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Abstract: This article investigates the comparison of two groups based on the two-parameter logistic
item response model. It is assumed that there is random differential item functioning in item
difficulties and item discriminations. The group difference is estimated using separate calibration
with subsequent linking, as well as concurrent calibration. The following linking methods are
compared: mean-mean linking, log-mean-mean linking, invariance alignment, Haberman linking,
asymmetric and symmetric Haebara linking, different recalibration linking methods, anchored
item parameters, and concurrent calibration. It is analytically shown that log-mean-mean linking
and mean-mean linking provide consistent estimates if random DIF effects have zero means. The
performance of the linking methods was evaluated through a simulation study. It turned out that
(log-)mean-mean and Haberman linking performed best, followed by symmetric Haebara linking
and a newly proposed recalibration linking method. Interestingly, linking methods frequently
found in applications (i.e., asymmetric Haebara linking, recalibration linking used in a variant in
current large-scale assessment studies, anchored item parameters, concurrent calibration) perform
worse in the presence of random differential item functioning. In line with the previous literature,
differences between linking methods turned out be negligible in the absence of random differential
item functioning. The different linking methods were also applied in an empirical example that
performed a linking of PISA 2006 to PISA 2009 for Austrian students. This application showed that
estimated trends in the means and standard deviations depended on the chosen linking method and
the employed item response model.

Keywords: linking; 2PL model; item response model; concurrent calibration; differential item
functioning; large-scale assessments

1. Introduction

The analysis of educational and psychological tests is an important field in the social
sciences. The test items (i.e., tasks presented in these tests) are often modeled using item
response theory (IRT; [1–3]; for applications, see, e.g., [4–14]) models. In this article, the
two-parameter logistic (2PL; [15]) IRT model is investigated to compare two groups on
test items. For example, groups could be demographic groups, countries, studies, or time
points. The group comparisons were carried out using linking methods [16]. A significant
obstacle in applying linking methods is that the test items could behave differently in the
two groups (i.e., differential item functioning), that is it cannot be expected that the two
groups share a common set of statistical parameters for the test items. Such a situation
is particularly important in educational large-scale assessment (LSA; [17–19]) studies in
which several countries are compared. It can be expected that test items function differently
because there are curricular differences in those countries.

The paper is structured as follows. In Section 2, the 2PL model with differential item
functioning is introduced. In Section 3, several linking methods are discussed. In Section 4,
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we present the results of a simulation study in which these linking methods are compared.
In Section 5, an empirical example using the PISA datasets from 2006 and 2009 for Austria
is presented. Finally, the paper closes with a discussion in Section 6.

2. Linking Two Groups with the 2PL Model
2.1. 2PL Model

For dichotomous items i = 1, . . . , I, the item response function (IRF) of the 2PL model
is given by [3,20]:

P(Xi = x|θ) = Pi(x; ai, bi) = Ψ((2x− 1)ai(θ − bi)) x = 0, 1 , (1)

where Ψ(y) = exp(y)/(1+ exp(y)) is the logistic link function, ai is the item discrimination,
and bi is the item difficulty. The one-parameter logistic (1PL) IRT model (also referred to as
the Rasch model; [21]) fixes all item discriminations ai to one.

The 1PL or the 2PL model is usually estimated under a local independence assumption,
that is:

P(X = x) =
∫ I

∏
i=1

Pi(xi, ai, bi) f (θ)dθ , (2)

where f is the density of θ and x = (x1, . . . , xI). In many applications, θ is assumed to
be normally distributed (i.e., θ ∼ N(µ, σ2)). In (2), the multivariate contingency table of
X with corresponding probabilities P(X = x) involving 2I item response patterns was
summarized by a unidimensional latent variable θ.

2.2. Linking Design

To assess the distributional differences between two groups, an appropriate linking
design must be established to identify group differences. Such a linking design is displayed
in Figure 1. For two groups g = 1, 2, there is a set I0 of common items (also referred
to as anchor items or link items) that are administered in both groups. There are also
group-specific items Ig that are uniquely administered in each of the two groups.

Figure 1. Linking design for two groups with common items I0 and group-specific unique items I1

and I2.

This linking design is also referred to as a common items nonequivalent group
design [22]. In equating, no common items exist in many applications, but two test forms
are administered to equivalent groups [23]. Equating is often performed with the goal
of producing an equivalency table for the sum score in a test, while linking determines
linking constants in order to identify group differences with respect to the latent variable θ.
In this article, we are interested in determining distributional differences between the two
groups for the latent variable θ.

It has to be emphasized that differences between the two groups are mainly deter-
mined by the set of common items if the linking relies on an IRT model. The employed IRT
models can predict the expected performance of students on items that were not adminis-
tered. The crucial assumption is that item responses on nonadministered unique items can
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be inferred (or imputed) from common items. This corresponds to an ignorability assump-
tion in the missing data literature and translates into the conditional independence of item
responses on unique items conditional on item responses on common items (see [24,25]). If
a unidimensional IRT model with a local independence assumption (2) holds, this condition
is automatically fulfilled.

2.3. Random Differential Item Functioning

Common items in the set I0 are administered in two groups g = 1, 2 (see Figure 1). It is
assumed that the 2PL model (see Section 2.1) holds in both groups. The situation in which
item parameters do not differ between groups is called measurement invariance [26–28].
However, it is likely in many applications that items function differently in the two groups.
The existence of group-specific item parameters is labeled differential item functioning
(DIF; [29–33]; for applications, see, e.g., [34–38]). In this case, items possess group-specific
item discriminations aig and item difficulties big. DIF in item discriminations is referred
to as nonuniform DIF (NUDIF), while DIF in item difficulties is referred to as uniform
DIF (UDIF) if there is no DIF in item discriminations (see [32,39,40]). Note that the local
independence assumption (2) holds within each group even though the item parameters
can differ across groups.

For the rest of this article, we assumed random DIF [41–50]. The main idea is that
the difference of item parameters between groups is modeled by a distribution. Hence,
a population perspective to a universe of items was adopted. Random DIF for item
discriminations aig (i = 1, . . . , I; g = 1, 2) is defined as:

ai1 = ai − fi and ai2 = ai + fi , (3)

where DIF effects fi are considered as a random variable that follows a distribution Ff .
Common item discriminations ai can be considered either fixed or random. In the following,
we considered them as fixed. Item difficulties big are also considered as random DIF, and
DIF effects ei follow a random distribution Fe:

bi1 = bi − ei and bi2 = bi + ei , (4)

where bi are common item difficulties.
It is important to emphasize that there is an inherent indefinability of a simultaneous

determination of average DIF effects and average group differences [51–54]. Hence, some
structural assumptions must be posed on the distributions of DIF effects Fe and Ff . One
possible choice would be to assume E(ei) = E( fi) = 0; that is, random DIF is is described
by unsystematic differences in the item parameters (see Appendix A for further details). A
frequent assumption is that DIF effects are normally distributed with zero means:

ei ∼ N(0, τ2
b ) and fi ∼ N(0, τ2

a ) (5)

It is impossible to assume the means of DIF effects different from zero because average
DIF effects are confounded with average group differences. Note that it holds that ai2 −
ai1 = 2 fi ∼ N(0, 2τ2

a ) and bi2 − bi1 = 2ei ∼ N(0, 2τ2
b ).

