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Abstract: The cardiovascular system is an apparatus of mass convection, and changes in organismic
size impart changes in variables of this system, namely scaling effects. Blood flow depends on
pressure and conductance, and the maintenance of flow results in entropy production, that is, loss
of available work. In terms of scaling, it is well known that blood pressure is kept constant while
blood volume varies linearly with body mass. Yet, such expected rules have never been proven.
The present study shows that these scaling rules derive from the simultaneous optimization of
blood flow and entropy production in circulation and how these impact the transition from ecto- to
endotermy. Thus, for the first time in almost a century of data collection, these observed relationships
are explained from a theoretical standpoint. The demonstration presented herein is a building block
to form a solid basis for the other scaling rules of the cardiovascular system as well as of other organic
systems. The approach is of wide interest in any area where generalized flow is analyzed in terms of
system optimization, giving a broad perspective on change in either engineered or naturally evolving
systems.

Keywords: scaling; blood pressure; blood volume; entropy production; optimization; cardiovascu-
lar system

1. Introduction

For more than a century, empirical data in mammals has shown that blood pressure
does not vary with the mass of the animal. In addition, for more than a century, empirical
data has shown that blood mass (volume) is a somewhat fixed value, around 8% of
body mass, irrespective of the size of the animal [1–4]. Despite the fact that these two
variables, namely blood pressure and volume, are central to all other relationships of the
cardiovascular system and other organic systems as well, no endeavor has been able to
explain the reasons why blood volume scales linearly with body mass while blood pressure
remains constant.

Relationships between sizes or between a size and a function are of the utmost im-
portance in practically all scientific areas, particularly in Biology and Engineering [5–9].
The relationships involving sizes are termed “scaling”, and a scaling rule is given as an
equation of the following form [6]:

Y = α·Lβ

where L and Y are the sizes and α and β are constants of the relationship. The scaling rule
itself is related to the parameter β, while α is a reference value. Therefore, when only the
scaling matters, the expression above is written as

Y ∝ Lβ (1)

where ∝ indicates “proportional to”.
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Some scaling of the cardiovascular system has become widely known, for example,
the decrease in heart rate with size [10,11] which results in a somewhat similar number
of heart beats along the lifespans of both a 20 g mouse and of a 2 ton elephant. However,
other cardiovascular scaling variables are barely mentioned beyond the realm of certain
fields.

Considering body mass as a proxy of size, some organs scale linearly with the overall
organism size, such as the bone mass [12–14] of vertebrates, whereas many other organs do
not scale linearly with the overall organism size [15,16]. The size-to-size linear relationship
is termed isometry (β = 1), and size-to-size non-linear scaling is termed allometry (β 6= 1;
in particular, when β = 0, the variable Y has a constant value irrespective of the value of L)
(e.g., [17]). Therefore, blood volume scales isometrically with body mass, and, as we stated
above, to date, there has been no explanation for such a relationship. Blood pressure, on
the other hand, is non-linearly related to body mass (β = 0), and we still lack an adequate
explanation for why this is so.

Why are blood pressure and volume so important? In energetic terms, about 90% of
the external cardiac work is to rise the enthalpy of the arterial system (i.e., its pressure). In
volumetric terms, the entire branching of the system relies on the volume it can, or must,
accommodate. In essence, the pressure dictates perfusion and, ultimately, rates, while the
volume dictates lengths and branching.

There was a renewed interest in the scaling of the cardiovascular system at the end
of the 20th century due to a tentative explanation of the scaling of basal metabolic rate
as related to blood supply in organisms [18]. That tentative explanation generated a
prolific series of models, addressing in a general sense [19–29] the topology of supply
networks from leaf venation and blood microvasculature to human transportation systems.
However, none of these studies addressed the isometry of blood volume or the constancy
of blood pressure. This was primarily because these studies aimed to merely obtain the
local architecture of a supply network; as a corollary, the driving force (e.g., pressure)
is a fixed value from the beginning, or it is not important for solving the problem. The
same applies to volume: it is either fixed from the start or unimportant in the solution.
In a different line of thought, there are authors who seek more general scaling rules of
the vasculature, without concerns regarding the topology of the network [30–32]. In their
studies, however, the isometry of blood volume and body mass is assumed directly from
empirical data. In fact, the only attempt to obtain the linear scaling of blood volume with
body mass comes from the study that sparked renewed interest in the topic two decades
ago [18]; unfortunately, the solution specified in this study was flawed [33].

