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1. Theoretical Background

Statistical models are employed to formulate probabilistic descriptions of systems
of arbitrary nature when only partial knowledge about the system is available. Indeed,
in recent years, methods of entropic inference [1] have been utilized in conjunction with
information geometry (IG) [2] for the purpose of developing complexity indicators of
statistical models. From the perspective of this hybrid framework, such complexity indica-
tors can be understood as being quantitative measures that describe the complication of
inferring macroscopic predictions about statistical models. In this context, the difficulty of
making macroscopic predictions is attributed to the fact that statistical models intrinsically
reflect only partial information about the microscopic degrees of freedom of the system
being modeled. Initial theoretical investigation in this direction, quoted as the Information
Geometric Approach to Chaos (IGAC), was originally proposed by Cafaro in his physics Ph.D.
doctoral dissertation in [3].

A general summary of the IGAC framework is described as follows [4,5]: upon
identifying the microscopic degrees of freedom of a complex system, one must obtain data
and choose important information constraints on the system. Entropic methods are then
utilized to obtain an initial, static statistical model of the system. In this way, the system
is described by a statistical model specified in terms of probability distributions that are
characterized by statistical macrovariables. The statistical macrovariables are determined
by the data and the specific functional expression of the information constraints used
to implement statistical inferences. The next step in the theoretical scheme is concerned
with the temporal evolution of the system. If it is assumed that the system changes, then
the corresponding statistical model evolves from its initial to final configurations in a
manner specified by Entropic Dynamics (ED, [6]). The ED framework can be viewed as
a form of constrained information dynamics that is formulated on statistical manifolds,
the elements of which are probability distributions. These distributions, in turn, are in
one-to-one relation with an appropriate set of statistical macrovariables that determine a
parameter space, where the latter serves to provide a suitable parameterization of points
on the original statistical manifold.

Within the context of ED, the change of probability distributions is described in
terms of a principle of entropic inference. Specifically, beginning with a known initial
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configuration, change toward the final configuration happens by the maximization of
the logarithmic relative entropy (known as the Maximum relative Entropy method—or
MrE method in brief, [1]) between any two successive intermediate configurations. We
emphasize that ED specifies the expected rather than the actual dynamical paths of the
system. Inferences within the ED framework depends on the data and functional form of
the selected information constraints used in the MrE algorithm. Indeed, modeling strategies
of this kind can only be corroborated a posteriori. This fact implies that in the event inferred
predictions fail to match experimental measurements, a new set of information constraints
should be chosen. This feature of the MrE algorithm is of critical significance and was
recently re-examined by Cafaro and Ali in [7].

The change of probability distributions characterized by the maximization algorithm
outlined above prescribes a geodesic evolution for the statistical macrovariables [1]. The
Fisher–Rao information metric [2] yields a measure of distance between any two dissimilar
probability distributions on a statistical manifold. The notion of distance between elements
of a statistical manifold can be regarded as the degree of distinguishability between any two
different probability distribution functions. Once the information metric has been obtained,
differential geometric techniques can be readily applied to study the geometry of the curved
statistical manifold. Broadly speaking, standard Riemannian geometric quantities, such as
Christoffel connection coefficients of the second kind, Riemannian curvature tensor, Ricci
tensor, Ricci scalar curvature, Weyl anisotropy tensor, sectional curvatures, Killing fields
and Jacobi fields (including the IG analogue of Lyapunov exponents) can be calculated in
the usual fashion. In particular, the chaoticity (i.e., temporal complexity) of such statistical
models can be analyzed via appropriately selected indicators, such as the signs of the Ricci
scalar and sectional curvatures of the statistical manifold, non-vanishing Weyl anisotropy
tensor, the asymptotic temporal behavior of Jacobi fields and the existence of Killing
vectors. Along with the various indicators mentioned above, the notion of complexity
within the IGAC framework can also be characterized by the Information Geometric Entropy
(IGE), originally proposed in [3]. We make reference to the Ali–Cafaro effort in [8] for a
more extensive summary of the IGAC framework that incorporates a set of remarks on
entropic evolution and the MrE algorithm. For a presentation of alternative information
geometric descriptions of complexity, we suggest the investigation by Felice, Cafaro and
Mancini in [5]. While we certainly appreciate the power of the synthetic, non-component
approach to tensor analysis commonly used in theoretical physics (for instance, see [9]), we
have nevertheless chosen to employ the component approach in the present paper. In our
opinion, the applied nature of our works can be formulated and analyzed more efficiently
(and transparently) within the component approach to tensor calculus.

In the next section, we introduce suitable indicators of complexity within the IGAC.

2. Indicators of Complexity

In this section, we introduce three indicators of complexity within the context of the
IGAC framework. We present the IGE, the curvature of the statistical manifold, and finally,
the notion of Jacobi fields arising from the equation of geodesic deviation.

2.1. Information Geometric Entropy

We begin this subsection by discussing the IGE. Assuming the elements {p(x; θ)} of
an n-dimensional statistical manifoldMs are parameterized by n, real-valued variables(
θ1,. . . , θn), the statistical manifold is defined by the set

Ms
def
=
{

p(x; θ) : θ =
(

θ1,. . . , θn
)
∈ D(tot)

θ

}
. (1)
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We point out that the quantity x in Equation (1) denotes microvariables belonging to
the microspace X , whereas the macrovariables θ appearing in Equation (1) are elements of
the parameter space D(tot)

θ defined by

D(tot)
θ

def
=

n⊗
j=1

Iθ j = (Iθ1 ⊗ Iθ2 . . . ⊗ Iθn) ⊆ Rn. (2)

The quantity Iθ j with 1 ≤ j ≤ n in Equation (2) is a subset of Rn that denotes the
full range of admissible values of the statistical macrovariables θ j. The IGE serves as an
indicator of temporal complexity associated with geodesic paths in the IGAC framework.
The IGE is given by