As an alternative, a sparsity assumption might be posed on DIF effects. In this case,
the majority of items have DIF effects of zero, while only a few items have DIF effects
different from zero [44,55]. If DIF effects are considered as fixed, this situation is known as
partial invariance [56–58]. The random DIF distribution is a mixture distribution with two
classes: one class with zero effects and the other class containing DIF effects different from
zero. The mixture distribution can be simultaneously estimated in an IRT model with two
groups ([55]; see also [59]). Alternatively, DIF detection methods can be used to identify
items whose DIF effects differ from zero [32,60,61]. These items can be removed from
linking in subsequent analysis (see, e.g., [62]). However, some research has shown that
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simultaneous treatment of the linking and modeling of DIF effects can result in superior
statistical performance [54,63–66].

We would also like to point out that DIF effects in item discriminations in Equa-
tion (3) follow an additive model. Alternatively, a multiplicative model for DIF effects can
be assumed:

ai1 = ai/ fi and ai2 = ai fi , (6)

which corresponds to an additive model in logarithmized item discriminations:

log ai1 = log ai − log fi and log ai2 = log ai + log fi . (7)

It is hard to decide in empirical applications whether DIF effects for item discrimina-
tions should be modeled in the untransformed metric (see Equation (3)) or a logarithmized
metric (see Equation (7)).

The simulation study only considered normally distributed DIF effects with zero
means and an additive model for DIF effects in item discriminations.

2.3.1. Identified Item Parameters in Separate Calibrations in the Two Groups

In Section 3, we discuss some linking methods that rely on item parameters that were
obtained from separate calibrations. That is, the 2PL model was separately fitted for the two
groups. For reasons of identifiability, it has to be assumed that in the first group, it holds
that µ1 = 0 and σ1 = 1. In a separate estimation for the first group with an infinite sample
size, the estimated item discriminations âi1 are equal to the data-generating parameters ai1.
The same holds for estimated item difficulties, that is b̂i1 = bi1.

In the second group, there are group-specific item parameters ai2 and bi2 and distribu-
tion parameters µ2 6= 0 and σ2 6= 1. In a separate estimation for the second group, it was
assumed that the mean was set to zero, and the standard deviation (SD) was set to one.
Hence, estimated item parameters also include the distribution parameters. We obtain:

ai2(θ − bi2) = ai2(σ2θ∗ + µ2 − bi2) = (ai2σ2)(θ
∗ − σ−1

2 (bi2 − µ2)) , (8)

where the standardized ability θ∗ is standard normally distributed (i.e., N(0, 1)). From
Equation (8), it follows that:

âi2 = ai2σ2 and b̂i2 = σ−1
2 (bi2 − µ2) . (9)

2.3.2. The Role of Normally Distributed Random DIF in Educational Assessment

It should be noted that the presence of random DIF implies that there is no single item
for which the two groups share the same item parameters. Hence, all items are allowed
to have different item parameters. By posing a normal distribution on DIF effects, it was
assumed that DIF across groups vanishes on average for an infinite number of items. The
presence of normally distributed random DIF is strongly different from the situation of
partial invariance in which only a few items (or a few item parameters) possess DIF, while
the rest of the items (or item parameters) do not have DIF. The two kinds of DIF effects can
also simultaneously occur [65]. In our experience, we mainly observed random fluctua-
tions of group-specific item parameters, which would correspond to normally distributed
random DIF instead of to the case of partial invariance. However, it seems that ensuring
partial invariance is seen as a measurement ideal in educational LSA studies [67–70]. We
have argued against such a perspective elsewhere [54,65,71,72] and think that the random
DIF perspective with normally distributed DIF effects is more relevant in real-world ap-
plications. Moreover, we think removing items due to DIF from group comparisons is
unwise because DIF can be interpreted as construct-relevant [32,52,73–75]. In this situation,
a group difference that relies on a purified set of items can bias estimated group differences
with respect to the means and standard deviations.
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3. Linking Methods

In the following, we discuss linking methods that allow estimating the distribution
parameters µ2 = E(θ) and σ2 = SD(θ) of the second group. Let γ0 denote item parameters ai
and bi of common items I0 and γg item parameters from the group-specific sets of unique
items Ig for g = 1, 2. Furthermore, denote by Xg the matrix of observed item responses from
group g for items i ∈ I0 ∪ Ig. For group g = 1, 2, the log-likelihood function is defined by:

l(µ, σ, γ0, γg; Xg) =
Ng

∑
p=1

log

∫ ∏
i∈I0∪Ig

Pi(xpgi; ai, bi) f (θ; µ, σ)dθ

 , (10)

where xpgi is the item response of person p in group g at item i. The IRT model in (10)
can be estimated by marginal maximum likelihood (MML) estimation and an expectation–
maximization algorithm [76–79].

For reasons of identification, we define µ1 = 0 and σ1 = 1 and identify the distribution
parameters µ2 and σ2 of the second group. Separate calibrations for the two groups
can be carried out and result in group-specific item parameter estimates âig and b̂ig (see
Section 2.3.1). These item parameters were subsequently transformed utilizing linking
methods in order to obtain estimates µ̂2 and σ̂2. See [16,22,80–82] for an overview of linking
methods. In the next subsection, we discuss several linking methods.

3.1. Log-Mean-Mean Linking

In log-mean-mean linking (logMM; [16]), the means of the logarithmized item dis-
criminations and item difficulties in the two groups are set equal for identifying group
means and group SDs. The SD σ2 of the second group is estimated as:

σ̂2 = exp

(
1
|I0| ∑

i∈I0

log âi2 −
1
|I0| ∑

i∈I0

log âi1

)
, (11)

where |I0| is the number of items in the set I0. The estimation in (11) corresponds to the
assumption of additive DIF effects in logarithmized item discriminations (see (7)). The
mean µ2 of the second group is estimated by:

µ̂2 = −σ̂2
1
|I0| ∑

i∈I0

b̂i2 +
1
|I0| ∑

i∈I0

b̂i1 . (12)

It can be shown that logMM estimates are consistent under weak conditions. Here,
consistency means that the number of common items (i.e., |I0|) is tending toward infinity.
Moreover, it was assumed that group-specific item parameters would have been estimated
with an infinite sample size (i.e., N → ∞). Consistency proofs can be easily modified to

the case of finite sample sizes (use
p→ as the mathematical symbol for consistency in the

folllowing). Then, consistency is meant under a double sampling scheme in which the
number of persons and number of items tends to infinity (i.e., N → ∞ and |I0| → ∞). We
now present the consistency result.