By the same token, the scaling of blood pressure with body mass also lacks formal
proof. Dimensional analysis, with its non-dimensional invariant numbers (not to be
confused with the invariance of blood pressure itself; see the Buckingham-Pi theorem [8])
has often been put forward as a general approach [34,35]. An invariant number, such as
the Reynolds number, is a criterion of similarity among systems, but it cannot furnish
the scaling of the variables themselves (and those who applied dimensional analysis in
approaching the cardiovascular system never claimed that). In this sense, dimensional
analysis might suggest the constancy of blood pressure, though it cannot prove it.

Therefore, these two most relevant variables of a circulatory system, which are taken
as roots for deriving the scaling rules of its other variables (see [19–32]), still remain without
a theoretical basis to explain their own scaling.

An adequate method to address an optimization problem in biology would likely
involve minimization of energy or a power function, both considered putative tenets
of natural selection as it is currently understood [36]. This was the method sought by
most of the studies previously cited. Undeniable as a principle, power optimization is
better placed within a more generic context, such as the entropy generation or exergy
destruction approach [37–40]. This is because, embedded in such an approach is the loss of
available work. That is, entropy generation (or exergy destruction) indicates the loss of
an amount of power that would otherwise be useful. In a step beyond Carnot’s efficiency,
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this approach combines the first (conservation of energy) and the second (entropy changes)
laws of thermodynamics into a single framework, summarized by the Gouy-Stodola
theorem [38,41,42]. From this comprehensive perspective, a system aims simultaneously to
obtain a maximum of flow and to destroy less exergy (these ideas are well developed in
Lotka’s principle, associated with near-stable systems, and in constructal theory [9,39,43]).

In a very unspecific sense, flows in a system are dictated by a set of parameters
belonging to the system. These parameters might or might not be under a control, whether
central or local. Then, changing parameter values causes changes in flow, in a very broad
sense. A flow is the result of a certain thermodynamic force times a certain conductance.
For instance, electric current (the flow) is the result of the difference in electric potential
(voltage, the force) times the electric conductance (inverse of resistance) of the wiring. In
this very simple scenario, one could consider the resistance and the voltage as resulting
from a set of parameters, and therefore changing these parameters would change the
current through the system.

Entropy production (the time derivative of entropy generation [41]) is given by the
product of the flow times the force divided by the temperature (see Section 2.1). Therefore,
changing the conductance or the force changes both the flow and the entropy production.
Thus, the problem that needs to be solved can be read in two stages:

(1) how to maximize the relationship between blood flow and entropy production (see
Equation (10)); and

(2) under which scaling rules this optimization occurs when treating body mass as a
parameter (see Equation (13)). by treating body mass as a parameter, what scaling
rule is obtained (see equation 13).

2. Methods

In this section, the thermodynamic background for approaching the problem is pre-
sented in two subsections. In the first subsection, entropy production is presented, and its
components are further parametrized. In the second subsection, the concept of elasticity
is applied to the parametrized function of entropy production, obtaining the impacts of
changes of the parameter on flow and on entropy production simultaneously. This serves
as a guide to determine the optimized ways to increase flow in the system.

2.1. Entropy Production

An open system in a non-equilibrium but steady-state condition has flow(s) of energy
and/or matter through its borders and internally. Entropy production is the result of this
flow(s) and is computed as [41,42]

σi =
Xi·Ji

T
(2)

where Xi is the general thermodynamic force for term i (e.g., electric potential, concentration,
etc.) and Ji is the associated flow. T is the temperature of the system (or at a given specific
location at its border where flow i takes place). Related to each flow i in the system, there is
a certain entropy production. For the sake of notation, the index “i” will be omitted in what
follows, and it is tacitly assumed that blood flow is the subject under analysis. Without
loss of generality, coupling between forces and flows does not take part in the analysis.