SMs(τ)
def
= log ṽol[Dθ(τ)], (3)

where the average dynamical statistical volume ṽol[Dθ(τ)] is defined as

ṽol[Dθ(τ)]
def
=

1
τ

∫ τ

0
vol
[
Dθ

(
τ′
)]

dτ′. (4)

We remark that the temporal averaging operation is denoted by the tilde symbol in
Equation (4). Furthermore, the volume vol[Dθ(τ

′)] appearing on the RHS of Equation (4)
is given by

vol
[
Dθ

(
τ′
)] def

=
∫
Dθ(τ′)

ρ
(

θ1,. . . , θn
)

dnθ, (5)

where ρ
(
θ1,. . . , θn) is known as the Fisher density and is equal to the square root of the

determinant g(θ) of the Fisher–Rao information metric tensor gµν(θ),

ρ
(

θ1,. . . , θn
)

def
=
√

g(θ). (6)

The Fisher–Rao information metric tensor gµν(θ) is defined as

gµν(θ)
def
=
∫

p(x|θ)∂µ log p(x|θ)∂ν log p(x|θ)dx, (7)

where µ, ν = 1,. . . , n for an n-dimensional manifold and ∂µ
def
= ∂

∂θµ . The volume vol[Dθ(τ
′)]

in Equation (5) can be recast in a more crystalline manner for cases involving statistical
manifolds whose information metric tensor has a determinant that can be expressed in a
factorized form as follows,

g(θ) = g
(

θ1,. . . , θn
)
=

n

∏
j=1

gj

(
θ j
)

. (8)

By using the factorized form of the determinant, the IGE appearing in Equation (3)
can be expressed as

SMs(τ) = log

{
1
τ

∫ τ

0

[
n

∏
j=1

(∫ τ0+τ′

τ0

√
gj
[
θ j(ξ)

]dθ j

dξ
dξ

)]
dτ′
}

. (9)

Within the IGAC framework, the leading asymptotic behavior of SMs(τ) in Equation (9)
is employed to specify the complexity of the statistical model under investigation. There-
fore, it is quite instructive to take into consideration the quantity

S (asymptotic)
Ms

(τ) ≈ lim
τ→∞

[SMs(τ)], (10)
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that is, the leading asymptotic term in the expression of the IGE. The integration space
Dθ(τ

′) in Equation (5) is defined by

Dθ

(
τ′
) def
=
{

θ : θ j(τ0) ≤ θ j ≤ θ j(τ0 + τ′
)}

, (11)

where θ j = θ j(ξ) with τ0 ≤ ξ ≤ τ0 + τ′ and τ0 denotes the initial value of the affine
parameter ξ such that

d2θ j(ξ)

dξ2 + Γj
ik

dθi

dξ

dθk

dξ
= 0. (12)

The domain of integration Dθ(τ
′) in Equation (11) is an n-dimensional subspace

of D(tot)
θ . The elements of D(tot)

θ are n-dimensional macrovariables {θ} whose compo-
nents θ j are bounded by the limits of integration θ j(τ0) and θ j(τ0 + τ′). The temporal
functional form of such limits is determined by the integration of the geodesic equations
in Equation (12).

The IGE evaluated at a particular instant is specified by the logarithm of the volume of
the effective parameter space probed by the system at that instant. In order to coarse-grain
the possibly very complex details of the entropic dynamical characterization of the system,
however, the process of temporal averaging has been employed. Moreover, in order to
remove the effects of potential transient features that may enter the calculation of the
expected value of the volume of the effective parameter space, only its asymptotic temporal
behavior is taken into consideration. For these reasons, it is evident that the IGE serves as
an asymptotic, coarse-grained complexity indicator of dynamical systems in the presence
of partial information. For additional specifics concerning the IGE, we refer the interested
reader to [8,10].

As a conclusive side remark, we emphasize that it would be interesting to characterize
the tendency to increase of the entropy of a physical system that approaches equilibrium
as specified by the Boltzmann H theorem and the second law of thermodynamics [11] from
an information geometric perspective. For a recent information geometric interpretation
of the entropy production, we refer to [12]. In particular, to understand the possible link
between the IGE and the Boltzmann–Shannon entropy, it would be important to study the
Kaniadakis Sκ entropy (with κ being the so-called deformation parameter) and comprehend
how the statistical mechanics based on Sκ can be regarded as a natural generalization of the
equilibrium Boltzmann–Gibbs statistical mechanics [13]. We leave these intriguing lines of
investigations to future efforts.

2.2. Curvature

We present here the notion of curvature of statistical manifolds. We begin by recalling
that an n-dimensional, C∞ differentiable manifold is defined by a set of pointsM endowed
with coordinate systems CM fulfilling the following two requirements: (1) each element
c ∈ CM is a one-to-one mapping fromM to an open subset of Rn; (2) given any one-to-one
mapping η :M→ Rn, we have that ∀c ∈ CM, η ∈ CM ⇔ η ◦ c−1 is a C∞ diffeomorphism.

In this paper, we focus on Riemannian manifolds (M, g) where the points of M
are probability distribution functions. It is worth noting that the manifold structure of
M is insufficient to specify in a unique manner the Riemannian metric g. On a formal
level, an infinite number of Riemannian metrics can be defined on the manifoldM. In
the context of information geometry however, the selection of the Fisher–Rao information
metric (see Equation (7)) as the metric underlying the Riemannian geometry of probability
distributions [2,14,15] serves as a primary working assumption. The characterization
theorem attributed to Cencov [16] gives significant support for this particular choice of
metric. In this characterization theorem, Cencov demonstrates that, up to any arbitrary
constant scale factor, the information metric is the only Riemannian metric that is invariant
under congruent embeddings (that is, under a family of probabilistically meaningful
mappings) of the Markov morphism [16,17].
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Upon introducing the Fisher–Rao information metric gµν(θ) in Equation (7), standard
differential geometric techniques can be used on the space of probability distributions to
describe the geometry of the statistical manifoldMs. The Ricci scalar curvature RMs is
one example of such a geometric property, whereRMs is defined as [18]