Proposition 1. Assume that DIF effects ei fulfill E(ei) = 0. For DIF effects fi, one of the following
conditions holds:

(i) For additive DIF effects fi (Equation (3)), it holds that E( fi) = 0 and fi has a symmetric
distribution;

(ii) For multiplicative DIF effects fi (Equation (7)), it holds that E(log fi) = 0.

Then, logMM estimators µ̂2 and σ̂2 are consistent for µ2 and σ2, respectively:

µ̂2
p→ µ2 and σ̂2

p→ σ2 for |I0| → ∞ . (13)

Proof. See Appendix B.
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3.2. Mean-Mean Linking

In mean-mean linking (MM; [16]), the means of untransformed item discriminations
are matched. Hence, the estimation in (11) is substituted by:

σ̂2 =

1
|I0| ∑

i∈I0

âi2

1
|I0| ∑

i∈I0

âi1

. (14)

This estimation corresponds to additive DIF effects in untransformed item discrimina-
tions (see (3)). The estimation formula for µ̂2 in (12) remains unaltered.

It can also be shown that MM estimates are consistent under weak conditions.

Proposition 2. Assume that DIF effects ei fulfill E(ei) = 0. For DIF effects fi, one of the following
conditions holds:

(i) For additive DIF effects fi (Equation (3)), it holds that E( fi) = 0;
(ii) For multiplicative DIF effects fi (Equation (7)), it holds that E(log fi) = 0 and log fi has a

symmetric distribution.

Then, MM estimators µ̂2 and σ̂2 are consistent for µ2 and σ2, respectively:

µ̂2
p→ µ2 and σ̂2

p→ σ2 for |I0| → ∞ . (15)

Proof. See Appendix C.

Finally, it is instructive to study the effects on the estimates in MM linking if the true
effects do not have zero means. For additive DIF effects fi, we assumed E( fi) = δ f and
E(ei) = δe. Using similar derivations as in Appendix C, we obtain:

σ̂2
p→ σ2

A + δ f

A− δ f
= σ2

1 + δ f /A
1− δ f /A

, (16)

where A = lim|I0|→∞
1
|I0| ∑

|I0|
i=1 ai. Setting B = lim|I0|→∞

1
|I0| ∑

|I0|
i=1 bi, we obtain:

µ̂2
p→ µ2

1 + δ f /A
1− δ f /A

− 2B
δ f /A

1− δ f /A
− 2δe

1
1− δ f /A

. (17)

If DIF effects do not have zero means, Equations (16) and (17) show that biased
estimates for the group mean and the group standard deviation can be expected.

3.3. Haberman Linking (HAB and HAB-Nolog)

Haberman linking (HAB; [71,83,84]) provides a generalization of logMM and MM to
multiple groups while simultaneously estimating common item parameters a and b. HAB
consists of two steps. In the first step, group-specific SDs are estimated. In the second step,
group-specific means are estimated.

The originally proposed HAB linking [83] operates on logarithmized item discrimi-
nations (HAB). To estimate σ2, the linking function in HAB for the particular case of two
groups is:

H1,log(σ2, a) = ∑
i∈I0∪I1

(log âi1 − log ai)
2

+ ∑
i∈I0∪I2

(log âi2 − log ai − log σ2)
2 . (18)
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Parameters in HAB linking are estimated as the minimizer of (18):

(σ̂2, â) = arg min
σ2,a

H1,log(σ2, a) . (19)

For i ∈ Ig for g = 1, 2, we obtain âi = âig. Furthermore, for i ∈ I0, the minimization
of (18) corresponds to a two-way analysis of variance. We obtain (see Equation (A31) in
Appendix D):

σ̂2 = exp

(
1
|I0| ∑

i∈I0

log âi2 −
1
|I0| ∑

i∈I0

log âi1

)
, (20)

which shows the equivalence to logMM linking with respect to the estimation of σ2.
In the second step, group means are estimated. The linking function is given as:

H2(µ2, b) = ∑
i∈I0∪I1

(
b̂i1 − bi

)2
+ ∑

i∈I0∪I2

(
σ̂2b̂i2 − bi + µ2

)2
. (21)

The parameters are estimated as:

(µ̂2, b̂) = arg min
µ2,b

H2(µ2, b) . (22)

Using the same derivation as for H1,log, we obtain:

µ̂2 = −σ̂2
1
|I0| ∑

i∈I0

b̂i2 +
1
|I0| ∑

i∈I0

b̂i1 . (23)

Notably, Equation (23) coincides with the estimation in logMM linking (see Equation (12)).
As an alternative, Haberman linking can also be conducted based on untransformed

item discriminations [71]. This method is labeled as HAB-nolog. It turned out that HAB-
nolog outperformed HAB in some situations for multiple groups [71,84]. The linking
function of HAB-nolog is given by:

H1,nolog(σ2, a) = ∑
i∈I0∪I1

(âi1 − ai − 1)2 + ∑
i∈I0∪I2

(âi2 − ai − σ2)
2 . (24)

Parameter estimates in HAB-nolog linking are determined by:

(σ̂2, â) = arg min
σ2,a

H1,nolog(σ2, a) . (25)

The SD of the second group is given by (see Equation (A36) in Appendix D):

σ̂2 = 1 +
1
|I0| ∑

i∈I0

âi2 −
1
|I0| ∑

i∈I0

âi1 . (26)

The linking function for µ2 in HAB-nolog is the same as in HAB (see Equation (21)).

3.4. Invariance Alignment with p = 2

Asparouhov and Muthén [85,86] proposed the method of invariance alignment (IA)
to define a linking that maximizes the extent of invariant item parameters. IA can also be
regarded as a linking method that handles noninvariant item parameters [71].

