by both groups, the DCP supplies the outer plexiform layer, a site of commu-
nication between horizontal cells and the inner segments of photoreceptors [24,73,74]. In
studies using rat and macaque models, the outer plexiform layer was identified as having
some of the highest oxygen demands in the retina, rendering this area especially susceptible
to the effects of ischemic damage [81,82]. In humans, areas of photoreceptor dysfunction
and disorganization closely align with areas of non-perfusion within the DCP, leading to
diminished retinal sensitivity [83,84]. Hence, changes in perfusion at the DCP, as detected
by OCTA, may show the first signs and predict the development of DR.
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spectrum of DR severity. Vessel density measurements under each image were generated from built-in Optovue RTVue
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Studies employing widefield SS-OCTA demonstrated that individuals with DR have
lower VLD in the SCP and DCP compared to non-DM controls [72,75]. Mastropasqua
et al. analyzed a wide field of view (15 × 15 mm scan area) for changes in VLD at an
inner 5.5 mm macular region and in 4.5 mm circles peripheral to the macula [72]. Patients
with advanced DR, classified as a moderate/severe NPDR group and a PDR group, had
significantly lower VLD in the 5.5 mm macular area of the SCP and DCP when compared
to respective non-DM and DM groups without retinopathy [72]. Significantly lower VLD
persisted in the peripheral area temporal to the macula in groups classified as having
advanced DR compared to non-DM and DM subjects without retinopathy [72]. Similarly,
Hirano et al. used a widefield SS-OCTA system to measure VLD in a 12 × 12 mm scan
area, finding decreasing VLD in the SCP and DCP as DR severity worsened across subject
groupings [75]. Hence, widefield OCTA is a valuable tool for evaluating changes in the
peripheral retina.

Innovation of projection artifact removal software and the introduction of novel seg-
mentation schemes have enabled the visualization and the subsequent quantification of
the MCP (Figure 1B) [35,85–87]. Previously, most automatic segmentation by commercial
OCTA devices incorporated the MCP into the SCP. Analysis of the MCP as a distinct
vascular layer opened a window of opportunity to understand how DR may have spatially
unique impacts. In general, studies have found that trends within the MCP mirrored
those occurring at the SCP and DCP; as DR severity increased, VD and VLD both de-
creased [76–78]. Interestingly though, DR severity had different effects on the vascular
layers. Onishi et al. studied the adjusted flow index (AFI), an approximation of blow
flow, at the three capillary plexuses of the retina [76]. They noted that while AFI failed
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to decline substantially at the SCP as DR severity progressed amongst the study groups,
it did decrease steeply at the MCP and DCP; significant differences between the slope
of the SCP AFI regression line and the slopes of both the MCP and DCP AFI regression
lines were confirmed with linear mixed-effects regression models [76]. Ashraf et al. used
OCTA to analyze the VD and VLD of all three capillary plexuses, observing that early DR
manifested in changes primarily affecting the MCP and DCP, while advanced DR impacted
the SCP more dramatically [77]. Collectively, these studies support segmentation schemes
that analyze the SCP, MCP, and DCP separately across the spectrum of DR severity.

Some OCTA studies found diminished VD in the eyes of DM patients without DR
compared to the eyes of healthy controls in the SCP, MCP, or DCP [76,88–90]. Others,
however, have not found significant differences in VD between non-DM and DM subjects
without DR at the SCP or DCP [74,91,92]. These varying results likely stem from differences
in one or more of study demographics, correction for co-variates, segmentation boundaries,
and OCTA devices across studies. A unique study observed an increase in perfusion density
at the full-retinal slab in the eyes of DM subjects without DR compared to healthy controls
after the removal of non-capillaries from image analysis [93]. Rosen et al. subtracted larger,
non-capillaries from angiograms and analyzed the area perfused by capillaries (PCD) at
seven 200 µm wide annuli starting at the margin of the FAZ; in each of these seven annuli,
PCD was significantly higher in the DM group without DR than in the non-DM group [93].
This finding may be explained by compensatory vasodilation occurring in capillaries,
a hypothesis consistent with other studies that found an increase in vessel caliber with
worsening DR [71,94]. Whether OCTA measures of perfusion can distinguish between
non-DM and DM groups remains unclear. Further prospective and longitudinal studies
may help to understand microvascular changes occurring in those that develop DM.