RMs
def
= gµνRµν, (13)

where gµνgνρ = δ
µ
ρ and gµν =

(
gµν

)−1. The Ricci tensorRµν appearing in Equation (13) is
given as [18]

Rµν
def
= ∂γΓγ

µν − ∂νΓλ
µλ + Γγ

µνΓη
γη − Γη

µγΓγ
νη . (14)

The Christoffel connection coefficients Γρ
µν of the second kind that specify the Ricci

tensor in Equation (14) are [18]

Γρ
µν

def
=

1
2

gρσ
(
∂µgσν + ∂νgµσ − ∂σgµν

)
. (15)

Next we consider geodesic curves on statistical manifolds. A geodesic on an n-
dimensional statistical manifold Ms can be interpreted as the maximum probability
trajectory explored by a complex system during its change from an initial θinitial to fi-
nal macrostates θfinal, respectively. Each point along a geodesic path corresponds to a
macrostate specified by the macroscopic variables θ =

(
θ1,. . . , θn). In the context of ED,

each component θ j with j = 1,. . . , n is a solution of the geodesic equation [6],

d2θk

dξ2 + Γk
lm

dθl

dξ

dθm

dξ
= 0. (16)

At this juncture, we reiterate the fact that each macrostate θ is in one-to-one correspon-
dence with the probability distribution p(x|θ), with the latter characterizing a distribution
of the microstates x. It is useful to recognize that the scalar curvatureRMs can be readily
recast as the sum of sectional curvatures K

(
eρ, eσ

)
of all tangent space planes TpMs with

p ∈ Ms spanned by pairs of orthonormal basis vectors
{

eρ = ∂θρ(p)

}
,

RMs
def
= Rα

α
def
= ∑

ρ 6=σ

K
(
eρ, eσ

)
, (17)

where K(a, b) is given by [18]

K(a, b) def
=

Rµνρσaµbνaρbσ(
gµσgνρ − gµρgνσ

)
aµbνaρbσ

, (18)

with
a def
= ∑

ρ

〈a, eρ〉eρ, b def
= ∑

ρ

〈b, eρ〉eρ, and
〈
eρ, eσ

〉 def
= δσ

ρ . (19)

We observe that the Riemann curvature tensorRαβρσ [18] is fully determined by the
sectional curvatures K

(
eρ, eσ

)
where

Rα
βρσ

def
= gαγRγβρσ

def
= ∂σΓα

βρ − ∂ρΓα
βσ + Γα

λσΓλ
βρ − Γα

λρΓλ
βσ. (20)

The negativity of the Ricci scalar curvature RMs is a strong (i.e., a sufficient but
not necessary) criterion of local dynamical instability. Moreover, the compactness of the
manifoldMs is required to specify genuine chaotic (that is, temporally complex) dynamical
systems. In particular, it is evident from Equation (17) that the negativity ofRMs implies
that negative principal curvatures (i.e., extrema of sectional curvatures) are more dominant
than positive ones. For this reason, the negativity ofRMs is a sufficient but not necessary
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requirement for local instability of geodesic flows on statistical manifolds. It is worth
mentioning the possible circumstance of scenarios in which negative sectional curvatures
are present, but the positive curvatures dominate in the sum of Equation (17) such that
RMs is a non-negative quantity despite flow instability in those directions. For additional
mathematical considerations related to the concept of curvature in differential geometry,
we refer to [19].

2.3. Jacobi Fields

We introduce here the concept of the Jacobi vector field. It is worth noting that the anal-
ysis of stability/instability arising in natural (geodesic) evolutions is readily accomplished
by means of the Jacobi–Levi–Civita (JLC) equation for geodesic deviation. This equation is
familiar in both theoretical physics (for example, in the case of General Relativity) as well
as in Riemannian geometry. The JLC equation describes in a covariant manner, the degree
to which neighboring geodesics locally scatter. In particular, the JLC equation effectively
connects the curvature properties of an underlying manifold to the stability/instability of
the geodesic flow induced thereupon. Indeed, the JLC equation provides a window into a
diverse and mostly unexplored field of study concerning the connections among topology,
geometry and geodesic instability, and thus to complexity and chaoticity. The use the JLC
equation in the setting of information geometry originally appeared in [20].

In what follows, we take into consideration two neighboring geodesic paths θα(ξ)
and θα(ξ) + δθα(ξ), where the quantity ξ denotes an affine parameter satisfying the
geodesic equations,

d2θα

dξ2 + Γα
βγ(θ)

dθβ

dξ

dθγ

dξ
= 0, (21)

and
d2[θα + δθα]

dξ2 + Γα
βγ(θ + δθ)

d
[
θβ + δθβ

]
dξ

d[θγ + δθγ]

dξ
= 0, (22)

respectively. Noting that to first order in δθα,

Γα
βγ(θ + δθ) ≈ Γα

βγ(θ) + ∂ηΓα
βγδθη , (23)

after some algebraic calculations, to first order in δθα, Equation (22) becomes

d2θα

dξ2 +
d2(δθα)

dξ2 + Γα
βγ(θ)

dθβ

dξ

dθγ

dξ
+ 2Γα

βγ(θ)
dθβ

dξ

d(δθγ)

dξ
+ ∂ηΓα

βγ(θ)δθη dθβ

dξ

dθγ

dξ
= 0. (24)

The equation of geodesic deviation can be found by subtracting Equation (21) from
Equation (24),

d2(δθα)

dξ2 + 2Γα
βγ(θ)

dθβ

dξ

d(δθγ)

dξ
+ ∂ηΓα

βγ(θ)δθη dθβ

dξ

dθγ

dξ
= 0. (25)

Equation (25) can be conveniently recast via the covariant derivatives (see [21], for
instance) along the curve θα(ξ),

D2(δθα)