The IA method is based on estimated group-specific item intercepts ν̂ig = âig b̂ig and
item discriminations âig obtained from separate calibrations. IA was originally formulated
to detect only a few noninvariant items. It has been pointed out that IA in its original
proposal is not an acceptable linking method in the presence of normally distributed DIF
effects [87–89]. In [71], IA was studied using a general class of so-called Lp-type robust
linking functions. The original IA formulation used p = 0.5 [85]. For normally distributed
DIF effects, p = 2 is an adequate choice [71,89]. Hence, we investigate IA with the loss
function using p = 2 (IA2).
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It has been shown that IA estimation originally formulated as a joint estimation
problem can be reformulated as a two-step estimation method [71]. In the first step, group
SDs are computed. In the second step, group means are computed. For two groups, σ2
is estimated in the first step and µ2 in the second step. Note that the first group serves
as the reference group (i.e., it holds that µ1 = 0 and σ1 = 1). The formulas in [71] can be
simplified to the case of two groups for providing estimates µ̂2 and σ̂2:

σ̂2 = arg min
σ2

∑
i∈I0

(
âi1 −

âi2
σ2

)2
and (27)

µ̂2 = arg min
µ2

∑
i∈I0

(
ν̂i1 − ν̂i2 + µ2

âi2
σ̂2

)2
. (28)

The estimates in (27) and (28) have close expressions (see Equations (A41) and (A45)
in Appendix E).

3.5. Haebara Linking Methods (HAE-Asymm, HAE-Symm, HAE-Joint)

In contrast to the MM, logMM, HAB, HAB-nolog, and IA linking methods, Haebara
(HAE) linking [90] aligns IRFs instead of directly aligning item parameters. The linking
function in asymmetric HAE (HAE-asymm; [90]) linking is given as:

Hasymm(µ2, σ2) = ∑
i∈I0

∫ [
Ψ
(

âi1(θ − b̂i1)
)
−Ψ

(
σ−1

2 âi2(θ − σ2b̂i2 − µ2)
)]2

ω(θ)dθ . (29)

Estimated distribution parameters are obtained by minimizing (29):

(µ̂2, σ̂2) = arg min
µ2,σ2

Hasymm(µ2, σ2) . (30)

The linking function (29) aligns IRFs of the second group to those in the first group.
Hence, it is asymmetric because parameters in the second group are expected to behave
similarly to the first group. However, the first group could alternatively be aligned to the
second group. To robustify the HAE linking, both directions of alignment are considered
in symmetric Haebara linking (HAE-symm; [91,92]), which employs the linking function:

Hsymm(µ2, σ2) = ∑
i∈I0

∫ [
Ψ
(

âi1(θ − b̂i1)
)
−Ψ

(
σ−1

2 âi2(θ − σ2b̂i2 − µ2)
)]2

ω(θ)dθ

+ ∑
i∈I0

∫ [
Ψ
(

âi1σ2(θ − σ−1
2 (b̂i1 − µ2))

)
−Ψ

(
âi2(θ − b̂i2)

)]2
ω(θ)dθ .

(31)

In a similar vein, the estimated mean and the SD for the second group is given by
and defined as:

(µ̂2, σ̂2) = arg min
µ2,σ2

Hsymm(µ2, σ2) . (32)

A generalization of HAE linking to the general case of multiple groups was proposed
in [93]. In this joint Haebara (HAE-joint) linking approach, distribution parameters are
simultaneously estimated with common item parameters. The linking function in HAE-
joint is defined as [65,93,94]:

Hjoint(µ2, σ2, a, b) = ∑
i∈I0

∫ [
Ψ
(

âi1(θ − b̂i1)
)
−Ψ

(
ai(θ − bi)

)]2
ω(θ)dθ

+ ∑
i∈I0

∫ [
Ψ
(

âi2(θ − b̂i2)
)
−Ψ

(
ai(σ2θ − bi + µ2)

)]2
ω(θ)dθ ,

(33)
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where a and b denote common item parameters. Parameter estimates are given by mini-
mizing (33):

(µ̂2, σ̂2, â, b̂) = arg min
µ2,σ2,a,b

Hjoint(µ2, σ2, a, b) . (34)

A variant of joint Haebara linking was proposed in [84]. Note that in joint Haebara
linking, common IRFs are aligned to group-specific IRFs.

3.6. Recalibration Linking (RC1, RC2, and RC3)

A further linking technique is recalibration (RC) linking. This is based on item pa-
rameters obtained from separate calibrations. The core idea is that group differences in
distributions can be inferred by recalibrating a study with one group using item parameters
from the other group. RC methods are mainly used in LSA studies such as the Programme
for International Student Assessment (PISA; [95]), Progress in International Reading Lit-
eracy Study (PIRLS; [96]), and Trends in International Mathematics and Science Study
(TIMSS; [97,98]).

In PISA, RC linking was employed until PISA 2012 for the 1PL model to handle model
misspecifications (i.e., the data-generating IRT model deviates from the 1PL model) in
linking that could artificially impact the estimated SDs [99]. RC linking in PIRLS and TIMSS
operates on the 3PL model [98,100,101]. Notably, recalibration methods have also been
proposed for determining linking errors in PIRLS/TIMSS [101], as well as in PISA ([69],
p. 176ff.), but the two approaches turned out to be different.

RC linking is based on estimated item parameters from the first and the second
groups. Item parameters are obtained assuming µ1 = µ2 = 0 and σ1 = σ2 = 1 in separate
calibrations. The group-specific parameter estimates are defined as:

(γ̂
(1)
0 , γ̂

(1)
1 ) = arg max

γ0,γ1

l(0, 1, (γ0, γ1); X1) and (35)

(γ̂
(2)
0 , γ̂

(2)
2 ) = arg max

γ0,γ2

l(0, 1, (γ0, γ2); X2) . (36)

To obtain the mean and the SD of the second group, the data of the first group (i.e.,
X1) are recalibrated using item parameters from the second group (i.e., γ̂

(2)
0 ):

(m1, s1, ĝ1) = arg max
µ,σ,γ1

l(µ, σ, (γ̂(2)
0 , γ1); X1) . (37)

A recalibrated mean m1 and a recalibrated SD s2 are obtained. These two parameters
indicate differences between the two groups. Similarly, data of the second group (i.e., X2)
can be recalibrated using item parameters from the first group (i.e., γ̂

(1)
0 ):

(m2, s2, ĝ2) = arg max
µ,σ,γ2

l(µ, σ, (γ̂(1)
0 , γ2); X2) . (38)

Based on these estimates, the distribution parameters for the second group are defined as:

µ̂2 = −sm1 , σ̂2 = s (39)

where the scaling factor s can take different forms. Note that µ̂2 relies on the recalibrated
mean m1 for the first group and the scaling factor s. The three RC linking methods differ
concerning the scaling constant used:

Method RC1 : s =
1
s1

, Method RC2 : s = s2 , Method RC3 : s =
√

s2

s1
(40)
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The linking methods RC1 and RC2 are asymmetric, while method RC3 relies on both
recalibrated SDs. The scaling factor in RC3 linking is defined as the geometric mean of the
scaling factors in RC1 and RC2. The definition is motivated by the fact that the impact on
recalibrated SDs is symmetrically treated. The linking method RC1 is currently used in
PIRLS and TIMSS [96,98] and was used in PISA until 2012 [99]. To our knowledge, linking
methods RC2 and RC3 have not yet been investigated in the literature.