3.2. FAZ Area and FAZ-Related Measurements

The foveal avascular zone (FAZ) is the central area of the macula devoid of retinal
capillaries. Early studies that sought to quantify the area (mm2) of the FAZ relied upon
fundus fluorescein angiography. The use of fluorescein angiography revealed significantly
larger FAZ circumference and diameter in DM subjects compared to controls, as well
as increasing FAZ size and irregularity with worsening retinopathy [95,96]. The area
and perimeter of the FAZ are readily measured using OCTA, oftentimes through built-in
software. In general, there is strong agreement between OCTA and fluorescein angiography
when it comes to the assessment of the FAZ area in patients with DR [38,97]. FAZ area
may also be an important biomarker for visual functioning and prognosis in the setting of
disease. In patients with DR, a positive correlation between best-corrected visual acuity
(LogMAR) and FAZ area has been found by several studies [80,98,99]. In other words,
enlarged FAZ areas are associated with poorer vision.

As corroborated extensively in the literature, FAZ size increases with the progression
of DR (Figure 4) [71,74,78,100–103]. Several of these studies evaluated the FAZ of the SCP
and DCP separately. This approach may be erroneous, as Campbell et al. demonstrated
that the three capillary plexuses coalesce to define the perimeter of the FAZ [24]. Measuring
the FAZ from a full-thickness slab with all retinal microvasculature visualized could better
approximate its area. This is not the only issue that arises when using FAZ-based metrics.
Within normal eyes, the size of the FAZ is highly variable, influenced by patient age, sex,
race, central foveal thickness, and axial length [104–109]. Foremost among these factors is
axial length, a measure of the length of the eyeball from the corneal surface to the retinal
pigment epithelium. Longer axial lengths are associated with myopia and can affect the
size of the FAZ. Those with longer axial lengths (e.g., high myopes) will have a seemingly
smaller FAZ, while those with shorter axial lengths will have a larger appearing FAZ. Both
Linderman et al. and Sampson et al. have demonstrated a need to correct for magnification
effects stemming from axial length [104,110]. After correction, Sampson et al. found up
to a 51% increase in the FAZ area for those with myopia and up to a 20% decrease in
the FAZ area for those with hyperopia [110]. Studies that don’t implement correction
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protocols could be confounded by control and experimental groups with different axial
length distributions.
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Figure 4. Representative quantitative examples of foveal avascular zone (FAZ) area and acircularity index (AI) with
worsening DR severity. FAZ area and AI measurements under each image were generated from built-in Optovue RTVue XR
Avanti software with AngioAnalytics (Optovue Inc., Fremont, CA, USA, Version 2018.1.8.60). As DR severity worsens, the
area of the FAZ enlarges and the FAZ becomes increasingly acircular.

While axial length can be readily measured using optical biometry, this is not a
built-in feature for commercial OCTA devices. Alternative parameters to FAZ area do
exist, however, and include FAZ circularity and acircularity indices. These values are
unitless quotients, meaning that they are not subject to the magnification effects that can
stem from axial length, and they do not require correction. Acircularity index is the ratio
of the perimeter of the FAZ to the perimeter of a circle with equal area; an acircularity
index of 1 represents a perfect circle, while more irregular FAZ perimeters have a higher
acircularity index. Circularity index is a similar measurement of the ratio of the FAZ
area to the area of a circle with equal perimeter; a circularity index of 1 corresponds to a
perfect circle, and more irregularity is found with decreasing circularity index. A positive
correlation between FAZ acircularity index and DR severity has been found by multiple
studies (Figure 4) [93,111–113], and a negative correlation between FAZ circularity and DR
severity has also been identified [71,113–115]. Krawitz et al. measured the FAZ acircularity
index and FAZ axis ratio in type 2 DM subjects without retinopathy, with NPDR, and with
PDR [111]. They defined axis ratio as the ratio between the major and minor axis of an
ellipse fit with second-order moments; an elongated FAZ outline had greater eccentricity
and, hence, a greater axis ratio [111]. After classifying the NPDR group into mild, moderate,
and severe stages, Krawitz et al. used a generalized linear model to show a significantly
increasing FAZ acircularity index and axis ratio with increasing disease severity from non-
DM to PDR groups [111]. The researchers did not find significant differences in acircularity
index or axis ratio between non-DM and DM subjects without DR, which is in agreement
with other studies of its kind [93,111,113]. When axial length correction is not possible
or feasible, FAZ acircularity or circularity parameters serve as comparable substitutes for
assessing DR severity through OCTA.