In turn, a flow is the result of
J = X·G (3)

where G is the conductance for that flow. Thus, Equation (2) reads as

σ =
X2·G

T
(4)

Consider a given parameter k, which, when changed, imparts changes in the flow
through changes in X and/or in G. In addition, changes in k might cause changes in T.
In fact, k can be seen as a vector composed of three orthogonal components: one related
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to X, another related to G and the third related to T. In this sense, the changes in k can be
decomposed as

χ =
∂X
∂k

(5a)

γ =
∂G
∂k

(5b)

τ =
∂T
∂k

(5c)

2.2. Elasticities

Elasticity ε is the relative fractional change in a function. Borrowing the idea of “flux
control coefficient” from metabolic control analysis [43] and inserting Equation (3) for flow,
the elasticity of the flow in relation to k is

εJ =
k
J

∂J
∂k

=
k

X·G ·(G·χ + X·γ) (6)

In a similar way, the elasticity of entropy production is

εσ =
k
σ

∂σ

∂k
=

k
X·G ·(2·G·χ + X·γ)− k

T
·τ (7)

Dividing εσ by εJ, one obtains the relative change in entropy production per unit of
change in flow in the face of a change in the parameter k:

εJσ =
J
σ

∂σ

∂J

∣∣∣∣k = (2·G·χ + X·γ)
(G·χ + X·γ) −

[
X·G

T
· τ

(G·χ + X·γ)

]
(8)

Equation (8) is separated into two pieces. The first right-hand-side term contains only
changes in force and in conductance. The second term, within the square brackets, contains
possible changes in X, G and temperature (see Equation (5a–c)). For ease of the initial
approach, we consider that changes in k do not lead to changes in T (i.e., τ = 0). Therefore,
Equation (8) now reads as

ε̂Jσ =
(2·G·χ + X·γ)
(G·χ + X·γ) (9)

where ˆ indicates the cases where τ = 0.
In order understand the information that Equation (9) brings, consider γ = 0. That is,

changes in the parameter k only cause changes in the force X. Then, ε̂Jσ = 2. This means
that each unitary increase in flow doubles the entropy production. On the other hand,
consider χ = 0 (changes in k only lead to changes in the conductance G). Then, ε̂Jσ = 1, and
for each unitary increase in flow there is a unitary increase in entropy production.

Clearly, the latter seems a much more profitable scenario to address increases in flow.
In fact, as will be shown, ε̂Jσ = 1 is the fairest condition once a system is optimized.

Bearing this in mind, we consider the possible outcomes for ε̂Jσ ≤ 0. A simple
inspection of Equation (9) reveals two possibilities:

(A). χ < 0, γ > 0; with G
X |χ| < γ < 2·G

X |χ|
(B). γ < 0, χ > 0; with X

2·G |γ| < χ < X
G |γ|

For both (A) and (B), ε̂Jσ ≤ 0; however, flow increases in case (A), whereas it decreases
in case (B). In other words, case (B) depicts a situation where the system is “paying more to
obtain less”. Thus, we will focus on case (A).

Case (A) indicates that the best scenario to obtain increases in flow is to have the
driving force decreasing while the conductance increases. A naïve approach would be
to consider the optimal solution as X = 0 and G→∞, resulting in an unrealistic physical
outcome. Nevertheless, case (A) shows what could be expected if an optimization of flow
occurs.
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3. Results and Pointwise Discussions

The results are separated in two subsections for clarity. Section 3.1 presents results
concerning the optimization referred to in the preceding section, i.e., how to obtain in-
creases in flow and simultaneously minimize entropy production. From these results,
the consequences in the scaling of the cardiovascular system of mammals is presented in
Section 3.2. In this section, the main goals of this study are reached, i.e., the scaling of
pressure and of blood volume with body mass is derived. Then, in Section 3.3, we further
discuss the consequences for the entropy production in the cardiovascular system in the
transition from an ectothermic-heterothermic condition to an endothermic-homeothermic
one.

3.1. Simultaneous Optimization of Entropy Production and Blood Flow

Part of the total blood flow is directed to the maintenance of structures, which results
in the force (the heart) and in the conductance (the vascular bed and blood). Therefore,
blood flow cannot be unboundedly maximized because, as a consequence, more and more
would be directed to the maintenance of those structures instead of supplying the rest of
the system.

Consider a function f, akin to ε̂Jσ or to εJσ, written as a ratio between flow and entropy
production:

f =
X·G− CX ·X− CG·G(

X2·G
T

) (10)

where X is the force (pressure), G is the conductance of the vascular system, and CX and CG
are the unitary maintenance costs of the respective structures. The denominator of function
f is entropy production, where T is the temperature.