3.7. Anchored Item Parameters

The linking method based on anchored item parameters (ANCH; [16,22,102]) estimates
the distribution parameters in the second group by fixing the item parameters of the
common items to those of the first group. Assume that item parameter estimates in the
first group are computed as:

(γ̂0, γ̂1) = arg max
γ0,γ1

l(0, 1, (γ0, γ1); X1) . (41)

In ANCH linking, µ2 and σ2 are estimated by maximizing the log-likelihood function
while fixing γ0 (i.e., γ0 = γ̂0):

(µ̂2, σ̂2, γ̂2) = arg max
µ2,σ2,γ2

l(µ2, σ2, (γ̂0, γ2); X2) . (42)

It should be noted that RC linking can be considered a variant of ANCH linking
because, in RC linking, the distribution parameters of the first group are re-estimated using
anchored item parameters from the second group. However, the distribution parameters
of the second group are indirectly obtained by transforming the re-estimated distribution
parameters of the first group (see Section 3.6). In contrast, ANCH provides an estimate of
µ2 and σ2 directly.

3.8. Concurrent Calibration

Concurrent calibration (CC; [65,70,103]) is based on a multiple-group IRT model and
presupposes invariant item groups across groups. The distribution parameters of the
second group are determined by maximizing the joint likelihood:

(µ̂2, σ̂2, γ̂0, γ̂1, γ̂2) = arg max
µ2,σ2,γ0,γ1,γ2

{
l(0, 1, (γ0, γ1); X1) + l(µ2, σ2, (γ0, γ2); X2)

}
(43)

In the presence of random DIF, the log-likelihood function in (43) will typically be
misspecified. The estimated mean and SD can typically be biased due to this misspecifica-
tion. It has frequently been pointed out that separate calibration with subsequent linking
can be more robust to the presence of DIF than CC [16,54,102]. CC can only be expected to
be more efficient than linking based on separate calibrations in small to moderate sample
sizes and in the absence of DIF [65]. Notably, CC is more computationally demanding than
linking based on separate calibration [65,104].

4. Simulation Study
4.1. Purpose

The purpose of this simulation study was to investigate the performance of linking
methods in the two-group case for the 2PL model under different sample sizes, different
numbers of items, and different amounts of uniform and nonuniform DIF. Most simula-
tion studies either assume invariant item parameters (i.e., no DIF) or presuppose partial
invariance in which only a few item parameters differ between groups (e.g., [63,105–112]).
There is a lack of research in the presence of random DIF, although there is some initial
work for continuous items [88,89]. Moreover, although recalibration linking is in opera-
tional use in LSA studies, they have not yet been systematically compared to alternative
linking methods.
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We expected from the previous research and our analytical findings in
Propositions 1 and 2 that moment-based linking methods could be competitive with
the CC and HAE linking methods [54,65]. We did not have specific hypotheses regarding
the performance of recalibration linking.

4.2. Design

We simulated a design with two groups and only common items (i.e., no unique items).
Data were simulated according to the 2PL model with different amounts of random DIF. In
the simulation, it was assumed that there were only common items and no group-specific
unique items. The 2PL model with random DIF was simulated according to Equations (3)
and (4). Table A1 in Appendix F shows item parameters ai and bi for 20 items used in the
simulation. The first group served as a reference group assuming µ1 = 0 and σ1 = 1, while
the distribution parameters for the second group were µ2 = 0.3 and σ2 = 1.2.

In the simulation, four factors were simulated. First, we chose sample sizes N = 500,
1000, and 5000 (3 factor levels). Second, the item number was either I = 20 or I = 40
(2 factor levels). For 40 items, the item parameters from Table A1 were duplicated. The
random DIF SD τb for item difficulties bi was 0, 0.1, 0.3, or 0.5 (4 factor levels). The random
DIF SD τa for item discriminations ai was 0, 0.15, 0.25 (3 factor levels). In total, there were
3× 2× 4× 3 = 96 conditions employed in the simulation.

In total, 1000 datasets were simulated and analyzed in each condition.

4.3. Analysis Methods

The 2PL model was separately estimated in the two groups. Afterward, 13 linking
methods (logMM, HAB-log, MM, HAB-nolog, IA2, HAE-asymm, HAE-symm, HAE-joint,
RC1, RC2, RC3, ANCH, CC; see Section 3) were applied.

The parameters of interest were the estimated mean µ̂2 and SD σ̂2 for the second group.
For the two parameters, the bias and root-mean-squared error (RMSE) were computed. To
decrease the dependence of the RMSE on the sample size and the number of items, we
computed a relative RMSE for which the RMSE of a linking method was divided by the
RMSE of the linking method with the best performance. Hence, this relative RMSE had 100
for the best linking method as its lowest value.

To summarize the contribution of each of the manipulated factors in the simulation,
we conducted an analysis of variance (ANOVA) and used a variance decomposition to
assess the importance.

Moreover, we classified linking methods as whether or not they showed satisfactory
performance in a particular condition. We defined satisfactory performance for the bias if
the absolute bias of a parameter (i.e., the estimated mean µ̂2 or estimated SD σ̂2) was smaller
than 0.01. In LSA studies such as the Programme for International Student Assessment
(PISA), standard errors were about 0.02 or 0.03 for standardized ability variables θ. It
should be required that the bias only be a fraction of the variability introduced by the
sampling error, which motivated the value of 0.01 as a cutoff. An estimator had satisfactory
performance concerning the RMSE if the relative RMSE was smaller than 120. Here, an
alternative estimator to the best-performing estimation should not lose too much precision.
With an RMSE of 120, the relative-mean-squared error (MSE) was 144 (note that 1.22 = 1.44),
which corresponded to a loss in precision of 44%. Estimators with worse performance
might not be considered as satisfactory in such a situation.

In all the analyses, the statistical software R [113] was used. The R package TAM [114]
was used to estimate the 2PL model with marginal maximum likelihood as the estimation
method. The linking methods were estimated using dedicated R functions or the existing
functionality in the R packages sirt [115] and TAM [114]. The ANOVA model was estimated
with the R package lme4 [116].
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4.4. Results

In Table 1, the variance decomposition of the ANOVA is presented. All terms up
to three-way interactions are included. From the size of the residual variance, it can be
concluded that the first three orders are sufficient to capture the most important factors in
the simulation.