3.3. Fractal Dimension Analysis

The complexity of vessel branching in the retina has been studied using fractal dimen-
sion (FD). Early studies of FD in DR primarily utilized color fundus photographs. These
studies reached conflicting conclusions, with some finding no association between FD and
DR risk and/or severity [116], others finding increased FD to be associated with DR risk
and/or severity [117–119], and others yet finding decreased FD to be associated with DR
risk and/or severity [120,121]. These mixed results warranted further study, and OCTA
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has been used to add some clarity to the literature, with studies yielding more consistent
findings of FD across the spectrum of DR severity.

FD at the SCP and DCP has been well characterized as negatively correlated with
worsening DR severity, implying that branching patterns become less complex due to
vessel dropout associated with DR progression [71,75,94,122,123]. In the setting of diabetic
macular edema, lower FD was also correlated with poorer visual acuity, suggesting a
possible use as a biomarker for visual functioning in DR [124]. Zahid et al. generated a
measurement for FD at the SCP and DCP using the box-counting method, finding that
DM eyes with DR had significantly lower FD compared to control eyes [122]. Kim et al.
uncovered similar findings at the SCP, noting that mild NPDR, severe NPDR (a combination
of moderate and severe NPDR subjects), and PDR groups all had significantly lower FD
relative to controls [94]. At the DCP, though, significant differences in FD emerged only
when comparing the PDR group to the healthy group [94]. Zahid et al. grouped five eyes
with mild NPDR and eight eyes with PDR together, which prevented the comparison
of different NPDR stages [122]. Due to the modest number of eyes included in both
studies, larger sample sizes may be needed to detect the point in time at which significant
differences in FD arise throughout the pathophysiological process of DR. FD may also have
value in monitoring response to treatment. Fayed et al. compared the FD of perifoveal
vessels in quiescent PDR eyes to PDR eyes also receiving PRP (PDR+PRP) [123]. Focusing
on the SCP, the PDR+PRP group had a higher FD value than the PDR group, suggesting that
this morphological change may be at least somewhat reversible [123]. FD may be a useful
adjunct to other OCTA parameters in assessing DR severity, progression, and treatment
response. However, analysis of FD at each of the three capillary plexuses represents a
logical next step, as to our knowledge, this is not documented in the literature.

3.4. Emerging Insight into Vessel Tortuosity

Relatively few studies have used OCTA to examine vessel tortuosity (VT), a measure of
retinal geometry that compares the length of a vessel’s flow path to a straight line between
the starting and ending points of the vessel’s path. Studies using fundus photographs
found VT to be increased among DR subjects compared to healthy controls or to DM
subjects without DR [125,126], and longer diabetes duration was also associated with
greater tortuosity of retinal arteriolar vessels [127]. These studies imaged the large vessels
proximal to the optic disc, which left an opportunity for OCTA imaging to investigate
changes occurring in the capillaries of the macula. Using SD-OCTA, Lee et al. noted a trend
of increasing VT for all vessels in the SCP and DCP with worsening NPDR; progression
from moderate-severe NPDR to PDR was marked by a significant decrease in VT [128].
Fayed et al. also investigated VT, focusing only on large perifoveal vessels of the SCP, while
excluding capillaries from their measurements of VT [123]. They also found significantly
increasing VT with DR severity, but did not find a significant decrease in VT amongst PDR
patients compared to NPDR patients [123]. The discrepancy in this last finding likely stems
from the pattern of vasculature analysis used by the two groups. The method employed
by Lee et al. included capillaries, while that employed by Fayed et al. did not [123,128].
Profound capillary dropout in PDR could artificially deflate measurements of VT and
account for the contrasting conclusions reached by the groups. A study of the cerebral
cortex, which found vessels closer to the capillary bed to be more tortuous, supports this
interpretation [129]. OCTA is a valuable and effective tool for monitoring VT, yet future
studies are required to fully characterize the use of VT as a biomarker for DR.

Several theories may explain changes occurring to VT and fit within the pathophysio-
logical process of DR. In a rat model deprived of oxygen, vascular endothelial growth factor
(VEGF) signaling increased arteriolar tortuosity [130]. Furthermore, in eyes with central
retinal vein occlusion, concentrations of aqueous VEGF were significantly correlated with
the observed degree of venous tortuosity [131]. A similar model may be followed in DR,
where VEGF is released in response to ischemia, promoting tortuous alterations to the
microvasculature. A computational model found that tortuosity also improves responses
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to ischemic changes by increasing tissue oxygenation, especially in concert with anasto-
moses [132]. Alternatively, impaired autoregulatory responses mediated by endothelial cell
and pericyte dysfunction, which are hallmarks of DR, could lead to mechanically unstable
vessel walls susceptible to tortuous changes [133,134].