Dξ2 =
d2(δθα)

dξ2 + ∂βΓα
ρσ

dθβ

dξ
δθρ dθσ

dξ
+ 2Γα

ρσ
d(δθρ)

dξ

dθσ

dξ
+

− Γα
ρσΓσ

κλδθρ dθκ

dξ

dθλ

dξ
+ Γα

ρσΓρ
κλδθκ dθλ

dξ

dθσ

dξ
. (26)



Foundations 2021, 1 51

The covariant derivative is defined as Dξ δθα def
= ∂ξδθα + Γα

ξκδθκ with Dξ
def
= D/Dξ

and ∂ξ
def
= ∂/∂ξ, respectively. By combining Equations (25) and (26), and performing some

tensor algebra calculations, we obtain

D2(δθα)

Dξ2 =
(

∂ρΓα
ησ − ∂ηΓα

ρσ + Γα
λσΓλ

ηρ − Γα
ηλΓλ

ρσ

)
δθη dθρ

dξ

dθσ

dξ
. (27)

Finally, the geodesic deviation equation expressed in component form becomes

D2 Jα

Dξ2 +Rα
ρησ

dθρ

dξ
Jη dθσ

dξ
= 0, (28)

where Jα def
= δθα is the α-component of the Jacobi vector field [18]. Equation (28) is known

formally as the JLC equation. We observe from the JLC equation in Equation (28) that
neighboring geodesics accelerate relative to each other at a rate measured in a direct manner
by the Riemannian curvature tensor Rαβγδ. The quantity Jα is defined as,

Jα = δθα def
= δφθα =

(
∂θα(ξ; φ)

∂φ

)
τ=constant

δφ, (29)

where {θµ(ξ; φ)} denotes the one-parameter φ family of geodesics whose evolution is
specified by means of the affine parameter ξ. The Jacobi vector field intensity JMs on the
manifoldMs is given by

JMs
def
=
(

Jαgαβ Jβ
)1/2

. (30)

In general, the JLC equation is intractable even at low dimensions. However, in the
case of isotropic manifolds, it reduces to

D2 Jµ

Dξ2 +KJµ = 0. (31)

The sectional curvature K in Equation (31) assumes a constant value throughout the
manifold. In particular, when K < 0, unstable solutions of Equation (31) become

Jµ(ξ) =
ω

µ
0√
−K

sinh
(√
−Kξ

)
, (32)

with initial conditions Jµ(0) = 0 and dJµ(0)
dξ = ωµ(0) = ω

µ
0 6= 0, respectively, for any

1 ≤ µ ≤ n with n being the dimensionality of the underlying manifold. For additional
remarks concerning the JLC equation, we refer to [18,21,22].

We point out that it would be intriguing to understand the behavior of the Jacobi
vector fields within the geometry of the Kaniadakis statistical mechanics emerging from
a one deformation parameter κ [13]. We leave this fascinating line of study to future
scientific inquiry. For a schematic description of the behavior of the IGE and the Jacobi
field for two-dimensional surfaces with distinct (Gaussian) curvatures, we refer to Table 1
and Figure 1.

In the next section, making use of the complexity quantifiers introduced in Equations (3),
(17), and (30), we present numerous illustrative examples within the IGAC framework.
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Table 1. Schematic description of the behavior of the IGE and the Jacobi field for different types
of two-dimensional surfaces characterized by distinct constant values of their Gaussian curvature.
For such surfaces, the sectional and the scalar curvatures coincide, while the Gaussian curvature is
simply one-half of the scalar curvature. In particular, positive curvature causes geodesics to converge
while negative curvature causes geodesics to spread out. More specifically, in flat, positively, and
negatively curved manifolds, the geodesic deviation equation yields deviations of nearby geodesics
that exhibit linear, oscillatory, and exponential behaviors, respectively. Moreover, the volumes of the
manifolds regions explored during the entropic motion tend to increase while transitioning from
positively to negatively curved manifolds. Correspondingly, the IGE exhibits its maximum growth
(that is, linear growth) in the presence of exponential instability on negatively curved manifolds.

Surface Curvature Jacobi Field Behavior IGE Behavior

sphere positive oscillatory sublogarithmic
cylinder zero linear logarithmic

hyperboloid negative exponential linear

0.2 0.4 0.6 0.8 1.0

Τ

-1.0

-0.5

0.0

0.5
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HaL

0.2 0.4 0.6 0.8 1.0

Τ
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3
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HbL
0.0 0.2 0.4 0.6 0.8 1.0

Τ1.0

1.2

1.4

1.6

1.8

2.0

S

HcL

Figure 1. Graphical depictions of the links among curvature, Jacobi fields, and IGE. In (a), we depict the constant scalar
curvature of a positively curved manifold (solid line), a flat manifold (dashed line), and a negatively curved manifold
(dotted line). In (b), we illustrate the behavior of the normal components of the Jacobi fields quantifying how nearby
geodesics are changing in the normal direction (that is, the direction that is orthogonal to the unit tangent vector of the
geodesic) as we move along the geodesics. In the positive, flat, and negative curvature cases, we observe oscillatory behavior
(solid line), linear behavior (dashed line), and exponential behavior (dotted line), respectively. Finally, in (c), we plot the
temporal behavior of the IGE in the positive (sublogarithmic behavior, solid line), flat (logarithmic behavior, dashed line),
and negative (linear behavior, dotted line) curvature cases.

3. Applications

In this section, with the help of the three complexity quantifiers introduced above, we
report the results of several applications of the IGAC in which the complexity of geodesic
trajectories on statistical manifolds are quantified. We present these illustrative examples in
a chronological order, from the first one to the last one. For brevity, we omit technical details
and confine the presentation to our own information geometric approach to complexity.
Early notions and applications of the IGAC originally appeared in [23–25]. For a recent
review of the IGAC framework, we refer to [4,8,26,27] and [10], respectively.