It turned out that sample size (N) and the number of items (I) were only of minor
importance in the first three-order terms in ANOVA. However, the linking method, as well
as the size of random DIF were important factors. Importantly, the random DIF SD (τb) in
item difficulties bi had a large influence on the estimated means, while random DIF SD (τa)
in item discriminations ai strongly impacted the estimated SDs.

Due to these observations, we decided to provide aggregated results for three impor-
tant groups of cells in the simulation. First, we aggregated the results for six conditions
with no DIF (NODIF; τb = 0 and τa = 0). Because there were two estimated parameters
(mean and SD), this resulted in aggregation across twelve measures for the bias and RMSE,
respectively. Second, we considered all 18 conditions with uniform DIF (UDIF; τb > 0
and τa = 0). Third, we provide summaries across all 48 conditions with nonuniform DIF
(NUDIF; τa > 0).

Table 1. Variance proportions of different factors in the simulation study for the bias and RMSE for
the estimated mean µ̂2 and estimated SD σ̂2 for the second group.

µ̂2 σ̂2
Source Bias RMSE Bias RMSE

N 0.3 1.1 0.6 3.9
I 0.0 0.3 0.0 0.0
Meth 10.2 14.9 19.1 0.0
τb 13.0 0.0 0.8 1.8
τa 4.3 9.0 12.3 0.0
N× I 0.0 0.0 0.0 0.0
N×Meth 0.0 3.7 0.8 0.0
N× τb 0.0 2.4 0.0 0.0
N× τa 0.0 0.6 0.0 5.0
I×Meth 0.4 0.1 0.1 0.0
I× τb 0.0 0.1 0.0 0.0
I× τa 0.0 0.0 0.0 0.6
Meth× τb 58.1 13.1 17.5 14.2
Meth× τa 8.2 12.1 47.7 13.2
τa× τb 0.0 4.1 0.0 17.7
N× I×Meth 0.0 0.0 0.1 0.0
N× I× τb 0.0 0.2 0.0 0.0
N× I× τa 0.0 0.1 0.0 0.4
N×Meth× τb 0.2 7.5 0.0 4.2
N×Meth× τa 0.0 4.0 0.0 9.1
N× τa× τb 0.1 10.0 0.0 13.8
I×Meth× τb 0.5 0.0 0.0 0.4
I×Meth× τa 0.1 0.0 0.2 1.1
I× τa× τb 0.1 0.3 0.0 0.7
Meth× τa× τb 1.0 10.1 0.1 8.2
Residual 3.7 6.4 0.6 5.7

Note. N = sample size; I = number of items; Meth = linking method; τa = standard deviation of DIF effects in item
discriminations ai ; τb = standard deviation of DIF effects in item difficulties bi . Percentage values larger than 1.0
are printed in bold.
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In Table 2, the performance and the linking methods are summarized across these
three groups of conditions by classifying all linking methods as either satisfactory or
nonsatisfactory. Table 2 shows the proportion of conditions in which a linking method
provided satisfactory results. In the absence of DIF (columns “NODIF”), all methods
performed well in most of the conditions. Notably, IA2, the asymmetric recalibration
methods RC1 and RC2, as well as ANCH provided biases in some instances. In the case of
uniform DIF (columns “UDIF”), HAE-asymm, HAE-joint and CC cannot be recommended
in terms of the bias. Moreover, only moment-based methods (logMM, HAB, MM, HAB-
nolog) can be recommended in terms of the RMSE. Finally, in the presence of nonuniform
DIF (columns “NUDIF”), moment-based methods, as well as HAE-symm and RC3 were
satisfactory in terms of the bias. If the RMSE is considered as an additional criterion,
utilizing linking methods MM, HAB-nolog, HAE-symm, and RC3 can be suggested.

Table 2. Summary of the satisfactory performance of linking methods for the absolute bias and RMSE
across parameters (mean µ̂2 and standard deviation σ̂2) and conditions.

Bias RMSE

NODIF UDIF NUDIF NODIF UDIF NUDIF

logMM 100 97 94 100 100 45
HAB 100 97 94 100 100 44
MM 100 94 95 92 100 72
HAB-nolog 100 94 96 100 100 78
IA2 75 78 8 100 100 4
HAE-asymm 100 42 42 100 61 78
HAE-symm 100 97 94 100 61 81
HAE-joint 100 42 60 100 42 61
RC1 83 78 16 100 61 29
RC2 83 78 8 100 61 48
RC3 100 94 96 100 61 79
ANCH 83 78 13 100 61 48
CC 100 50 45 100 33 46

Note. DIF = differential item functioning; NODIF = no DIF; UDIF = uniform DIF; NUDIF = nonuniform
DIF; logMM = log-mean-mean linking; HAB = Haberman linking with logarithmized item discriminations;
MM = mean-mean linking; HAB-nolog = Haberman linking with untransformed item discriminations; IA2 = in-
variance alignment with power p = 2; HAE-asymm = asymmetric Haebara linking; HAE-symm = symmetric
Haebara linking; HAE-joint = Haebara linking with joint item parameters; RC = recalibration linking (see
Equation (40)); ANCH = anchored item parameters; CC = concurrent calibration. Values smaller than 70 are
printed in bold.

In Table 3, the bias and RMSE for the mean µ̂2 and the SD σ̂2 of the second group for
N = 1000 students and I = 40 items are shown. It can be seen that all linking methods
performed well in the absence of DIF (see columns “NODIF”). In the case of uniform DIF
(columns “UDIF”), HAE-asymm, HAE-joint, and CC produced nonsatisfactory results in
terms of the bias for the mean or the SD. Interestingly, the RMSE for the SD was much larger
for HAE, RC, ANCH, and CC than the moment-based methods logMM, HAB, MM, and
logMM. In the case of nonuniform DIF (column “NUDIF”), only moment-based methods
(except IA2) and HAE-symm and the newly proposed recalibration linking method RC3
produced satisfactory results. Furthermore, note that the RMSE for the SD was larger
for logMM and HAB compared to MM and HAB-nolog. This finding can be explained
by the fact that the data-generating model for DIF was an additive model that operated
on nontransformed item discriminations and favored MM and HAB-nolog. To conclude,
linking methods that are not moment-based can only be recommended as a default linking
method when the mean is of interest and there is an absence of random DIF. It depends
on the extent of UDIF (i.e., size of τb) whether the additional variance introduced by
moment-based methods is compensated by smaller biases.
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Table 3. Bias and RMSE for mean µ̂2 and standard deviation σ̂2 for the second group for a sample
size N = 1000 and I = 40 items as a function of the type of differential item functioning and
linking method.