3.5. OCTA Findings at the Choriocapillaris

OCTA has also been used as a tool to study the choroidal vasculature, which is the
primary blood supply to the highly metabolically active photoreceptors [135]. Indocyanine
green angiography (ICGA) is the current gold standard for visualizing the choriocapil-
laris [136]. However, OCTA holds an advantage over ICGA in that it offers non-invasive,
depth-resolved, and non-obscured imaging of the choriocapillaris. Furthermore, recent
advances with SS-OCTA have enabled better visualization of the choroid. Compared to
SD-OCTA, which uses a light source of approximately 850 nm, SS-OCTA uses a longer
wavelength near 1050 nm that offers better penetration into the choroid [137,138]. Hence,
OCTA wields the power to image both the retinal and choroidal circulation in a completely
non-invasive manner.

Several parameters have been described to measure choriocapillaris perfusion or the
lack thereof, including perfusion or vessel density, percent area of non-perfusion (PAN), and
flow deficit percentage. Commercial OCTA machines, which can automatically quantify
vessel density at the choriocapillaris, may not be able to resolve the distinctive capillaries
at this layer. While the average intercapillary area of the choriocapillaris is 5–20 µm, the
lateral resolution of commercial SD-OCTA instruments is only 15–20 µm [139,140]. Hence,
measurements of flow voids or flow deficits may better represent the vascular changes
occurring at the choriocapillaris due to DM and DR. Studies analyzing perfusion density
at the choriocapillaris have revealed differences between DM and DR patients and non-
DM patients. Using SS-OCTA, Mastropasqua et al. measured the perfusion density of
the choriocapillaris at a central 5.5 mm region [72]. They observed significantly lower
perfusion density amongst the PDR group compared to non-DM controls and to DM
patients without DR [72]. Conti et al. found decreased choriocapillaris flow at the area
overlying the parafovea amongst PDR and NPDR patients compared to non-DM controls,
but they did not find any changes in the flow at the choriocapillaris amongst patients with
DM without DR [91]. On the contrary, Li et al. did find significantly lower flow at the
fovea of the choriocapillaris in DM subjects without DR compared to non-DM controls [73].
However, given the aforementioned weaknesses of measuring flow or perfusion density,
the findings from these studies are likely not as rigorous as those which analyzed flow
deficits.

Increased flow deficits in the presence of DM or DR have been reported by multiple
SS-OCTA studies (Figure 5) [92,140,141]. In two separate studies, Dai et al. calculated
choriocapillaris flow from OCTA en-face images using a global thresholding algorithm
that segmented flow deficits larger than 24 µm and consequently above spacing between
individual capillaries [92,140,142]. Compared to non-DM patients, DM patients had a larger
percentage of the image centered on the macula that corresponded to flow deficits [92]. In
an extension of their earlier study, Dai et al. investigated flow deficits in patients with NPDR
and PDR, finding that both groups had a significantly higher percentage area occupied
by flow deficits compared to controls [140]. Gendelman et al. corroborated these results,
reporting a positive association between flow deficit percentage and DR severity [141].
These studies are in agreement with histologic analysis, which has revealed choriocapillaris
dropout and ischemia in DM eyes with and without DR [143–145]. A further OCTA study
found an association between visual functioning in DR eyes and impaired choriocapillaris
flow, as measured by flow deficits [146]. Given that the blood supply of photoreceptors
is highly reliant upon the choriocapillaris circulation, visual changes in patients with
DR may be linked with ischemia to these regions with high metabolic demands. SS-
OCTA is a valuable tool to assess the retinal and choroidal vasculature at the same time.
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Further quantitative studies have the opportunity to shed light on the impact of DR on the
choriocapillaris.
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Figure 5. Visualization of flow at the choriocapillaris by OCTA. The yellow circle is 3 mm in diameter and centered on
the fovea. Black areas within the circle correspond to non-flow, while yellow areas measure blood flow. Built in Optovue
RTVue XR Avanti software with AngioAnalytics (Optovue Inc., Fremont, CA, USA, Version 2018.1.8.60) cannot resolve the
individual capillaries at the choriocapillaris, preventing quantitative analysis from being performed. In this representative
example, however, it is qualitatively apparent that flow deficits are increased in NPDR and PDR eyes.