3.1. Uncorrelated Gaussian Statistical Models

In [20,28], the IGAC framework was employed to study the information geometric
features of a system of arbitrary nature, characterized by l degrees of freedom. Each of
these degrees of freedom is described by two relevant pieces of information, namely its
mean and variance. The infinitesimal line element for this model is given by [28],

ds2 def
=

l

∑
k=1

1
σ2

k
dµ2

k +
2
σ2

k
dσ2

k , (33)
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with µk and σk denoting the expectation value and the square root of the variance of the
microvariable xk, respectively. It was found that the family of statistical models associated
to such a system is Gaussian in form. Specifically, it was determined that this set of Gaussian
distributions yields a non-maximally symmetric 2l-dimensional statistical manifoldMs
whose scalar curvatureRMs assumes a constant negative value that is proportional to the
number of degrees of freedom of the system,

RMs = −l. (34)

It was determined that the system explores volume elements onMs at an exponential
rate. In particular, the IGE SMs was found to increase in a linear fashion in the asymptotic
temporal limit (more precisely, in asymptotic limit of the statistical affine parameter τ) and
is proportional to the number of degrees of freedom l,

SMs(τ)
τ→∞∼ lλτ. (35)

The quantity λ in Equation (35) denotes the maximal positive Lyapunov exponent that
specifies the statistical model. Geodesic trajectories onMs were found to be hyperbolic
curves. Finally, it was determined that in the asymptotic limit, the Jacobi vector field
intensity JMs is exponentially divergent and is proportional to the number of degrees of
freedom l,

JMs(τ)
τ→∞∼ l exp(λτ). (36)

Given that the exponential divergence of the Jacobi vector field intensity JMs is an
established classical feature of chaos, based on the results displayed in Equations (34)–(36),
the authors suggest thatRMs , SMs and JMs each behave as legitimate measures of chaotic-
ity, with each indicator being proportional to the number of Gaussian-distributed mi-
crostates of the system. Although this result was verified in the context of this special
scenario, the proportionality among RMs , SMs and JMs constitutes the first known ex-
ample appearing in the literature of a possible connection among information geometric
indicators of chaoticity obtained from probabilistic modeling of dynamical systems.In this
first example, we have compared all three measures RMs , SMs and JMs . Although we
have not performed such a comparative analysis in all applications, we shall attempt to
mention curvature and/or Jacobi vector field intensity behaviors whenever possible. Our
emphasis here is especially on our entropic measure of complexity. For more details on the
other types of complexity indicators, we refer to our original works cited in this manuscript.

3.2. Correlated Gaussian Statistical Models

In [29], the IGAC framework was used to analyze the information constrained dynam-
ics of a system comprised of two correlated, Gaussian-distributed microscopic degrees of
freedom each having the same variance. The infinitesimal line element for this model is
given by [29]

ds2 def
=

1
σ2

[
1

1− r2 dµ2
x +

1
1− r2 dµ2

y −
2r

1− r2 dµxdµy + 4dσ2
]

, (37)

with µx and µy denoting the expectation values of the microvariables x and y. The quantity
σ2, instead, is the variance while r is the usual correlation coefficient between x and y. The
scalar curvatureRMs of the manifold with line element in Equation (37) isRMs = −3/2.
The inclusion of microscopic correlations give rise to asymptotic compression of the statis-
tical macrostates explored by the system at a faster rate than that observed in the absence
of microscopic correlations. Specifically, it was determined that in the asymptotic limit

[exp(SMs(τ))]correlated
τ→∞∼ F (r) · [exp(SMs(τ))]uncorrelated, (38)
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where the function F (r) in Equation (38) with 0 ≤ F (r) ≤ 1 is defined as [29]

F (r) def
=

1

2
5
2

[√
4(4− r2)

(2− 2r2)
2

(
2 + r

4(1− r2)

)− 3
2
]

. (39)

The function F (r) is a monotone decreasing compression envelope ∀r ∈ (0, 1). This
result provides an explicit link between correlations at the microscopic level and complexity
at the macroscopic level. It also furnishes a transparent and concise description of the
functional change of the macroscopic complexity of the underlying statistical manifold
caused by the occurrence of microscopic correlations.

3.3. Inverted Harmonic Oscillators

Generally speaking, the fundamental issues addressed by the General Theory of
Relativity are twofold: firstly, one wishes to understand how the geometry of spacetime
evolves in response to the presence of mass–energy distributions; secondly, one seeks to
investigate how configurations of mass–energy move in dynamical spacetime geometry.
By contrast, within the IGAC framework, one is concerned only with the manner in which
systems move within a given statistical geometry, while the evolution of the statistical
manifold itself is neglected. The recognition that there exist two separate and distinct
characteristics to consider regarding the interplay between mass–energy and spacetime
geometry served as a catalyst in the development of the IGAC framework, ultimately
leading to a rather interesting finding. The first result obtained in this novel research
direction was proposed by Caticha and Cafaro in [30]. In that article, the possibility of
utilizing well established principles of inference to obtain Newtonian dynamics from
relevant prior information encoded in a suitable statistical manifold was investigated. The
primary working assumption in that derivation was the assumed existence of an irreducible
uncertainty in the location of particles. This uncertainty requires the state of a particle to
be described by a probability distribution. The resulting configuration space is therefore a
statistical manifold whose Riemannian geometry is specified by the Fisher–Rao information
metric. The expected trajectory is a consequence of the MrE method, with the latter being
regarded as a principle of inference. An unexpected consequence of this approach is that
no additional physical postulates such as an equation of motion, principle of least action,
nor the concept of momentum, mass, phase space or external time are required. Newton’s
mechanics involving any number of self-interacting particles as well as particles interacting
with external fields is entirely recovered by the resulting entropic dynamics. Indeed, a
powerful result of this approach is the fact that interactions among particles as well as
particle masses are all justified in terms of the underlying statistical manifold.