Bias RMSE

NODIF UDIF NUDIF NODIF UDIF NUDIF
τb = 0 τb = 0.5 τb = 0.5 τb = 0 τb = 0.5 τb = 0.5
τa = 0 τa = 0 τa = 0.25 τa = 0 τa = 0 τa = 0.25

Mean µ̂2
logMM 0.000 0.007 0.008 108.2 104.4 106.1
HAB 0.000 0.007 0.008 108.2 104.4 106.1
MM 0.000 0.007 0.007 108.1 103.7 104.7
HAB-nolog 0.001 0.007 0.007 108.5 103.5 104.5
IA2 −0.001 0.001 0.045 103.2 107.5 133.3
HAE-asymm −0.002 −0.030 −0.032 102.3 100.0 100.0
HAE-symm −0.001 0.002 0.005 102.7 105.0 105.2
HAE-joint −0.002 0.067 0.064 100.9 136.1 132.4
RC1 −0.001 0.001 0.028 100.2 104.8 120.5
RC2 −0.006 −0.004 −0.022 100.0 104.0 100.1
RC3 −0.003 −0.001 0.002 100.1 103.9 109.4
ANCH −0.003 −0.004 −0.021 101.4 104.2 103.9
CC −0.002 0.095 0.109 101.3 149.2 157.7

Standard Deviation σ̂2
logMM 0.000 0.003 0.008 110.2 112.6 128.9
HAB 0.000 0.003 0.008 110.2 112.6 129.4
MM −0.001 0.001 0.005 108.5 109.4 107.7
HAB-nolog 0.001 0.002 0.007 100.0 100.0 100.0
IA2 0.009 0.009 0.147 113.2 111.6 197.9
HAE-asymm −0.002 −0.120 −0.134 107.2 378.8 185.6
HAE-symm 0.001 −0.003 0.003 108.3 233.7 119.9
HAE-joint −0.001 0.020 0.029 107.5 317.0 146.6
RC1 0.006 0.008 0.105 109.8 243.8 174.5
RC2 −0.009 −0.008 −0.097 108.5 217.2 148.3
RC3 −0.002 0.000 0.002 106.6 228.3 110.2
ANCH −0.009 −0.008 −0.097 108.5 217.2 148.3
CC −0.001 0.015 0.029 107.4 220.4 129.0

Note: DIF = differential item functioning; NODIF = no DIF; UDIF = uniform DIF; NUDIF = nonuniform DIF;
τa = standard deviation of DIF effects in item discriminations ai ; τb = standard deviation of DIF effects in item
difficulties bi ; logMM = log-mean-mean linking; HAB = Haberman linking with logarithmized item discrimi-
nations; MM = mean-mean linking; HAB-nolog = Haberman linking with untransformed item discriminations;
IA2 = invariance alignment with power p = 2; HAE-asymm = asymmetric Haebara linking; HAE-symm = sym-
metric Haebara linking; HAE-joint = Haebara linking with joint item parameters; RC = recalibration linking (see
Equation (40)); ANCH = anchored item parameters; CC = concurrent calibration. Absolute biases larger than
0.02 are printed in bold. RMSE values larger than 120 are printed in bold.

5. Empirical Example: Linking PISA 2006 and PISA 2009 for Austria
5.1. Method

In order to illustrate the consequences of different scaling models (i.e., 1PL and 2PL
models), as well as different linking methods (see Section 3), we analyzed the data for
Austrian students from the PISA study conducted in 2006 (PISA 2006; [95]) and 2009
(PISA 2009; [117]). In Table 4, the sample sizes (i.e., N) and item numbers (i.e., I) used
are presented. There were common items in the two PISA studies (Mathematics: I0 = 35;
Reading: I0 = 27; Science: I0 = 53). Moreover, the officially reported means and SDs for
Austrian students in PISA 2006 and PISA 2009 are displayed. Note that PISA 2006 and PISA
2009 employed the 1PL model and utilized the MM linking method with a subsequent
recalibration linking (method RC1; [117]).
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Table 4. Sample information and descriptive results for PISA 2006 and PISA 2009 Austria.

Domain
N I M SD

P06 P09 P06 P09 P06 P09 P06 P09

Mathematics 3784 4575 48 35 506.8 495.9 96.8 96.1
Reading 2646 6585 27 99 491.2 470.3 107.7 100.1
Science 4927 4577 103 53 511.7 494.3 97.3 101.8

Note: M = mean; SD = standard deviation; P06 = PISA 2006; P09 = PISA 2009; N = number of students; I = number
of items; M = mean; SD = standard deviation.

In both PISA studies, we included only those students who received a test booklet with
at least one item in a respective domain. For simplicity, all polytomous items (i.e., items
with maximum scores larger than one) were dichotomously recoded, with only the highest
category being recoded as correct. The 1PL and the 2PL model were used as scaling models,
and student weights were taken into account. In total, 13 linking methods (logMM, HAB-
log, MM, HAB-nolog, IA2, HAE-asymm, HAE-symm, HAE-joint, RC1, RC2, RC3, ANCH,
CC; see Section 3) were applied. In the linking procedure, the distribution parameters of
the first study (PISA 2006) were fixed (i.e., µ1 = 0, σ1 = 0), and the distribution parameters
of the second study (PISA 2009) were estimated. The two ability distributions for the three
domains (and the distribution parameters) were linearly transformed such that the mean
equaled the officially reported mean and the SD equaled the officially reported SD in PISA
2006 in the respective domain. For example, for Mathematics, it holds that µ̂1 = M = 506.8
and σ̂1 = SD = 96.8 in PISA 2006 for all linking methods for the 1PL and the 2PL model.

5.2. Results

In Table 5, the trend estimates for Austria from PISA 2006 and PISA 2009 are shown.
For the linearly transformed scores, the trend estimate is given as ∆̂ = µ̂2 − µ̂1. There
was a significant and large negative trend for Mathematics and Science, while the trend in
Reading turned out to be smaller. Across both models (1PL and 2PL) and linking methods,
the average trend in Mathematics was M = −14.4 (SD = 1.1, Range = 3.6). There were
slight differences between the 1PL and the 2PL models for the moment-based linking
methods (i.e., logMM, HAB, MM, HAB-nolog). Notably, the variation of estimates across
linking methods was larger for the 2PL model (SD = 1.3) than for the 1PL model (SD = 0.7).
The trend in Reading was smaller (M = −5.4) and less variable (SD = 0.8, Range = 2.4)
than in Mathematics. Finally, the trend in Science was also strongly negative (M = −14.5).
The variability (SD = 1.3, Range = 5.2) was mainly caused by the variability in linking
methods of the 2PL model. In contrast, linking methods for the 1PL model were very
similar (SD = 0.3, Range = 0.8).