4. Limitations and Shortcomings of OCT Angiography in Quantitative Analysis

The majority of quantitative OCTA data in the literature is cross sectional, limiting its
predictive value for the progression of DR. However, a study by Sun et al. over a median
follow-up time of 27 months identified that larger FAZ area, lower VD, and lower FD were
all significantly associated with DR progression [147]. An additional study with a one-year
follow-up by You et al. used OCTA to detect avascular areas within the parafovea, noting
that eyes with progression in DR severity had significantly larger avascular areas in the SCP
at baseline compared to eyes without DR progression [148]. Also over a one-year follow-up
period, Greig et al. reported that a larger FAZ area and reduced VD in the temporal region
at baseline can predict the risk of progression [149] Hence, a variety of quantitative OCTA
metrics do hold immense promise as DR biomarkers. Longitudinal studies with longer
follow-up periods and increased patient enrollment will provide further validation of these
OCTA biomarkers in tracking DR.

Another drawback of comparing OCTA metrics from multiple studies is the lack
of interchangeability across quantitation algorithms [150], OCTA devices [151], and scan
sizes [152]. This precludes the formation of singular normative databases. Instead, a
plethora of normative values is likely needed given the wide array of custom analysis
techniques reported in the literature.

Numerous studies have made evident that OCTA measurements of the microvascu-
lature may differ based on age [153–155], sex [156,157], HbA1c levels [102,158,159], and a
variety of other systemic or metabolic vascular risk factors [160–163]. Additionally, previ-
ous work by Chun et al. illuminated differences in OCTA quantitative parameters between
healthy, young Black and White patients [164]. Compared to White patients, Black patients
were found to have lower vessel density at the parafovea of the DCP, a larger foveal avas-
cular zone at the SCP and DCP, and lower blood flow at the choriocapillaris in the area
underlying the macula [164]. These findings support the need to match study and control
groups by race when analyzing OCTA quantitative parameters, while also creating diverse
normative databases. Race, along with the aforementioned potential confounding variates,
are oftentimes left unaddressed or unreported in OCTA studies of DR. It is important to
account for any differences in these categories across the studied population, such that the
relationship between DR and OCTA parameters is precisely interrogated.
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5. Future Directions

One of the most obvious extensions of OCTA is in artificial intelligence and automated
diagnosis of DR. Expanding the use of artificial intelligence and deep learning techniques
in diabetic eye screenings would improve efficiency and drive down costs, which jointly
have the potential to improve patient outcomes amid the diabetes epidemic [165]. This may
be especially true with regards to rural areas, where eye care providers are found in lower
numbers [166]. Using an ordinary least squares modeling method, Cano et al. correctly
classified 94% of PDR from non-DM subjects with a 0.99 area under receiver operating
characteristic curve (AUROC); the same model classified 91% of mild NPDR subjects from
non-DM subjects with a 0.93 AUROC [167]. Alam et al. trained a support vector machine
using six OCTA quantitative features and achieved a 93% accuracy in distinguishing non-
DM and mild NPDR eyes [168]. A computer-aided diagnosis system from Sandhu et al.
reached accuracies of 94% and 92% AUROC using features from the SCP and DCP to
distinguish between mild NPDR and non-DM eyes [169]. In these automated diagnostic
systems, it is equally important to distinguish between DR and other retinopathies. Alam
et al. demonstrated 92% specificity in distinguishing DR from sickle cell retinopathy [170].
Machine learning has proven to be a valuable tool for classifying both early and late stages
of DR. Applying these models to larger and more diverse test sets will clarify their potential
to be implemented on large scales.

Numerous groups have begun to investigate handheld OCTA systems that offer
greater portability and flexibility for imaging patients that would otherwise prove diffi-
cult [171–174]. These handheld probes offer greater ease of imaging to pediatric patient
populations or to those who must remain supine. It is easy to see the reach these systems
bring, as they are not faced with the same constraints as traditional OCTA devices, namely
being mounted to a tabletop. In conjunction with automated diagnosis programs, handheld
OCTA devices could very well be used to efficiently and accurately screen for DR in areas
underserved by eye care providers. Rank et al. recently reported their progress towards
OCT and OCTA on a photonic integrated chip, which would drastically reduce both the
size and costs of these imaging devices [175]. Collectively, these innovations across a
variety of different sectors will continue to drive the feasibility of OCTA as a screening tool
for DR.

6. Conclusions

OCTA has come a long way within a short period, enhancing our understanding
of the pathophysiology and progression of DR. Given the myriad of microvasculature
changes that can be detected and quantified using OCTA, there is every reason to believe
that OCTA can be effectively implemented as a valuable imaging tool for DR. Challenges
ahead include establishing normative databases, given the complexity and breadth of
image analysis techniques in existence, as well as longitudinal analysis of quantitative
trends in patients with DR.
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