Our next example will be of a more applied nature. In [31,32], Zurek and Paz explored
the effects of decoherence in quantum chaos by analyzing a single unstable harmonic
oscillator with frequency Ω and potential V(x),

V(x) def
= −Ω2x2

2
, (40)

coupled to an external environment. They determined that in the reversible classical limit,
the von Neumann entropy of such a system increases linearly at a rate determined by the
Lyapunov exponent Ω according to

S (chaotic)
quantum(τ)

τ→∞∼ Ωτ. (41)

Building upon the results obtained in [30], an information geometric analogue of the
Zurek–Paz quantum chaos criterion in the classical reversible limit was proposed in [33,34].
In these works, the IGAC framework was employed to study a set of l, three-dimensional,
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anisotropic, uncoupled, inverted harmonic oscillators (IHO) with an Ohmic distributed
frequency spectrum.In this example, the infinitesimal line element is given by

ds2 def
= [1−Φ(θ)]δµν(θ)dθµdθν, (42)

where Φ(θ) is defined as

Φ(θ) =
l

∑
k=1

uk(θ), (43)

with uk(θ)
def
= −(1/2)ω2

k θ2
k and ωkbeing the frequency of the k-th inverted harmonic oscilla-

tor. Neglecting mathematical details, it was demonstrated in [33,34] that the asymptotic
temporal behavior of the IGE for such a system becomes

SM(l)
IHO

(τ; ω1,. . . , ωl)
τ→∞∼ Ωτ, (44)

where,

Ω def
=

l

∑
i=1

ωi, (45)

and ωi with 1 ≤ i ≤ l is the frequency of the ith IHO. Equation (44) indicates an asymptotic,
linear IGE growth for the set of IHOs and can be regarded as an extension of the result
of Zurek and Paz appearing in [31,32] to an ensemble of anisotropic, uncoupled, inverted
harmonic oscillators in the context of the IGAC. We remark that Equation (44) was proposed
as the classical IG analogue of Equation (41) in [33,34].

3.4. Quantum Spin Chains

In [35,36], the IGAC was used to study the ED on statistical manifolds whose ele-
ments are classical probability distribution functions routinely employed in the study
of regular and chaotic quantum energy level statistics. Specifically, an IG description of
the chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin
chain immersed in a tilted (transverse) external magnetic field was presented. The IGAC
of a Poisson distribution coupled to an Exponential bath (that specifies a spin chain in
a transverse magnetic field and corresponds to the integrable case) along with that of a
Wigner–Dyson distribution coupled to a Gaussian bath (that specifies a spin chain in a tilted
magnetic field and corresponds to the chaotic case) were investigated. The line elements in
the integrable and chaotic cases are given by

ds2
integrable

def
= ds2

Poisson + ds2
Exponential =

1
µ2

A
dµ2

A +
1

µ2
B

dµ2
B, (46)

and,

ds2
chaotic

def
= ds2

Wigner−Dyson + ds2
Gaussian =

4
µ′2A

dµ′2A +
1

σ′2B
dµ′2B +

2
σ′2B

dσ′2B , (47)

respectively. In Equation (46), µA and µBare the average spacing of the energy levels and
the average intensity of the magnetic field, respectively. A similar notation is employed for
the second scenario described in Equation (47) where, clearly, σ′2B denotes the variance of
the intensity of the magnetic field. Remarkably, it was determined that in the former case,
the IGE shows asymptotic logarithmic growth,

S (integrable)
Ms

(τ)
τ→∞∼ c log(τ) + c̃, (48)

whereas in the latter case, the IGE shows asymptotic linear growth,

S (chaotic)
Ms

(τ)
τ→∞∼ Kτ. (49)
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We emphasize that the quantities c and c̃ in Equation (48) are integration constants
that depend upon the dimensionality of the statistical manifold and the boundary con-
straint conditions on the statistical variables, respectively. The quantity K appearing
in Equation (49) denotes a model parameter describing the asymptotic temporal rate of
change of the IGE. The findings described above suggest that the IGAC framework may
prove useful in the analysis of applications involving quantum energy level statistics.
It is worth noting that in such cases, the IGE effectively serves the role of the standard
entanglement entropy used in quantum information science [37,38].

3.5. Statistical Embedding and Complexity Reduction

Expanding upon the analysis presented in [39], Cafaro and Mancini utilized the IGAC
framework in [40] to study the 2l-dimensional Gaussian statistical modelMs induced by an
appropriate embedding within a larger 4l-dimensional Gaussian manifold. The geometry
of the 4l-dimensional Gaussian manifold is defined by a Fisher–Rao information metric
gµν with non-vanishing off-diagonal elements. It should be noted that these non-vanishing
off-diagonal terms arise due to the occurrence of macroscopic correlation coefficients ρk
with 1 ≤ k ≤ l that specify the embedding constraints among the statistical variables on
the larger manifold. The infinitesimal line element is given by [40]

ds2 def
=

l

∑
k=1

1
σ2

2k−1

[
dµ2

2k−1 + 2ρ2k−1dµ2k−1dσ2k−1 + 2dσ2
2k−1

]
, (50)

with ρ2k−1defined as

ρ2k−1
def
=

∂µ2k
∂µ2k−1

∂µ2k
∂σ2k−1[

1 +
(

∂µ2k
∂µ2k−1

)2
]1/2[

2 + 1
2

(
∂µ2k

∂σ2k−1

)2
]1/2 , (51)

where σ2k = σ2k−1 and µ2k = µ2k(µ2k−1, σ2k−1)for any 1 ≤ k ≤ l. Two significant results
were obtained. First, a power law decay of the IGE at a rate determined by the correlation
coefficients ρk was observed

SMs(τ; l, λk, ρk)
τ→∞∼ log

[
Λ(ρk) +

Λ̃(ρk, λk)

τ

]l

, (52)

with ρk = ρs ∀k and s = 1, . . . , l, where

Λ(ρk)
def
=

2ρk

√
2−ρ2

k

1+
√

∆(ρk)
, Λ̃(ρk, λk)

def
=

√
∆(ρk)(2−ρ2

k) log[Σ(ρk ,λk ,α±)]
ρkλk

,

and α±(ρk)
def
= 1

2

(
3±

√
∆(ρk)

)
.