Figure 1 graphically summarizes the key problem solved in the evolution of the
cardiovascular system: since blood flow is crucial to sustain the aerobic metabolic rate of
organisms, how would pressure and conductance combine to maximize flow given that
maintaining pressure and conductance also imposes a metabolic demand? The analytical
solution is presented in the following text.
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Figure 1. Tridimensional representation of function f (Equation (10)) along the X (pressure) and
G (conductance) axes. For an arbitrary flow (restriction) and given costs CX and CG, there exists
a combination of pressure and conductance that results in a maximum of f. The insets show 2D
projections in the X-f and in the G-f planes for different values of the cost CG: 1.5 (blue), 0.75 (orange),
0.5 (yellow). CX = 1 and J = 10 in all representations. The 3D plot corresponds to the blue lines. Units
are arbitrary.

Then, an extremum of f must be found, having X · G = J as a restriction (i.e., to find
an extremum given an arbitrary flow J as the boundary condition). Temperature is not
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important at this point. Incorporating the restriction in the form of G = J/X, deriving in X
and equating to zero, results in

f =
J − CX ·X− CG· J

X
X·J

∂ f
∂X

=
1

X2 ·
(

2·CG
X
− 1

)
∂ f
∂X

= 0⇒ X = 2·CG (11a)

Next, incorporating the restriction in the form of X = J/G, deriving in G and equating
to zero, results in

f =
J − CX · J

G − CG·G(
J2

G

)
∂ f
∂G

=
1
J
·
(

1− 2·CG
J
·G

)
∂ f
∂G

= 0·G =
J

2·CG
(11b)

Notice that the second derivative of f in relation to X and in relation to G at the
extremum is negative, indicating that the point is a maximum.

The results in Equation (11a,b) are the solutions to where the conditions contained
in case (A) depicted above lead the system: the force tends to be a fixed value, and the
conductance tends to become linearly proportional to the flow.

Notice that by increasing the unitary cost of conductance, CG, the force is expected to
increase while conductance is expected to decrease, to generate a given flow J. In addition,
the unitary cost to generate force does not matter with respect to the values of X and G,
which will be optimal. Because force is expected to be kept constant in case the system is
optimized, this implies that χ = 0, and as stated earlier, ε̂Jσ = 1 is the fairest condition that
can possibly be attained. In other words, once the relationship between flow J and entropy
production σ has been maximized, changes in J and σ are of equal magnitude.

Therefore, given a certain unitary cost of the conductance structure, the optimal
solution is a fixed value of force (pressure) and a conductance linearly related to the flow.
Given that the properties of the blood and vessels are basically the same in a shrew and in
a whale (i.e., CG does not change), these results prove that the best solution for optimizing
flow and entropy production is to keep blood pressure constant irrespective of the size of
the animal.

3.2. Scaling

The force term, blood pressure in the present case, is considered an intensive property
in a system. Volume, on the other hand, is an extensive property. Thus, the next step is to
move from the unitary frame pictured above to a size-varying one. In order to reach this
goal, the size of the structures that generate force X and conductance G must be taken into
account.

To maintain the size of a given structure, a given flow must be displaced to that
structure. Generally speaking, there is a cost in maintaining an overall structure that allows
for the flow to travel between points in the system (for instance, the electrical grid from
the power plant to the city to the houses), and there is a cost in maintaining an overall
structure that generates the force (for instance, the power plant). These costs can be related
to the flows that go to the structures. In this sense, the function f can be rewritten as
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f =
J − JX − JG(

X·J
T

) =
1− JX

J −
JG
J(

X
T

) (12)

Notice that Equation (12) does not allow for the optimization procedure that was
previously implemented. This means that it is already known that X is a constant value
(and T does not matter for the moment). In Equation (12), J is the overall flow in the system,
and JX and JG are the flows needed to maintain the structures that generate pressure
and conductance, respectively. Now, the flows must be expressed as scaling rules of the
respective structure mass:

J ∝ Mβ

JG ∝ MG
βG

JX ∝ MX
βX

Inserting these scaling rules in Equation (12), we get

f ∝
M0 − MX

βX

Mβ −
MG

βG

Mβ(
M0

M0

) (13)

Notice that “1” is a constant, and therefore it is a fixed value irrespective of mass; X
and T are also constants. Therefore, these variables are all expressed as ∝ M0. The function
f is at an extremum, and hence f must be size-independent as well: f ∝ M0. The mass of
the conductance structure and the mass of the generating-force structure are independent
of each other. Because of this, in order to have f ∝ M0, each ratio in the numerator of
Equation (13) must scale as ∝ M0. This implies that

βX = βG = β (14a)

MX ∝ M (14b)

MG ∝ M (14c)

That is, the mass MG of the structure that generates the conductance in the system
scales linearly with the mass of the organism. Since the blood fills the conductance system
(the vessels) and also takes part in the conductance, blood mass (or volume) must scale
linearly with body mass, as was expected.

