Next Article in Journal
Modeling and Thermodynamic Analysis of the Water Sorption Isotherms of Cottonseed Products
Previous Article in Journal
Publishers’ Forewords to Launch the New Journal Foundations
Article

Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations

1
Learning Commons, University of North Texas at Dallas, Dallas, TX 75038, USA
2
Department of Computer Science, Cameron University, Lawton, OK 73505, USA
3
Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
4
Department of Mathematical and Computational Sciences, NIT, Karnataka 575 025, India
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Academic Editor: Jay Jahangiri
Received: 30 April 2021 / Revised: 9 June 2021 / Accepted: 17 June 2021 / Published: 18 June 2021
The goal is to extend the applicability of Newton-Traub-like methods in cases not covered in earlier articles requiring the usage of derivatives up to order seven that do not appear in the methods. The price we pay by using conditions on the first derivative that actually appear in the method is that we show only linear convergence. To find the convergence order is not our intention, however, since this is already known in the case where the spaces coincide with the multidimensional Euclidean space. Note that the order is rediscovered by using ACOC or COC, which require only the first derivative. Moreover, in earlier studies using Taylor series, no computable error distances were available based on generalized Lipschitz conditions. Therefore, we do not know, for example, in advance, how many iterates are needed to achieve a predetermined error tolerance. Furthermore, no uniqueness of the solution results is available in the aforementioned studies, but we also provide such results. Our technique can be used to extend the applicability of other methods in an analogous way, since it is so general. Finally note that local results of this type are important, since they demonstrate the difficulty in choosing initial points. Our approach also extends the applicability of this family of methods from the multi-dimensional Euclidean to the more general Banach space case. Numerical examples complement the theoretical results. View Full-Text
Keywords: Banach space valued mapping; parametric family of methods; ball convergence; Euclidean space Banach space valued mapping; parametric family of methods; ball convergence; Euclidean space
Show Figures

Figure 1

MDPI and ACS Style

Regmi, S.; Argyros, C.I.; Argyros, I.K.; George, S. Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations. Foundations 2021, 1, 23-31. https://0-doi-org.brum.beds.ac.uk/10.3390/foundations1010004

AMA Style

Regmi S, Argyros CI, Argyros IK, George S. Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations. Foundations. 2021; 1(1):23-31. https://0-doi-org.brum.beds.ac.uk/10.3390/foundations1010004

Chicago/Turabian Style

Regmi, Samundra, Christopher I. Argyros, Ioannis K. Argyros, and Santhosh George. 2021. "Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations" Foundations 1, no. 1: 23-31. https://0-doi-org.brum.beds.ac.uk/10.3390/foundations1010004

Find Other Styles

Article Access Map by Country/Region

1
Back to TopTop