(53)

The quantity Σ(ρk, λk, α±) is a strictly positive function of its arguments for 0 ≤ ρk < 1
and is given by [40]

Σ(ρk, λk, α±)
def
= − Ξk

4λk

1 +
√

∆(ρk)

1−
√

∆(ρk)

√
2α−(ρk)

α+(ρk)
, (54)

where Ξk and λk are real, positive constants of integration, and

∆(ρk)
def
= 1 + 4ρ2

k . (55)

Equation (52) represents the first main finding reported in [40] and can be interpreted
as a quantitative indication that the IGC of a system decreases in response to the emergence
of correlational structures. Second, it was demonstrated that the presence of embedding
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constraints among the Gaussian macrovariables of the larger 4l-dimensional manifold
results in an attenuation of the asymptotic exponential divergence of the Jacobi field
intensity on the embedded 2l-dimensional manifold. Neglecting mathematical details, it
was determined in [40] that in the asymptotic limit τ � 1,

0 ≤
J2l-embedded
Ms

(τ)

J4l-larger
Ms

(τ)
< 1. (56)

Equation (56) constitutes the second main finding reported in [40]. The observed
attenuation of the asymptotic exponential divergence of the Jacobi vector field associated
with the larger 4l-manifold, suggests that the occurrence of such embedding constraint
relations results in an asymptotic compression of the macrostates explored on the statistical
manifold Ms. These two findings serve to advance, in a non-trivial manner, the goal
of developing a description of complexity of either macroscopically or microscopically
correlated, multi-dimensional Gaussian statistical models relevant in the modeling of
complex systems.

3.6. Entanglement Induced via Scattering

Guided by the original study appearing in [41], the IGAC framework was employed
to furnish an IG viewpoint on the phenomena of quantum entanglement emerging via
s-wave scattering between interacting Gaussian wave packets in [42,43]. Within the IGAC
framework, the pre and post quantum scattering scenarios associated with elastic, head-
on collision are hypothesized to be macroscopic manifestations arising from underlying
microscopic statistical structures. By exploiting this working hypothesis, the pre and post
quantum scattering scenarios were modeled by uncorrelated and correlated Gaussian
statistical models, respectively.Using the standard notation used so far in this article, the
infinitesimal line elements in the absence and presence of correlations are given by

ds2
no-correlations =

1
σ2

[
dµ2

x + dµ2
y + 4dσ2

]
, (57)

and,

ds2
correlations

def
=

1
σ2

[
1

1− r2 dµ2
x +

1
1− r2 dµ2

y −
2r

1− r2 dµxdµy + 4dσ2
]

, (58)

respectively. The scalar curvature RMs of the manifolds with line elements in
Equations (57) and (58) is RMs = −3/2. Using such a hybrid modeling approach en-
abled the authors to express the entanglement strength in terms of the scattering potential
and incident particle energy. Moreover, the manner in which the entanglement dura-
tion is related to the scattering potential and incident particle energy was furnished with
a possible explanation. Finally, the link between complexity of informational geodesic
paths and entanglement was discussed. In particular, it was demonstrated that in the
asymptotic limit,

[exp(SMs(τ))]correlated
τ→∞∼ F (r) · [exp(SMs(τ))]uncorrelated, (59)

where the function F (r) in Equation (59) with 0 ≤ F (r) ≤ 1 is defined as

F (r) def
=

√
1− r
1 + r

. (60)

The function F (r) is a monotone decreasing compression factor with 0 < r < 1. The
analysis proposed in [42,43] is a significant progress toward the understanding among the
concepts of entanglement and statistical micro-correlations, as well as the impact of micro-
correlations on the complexity of informational geodesic paths. The finding appearing in
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Equation (59) suggests that the IGAC construct may prove useful in developing a sound
IG perspective of the phenomenon of quantum entanglement.

3.7. Softening of Classical Chaos by Quantization

Expanding upon the original analysis presented in [44–46], the IGAC framework
was utilized to investigate the entropic dynamics and information geometry of a three-
dimensional Gaussian statistical model as well as the two-dimensional Gaussian statistical
model derived from the former model by introducing the following macroscopic informa-
tion constraint,

σxσy = Σ2, (61)

where Σ2 ∈ R+
0 . The quantities x and y label the microscopic degrees of freedom of the

system. The constraint given by Equation (61) resembles the standard minimum uncertainty
relation encountered in quantum mechanics [47]. The infinitesimal line elementsin the 3D-
and 2D-Gaussian statistical models are given by

ds2
3D

def
=

1
σ2

x
dµ2

x +
2
σ2

x
dσ2

x +
2
σ2

y
dσ2

y , (62)

and,

ds2
2D

def
=

1
σ2 dµ2

x +
4
σ2 dσ2, (63)

respectively. Note that the expectation value µy of the microvariable y is set equal to zero
in Equation (62), while σx = σ with σxσy = Σ2 in Equation (63). Furthermore, the scalar
curvatures corresponding to the 3D and 2D cases are equal toR3D = −1 andR2D = −1/2,
respectively. It was determined that the complexity of the 2D-Gaussian statistical model
specified by the IGE is relaxed when compared with the complexity of the 3D-Gaussian
statistical model,

S (2D)
Ms

(τ)
τ→∞∼

(
λ2D
λ3D

)
· S (3D)
Ms

(τ), (64)

with λ2D and λ3D being both positive model parameters (satisfying the condition λ2D ≤
λ3D) that express the asymptotic temporal rates of change of the IGE in the 2D and 3D
cases, respectively. Motivated by the connection between the macroscopic information
constraint (61) on the variances and the phase-space coarse-graining due to the Heisenberg
uncertainty relations, the authors suggest their work may shed light on the phenomenon
of classical chaos suppression arising from the process of quantization when expressed in
an IG setting. It is worth noting that a similar analysis was implemented in [48] where the
work in [47] was generalized to a scenario where—in conjunction with the macroscopic
constraint in Equation (61)—the microscopic degrees of freedom x and y of the system are
also correlated.