Another important scaling rule comes from this approach. The mass MX of the
structure that generates pressure must scale linearly with the size of the organism. That is,
the mass of the heart scales isometrically with body mass, as empirical findings have also
shown [3,15].

Summarizing the results obtained, Equations (11a) and (14c) show that blood pressure
∝ M0 and that blood volume ∝ M1.

3.3. Temperature Changes

The final step is to understand the transition from an ecto-heterothermic (ectoHE)
to an endo-homeothermic (endoHO) condition, for instance, from synapsid ancestors to
primitive mammals [44].

In a system in steady state, supply and demand must match. Therefore, the increase
in metabolic rate from an ectoHE to an endoHO needs an increase in blood flow. However,
the ancestor form, as any extant species, was expected to operate near its optimum, with
the conductance system for its size corresponding to the value allowed by its unitary cost.
Consequently, to increase flow, an increase in force must occur, i.e., an increase in blood
pressure must take place as it is observed between extant endoHO and ectoHE [45]. This
increase in pressure implies a poor scenario in terms of entropy production and a very high
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price (non-efficient) would be paid (see Section 2.2, also see discussion of energy waste in
endotherms [3]). However, two concomitant changes might partially mitigate this increase
in exergy destruction.

Examining Equation (8), it can be seen that even slight changes (increases) in con-
ductance (i.e., γ > 0) would turn the transition into a less demanding process. Given the
near-optimum condition of the ancestor form, this must occur as a qualitative change in
the conductance system as the qualitative change in erythrocytes (note: this has nothing
to do with oxygen transport; the point is related to the blood flow conductance [46]), and
an increase in capillary density, as do occurs between extant ectoHE and endoHO [47,48].
These allow for an increase in flow to depend on a lower increase in pressure.

Equation (8) reveals another facet of the issue: the increase in body temperature (i.e.,
τ > 0) also brings the combined elasticity of entropy production and blood flow to a lesser
value. This decrease in the fractional change of entropy production occurs because part of
the power that would be dissipated is retained in the system as an increase in its internal
energy. That is, speaking in thermodynamic terms, the system retains part of its capability
to perform work. Therefore, the transition from an ectoHE to an endoHO condition is less
inefficient than it would be if the increase in blood pressure were not accompanied by an
increase in body temperature.

4. Discussion

The main goal of the present study was to prove, from a theoretical standpoint, why
blood volume should scale linearly with body mass and blood pressure should be kept
constant along mammalian phylogeny. These scaling rules are empirically known for more
than a century and their theoretical explanations had constantly escaped of be derived.

The procedures described herein can be applied to any system. The primordial
step is to recognize which are the relevant flow(s), force(s) and conductance(s) for the
system under analysis. The cardiovascular system, for instance, comes with a bonus. Due
to its intrinsically mechanical features, flow, conductance and force are inherent to the
functioning of the system. Therefore, these variables come at ease in the analysis.

On the other hand, consider, for instance, the liver and its role in maintaining glucose
levels. Blood flow is essential to the functioning/maintenance of the organ, but it is the
interconversion of glucose-glycogen that is the flow of interest related to its function. If
this distinction is not made clear, one could wrongly conclude that the mass of every
organ should scale linearly with the mass of the organism. Or, in general terms, one
could conclude equivocally that all structures that generate forces and that also generate
conductance should scale linearly with the size of the system to which they belong.

Three other facets must also be kept clear. First, pressure, here, is so-called dynamic
pressure. Thus, the hydrostatic component of pressure that is due to the increase in height
of organisms is not relevant to the analysis. Second, conductance is related to the mor-
phological size of the cardiovascular system and not the functional state of peripheral
resistance in a given particular condition. Third, our analysis was aimed at the cardio-
vascular system of mammals, which forms a closed circuit, operates continually and has
enough data to derive empirical scaling. The scaling of other circulatory systems can be
approached using the procedures developed in this paper, but care must be taken as to
what would be considered the conductance, where the system is open, and the pressure,
where the system does not operate continuously.

In conclusion, the present study develops a new method to approach optimization
in flow-generating systems, combining the maximization of flow and the minimization
of entropy production. The analysis and results of the present study offer a suitable ther-
modynamic explanation of the scaling rules of blood pressure, blood volume and cardiac
mass in mammals and also shows their plausibility from an evolutionary standpoint.
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