3.8. Topologically Distinct Correlational Structures

In [49], the asymptotic behavior of the IGE associated with either bivariate or trivariate
Gaussian statistical models, with or without micro-correlations, was analyzed by Felice and
coworkers. For correlated cases, several correlational configurations among the microscopic
degrees of freedom of the system were taken into consideration. It was found that the
complexity of macroscopic inferences is dependent on the quantity of accessible microscopic
information, as well as on how such microscopic information is correlated. Specifically, in
the mildly connected case defined by a trivariate statistical model with two correlations
among the three degrees of freedom of the system, the infinitesimal line element is([

ds2
](mildly connected)

trivariate

)
correlated

def
=

1
σ2

3− 4r
1− 2r2 dµ2 +

6
σ2 dσ2. (65)
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Moreover, the infinitesimal line element in the uncorrelated trivariate case is given by([
ds2
]

trivariate

)
uncorrelated

def
=

3
σ2 dµ2 +

6
σ2 dσ2. (66)

In Equations (65) and (66), µ, σ, and r denote the expectation value, the standard
deviation, and the correlation coefficient, respectively. It was determined that in the
asymptotic limit,(

exp
[
S (mildly connected)

trivariate (τ)
])

correlated

τ→∞∼ R̃(mildly connected)
trivariate (r)

(
exp

[
S (mildly connected)

trivariate (τ)
])

uncorrelated
, (67)

where

R̃(mildly connected)
trivariate (r) def

=

√
3(1− 2r2)

3− 4r
. (68)

In Equation (67), the quantity r is the micro-correlation coefficient. The function
R̃(mildly connected)

trivariate (r) shows non-monotone behavior in the correlation parameter r and

assumes a value of zero at the extrema of the permitted range r ∈
(
−
√

2/2,
√

2/2
)

. By
contrast, for closed bivariate configurations where all microscopic variables are correlated
with each other, the complexity ratio between correlated and uncorrelated cases presents
monotone behavior in the correlation parameter r. For example, in the fully connected
bivariate Gaussian case with µx = µy = µ and σx = σy = σ, the infinitesimal line element is([

ds2
](fully connected)

bivariate

)
correlated

def
=

2
σ2

1
1 + r

dµ2 +
4
σ2 dσ2. (69)

It was found that(
exp

[
S (fully connected)

bivariate (τ)
])

correlated

τ→∞∼ R̃(fully connected)
bivariate (r)

(
exp

[
S (fully connected)

bivariate (τ)
])

uncorrelated
, (70)

where
R̃(fully connected)

bivariate (r) def
=
√

1 + r. (71)

Finally, in the fully connected trivariate Gaussian case with trivariate models having
all microscopic variables correlated with each other, the infinitesimal line element is([

ds2
](fully connected)

trivariate

)
correlated

def
=

3
σ2

1
1 + 2r

dµ2 +
6
σ2 dσ2. (72)

It was determined in this case that(
exp

[
S (fully connected)

trivariate (τ)
])

correlated

τ→∞∼ R̃(fully connected)
trivariate (r)

(
exp

[
S (fully connected)

trivariate (τ)
])

uncorrelated
, (73)

where
R̃(fully connected)

trivariate (r) def
=
√

1 + 2r. (74)

These results imply that in the fully connected bivariate and trivariate configurations,
the ratios R̃(fully connected)

bivariate (r) and R̃(fully connected)
trivariate (r) both present monotone behavior in r

over the open intervals (−1, 1) and (−1/2, 1), respectively. On the other hand, in the mildly
connected trivariate scenario appearing in Equation (67), an extremum in the function
R̃(mildly connected)

trivariate (r) occurs at rpeak = 1/2 ≥ 0. Such a distinctly different behavior between
mildly and fully connected trivariate configurations can be attributed to the fact that
when making statistical inferences subject to the hypothesis of three positively correlated
Gaussian random variables, the system becomes frustrated because the maximum entropy
favorable state—characterized by minimum complexity—is incompatible with the initial
working hypothesis. Guided by these results, it was suggested in [49] that the impossibility
of realizing the maximally favorable state for specific correlational configurations among
microscopic degrees of freedom, viewed from an entropic inference perspective, yields an
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information geometric analogue of the statistical physics frustration effect that arises when
loops are present [50].

4. Final Remarks

In this paper, we discussed the primary results obtained by the authors and colleagues
over an extended period of work on the IGAC framework. A summary of the IGAC
applications can be found in Table 2. For ease of readability, we have chosen to omit
technicalities in our discussion. We are aware of several unresolved issues within the
IGAC framework, including a deep understanding of the foundational aspects of the IGE
measure of complexity. Further developments of the framework are necessary, especially
within a fully quantum mechanical setting. For a more detailed list on limitations and
future directions of the IGAC approach, we refer the interested reader to [8]. In particular,
we mentioned there that one of our main objectives in the near future is to extend our
comprehension of the relationship between the IGE and the Kolmogorov–Sinai dynamical
entropy [51], the coarse-grained Boltzmann entropy [51] and the von Neumann entropy [52],
depending upon the peculiarity of the system being investigated. Despite its limitations,
we are pleased that our theoretical modeling approach is steadily gaining interest in the
community of researchers. Indeed, there appears to be an increasing number of scientists
who either actively use, or who’s work is linked to the theoretical framework described in
the present brief feature review article [53–78].

Table 2. Schematic description of existing mathematical, classical, and quantum investigations within the IGAC.

Math & IGAC Classical & IGAC Quantum & IGAC

Micro and macro correlations Geometrization of Newtonian mechanics Spin chains and energy levels statistics
Statistical embeddings Inverted harmonic oscillators Scattering induced entanglement

Topology and correlational structures Macro effects from micro information Softening chaoticity by quantization
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