In Table 6, the estimated SD σ̂2 in PISA 2009 is displayed for the 1PL and the 2PL
models as a function of the linking method. Interestingly, the variability across linking
methods turned out to be larger than for the mean estimate. Relatively large differences
of the 1PL model and the 2PL model were observed for Reading (1PL: M = 100.4, 2PL:
M = 105.2) and Science (1PL: M = 104.1, 2PL: M = 107.4). Note that the differences
between the 1PL and the 2PL model were particularly pronounced for the IA2 method. The
difference between the two scaling models might be explained by different average item
discriminations for common items and unique items. Reading was a minor domain in PISA
2006 (no unique items) and a major domain in PISA 2009 in which a large set of unique
items were introduced. Science was a major domain in PISA 2006 (many unique items)
and a minor domain in PISA 2009 (no unique items). In contrast, Mathematics was a minor
domain in PISA 2006 and PISA 2009, and there was only a small number of unique items
in PISA 2006 and no unique items in PISA 2009. These findings indicate that an adjustment
for the average differences in item discriminations has to be conducted to avoid biased
estimates of the means and SDs when a misspecified 1PL model is employed (see [99]).
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Table 5. Trend estimate for Austrian students in average achievement from PISA 2006 to PISA 2009.

Mathematics Reading Science
Method 1PL 2PL 1PL 2PL 1PL 2PL

logMM −15.5 −12.4 −5.8 −6.3 −14.7 −16.8
HAB −15.5 −12.4 −5.8 −6.3 −14.7 −16.8
MM −15.5 −12.4 −5.8 −6.3 −14.7 −16.7
HAB-nolog −15.5 −12.3 −6.0 −6.3 −14.5 −16.6
IA2 −15.5 −15.9 −5.8 −6.1 −14.7 −11.6
HAE-asymm −14.4 −14.6 −4.9 −6.4 −14.2 −15.9
HAE-symm −14.6 −15.0 −5.0 −6.6 −14.2 −15.7
HAE-joint −13.5 −14.1 −4.1 −5.0 −13.9 −14.0
RC1 −14.3 −14.5 −4.4 −5.1 −14.0 −13.2
RC2 −14.3 −14.3 −4.3 −5.0 −14.2 −12.9
RC3 −14.3 −14.4 −4.4 −5.0 −14.1 −13.1
ANCH −14.4 −15.7 −4.5 −5.4 −14.5 −14.1
CC −14.3 −14.9 −4.3 −5.3 −14.2 −13.6

M −14.8 −14.1 −5.0 −5.8 −14.3 −14.7
SD 0.7 1.3 0.7 0.6 0.3 1.8
Min −15.5 −15.9 −6.0 −6.6 −14.7 −16.8
Max −13.5 −12.3 −4.1 −5.0 −13.9 −11.6

Note. logMM = log-mean-mean linking; HAB = Haberman linking with logarithmized item discriminations;
MM = mean-mean linking; HAB-nolog = Haberman linking with untransformed item discriminations; IA2 = in-
variance alignment with power p = 2; HAE-asymm = asymmetric Haebara linking; HAE-symm = symmetric
Haebara linking; HAE-joint = Haebara linking with joint item parameters; RC = recalibration linking (see
Equation (40)); ANCH = anchored item parameters; CC = concurrent calibration.

Table 6. Standard deviation for Austrian students in PISA 2009. for domains Mathematics, Reading
and Science for the 1PL and the 2PL model as a function of the linking method.

Mathematics Reading Science
Method 1PL 2PL 1PL 2PL 1PL 2PL

logMM 97.7 98.3 98.6 103.2 103.2 106.8
HAB 97.7 98.3 98.6 103.2 103.2 106.8
MM 97.7 98.7 98.6 103.8 103.2 106.9
HAB-nolog 97.9 99.3 94.6 102.0 103.9 108.1
IA2 97.7 99.5 98.6 104.6 103.2 109.2
HAE-asymm 94.1 95.0 102.6 105.4 105.0 107.5
HAE-symm 95.0 96.2 103.1 105.9 105.3 107.8
HAE-joint 95.0 95.7 105.1 107.5 104.7 107.4
RC1 96.0 96.9 103.1 107.2 103.9 108.6
RC2 96.0 95.6 99.9 106.2 104.7 105.9
RC3 96.0 96.3 101.5 106.7 104.3 107.2
ANCH 96.0 95.6 99.9 106.2 104.7 105.9
CC 95.9 96.7 101.3 106.4 104.1 107.5

M 96.3 97.1 100.4 105.2 104.1 107.4
SD 1.2 1.5 2.7 1.7 0.7 0.9
Min 94.1 95.0 94.6 102.0 103.2 105.9
Max 97.9 99.5 105.1 107.5 105.3 109.2

Note. logMM = log-mean-mean linking; HAB = Haberman linking with logarithmized item discriminations;
MM = mean-mean linking; HAB-nolog = Haberman linking with untransformed item discriminations; IA2 = in-
variance alignment with power p = 2; HAE-asymm = asymmetric Haebara linking; HAE-symm = symmetric
Haebara linking; HAE-joint = Haebara linking with joint item parameters; RC = recalibration linking (see
Equation (40)); ANCH = anchored item parameters; CC = concurrent calibration.
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6. Discussion

In this article, several linking methods for two groups were evaluated for the 2PL
model in the case of normally distributed random DIF effects with zero means for item
difficulties and item discriminations. Somehow surprisingly and contrary to the recommen-
dations in the literature, moment-based linking methods (mean-mean and log-mean-mean,
as well as Haberman linking) performed best in terms of the bias and RMSE. The unbi-
asedness of moment-based methods in the case of many items was expected due to our
consistency results for the estimators presented in Section 3. When the primary criterion is
the bias, symmetric Haebara (HAE-symm) linking and the newly proposed recalibration
method RC3 can only be recommended among the nonmoment-based methods. In con-
trast, the commonly used asymmetric Haebara (HAE-asymm) linking and the recalibration
linking RC1 used in PIRLS and TIMSS had substantially worse performance. Furthermore,
note that concurrent calibration—which incorrectly assumes invariant item parameters
across groups—and the anchored item parameters method provided biased estimates
and cannot be recommended in operational use. Concurrent calibration can only achieve
the promised highest efficiency [67,70] in small-to-moderate-sized samples, the absence
of random DIF, and a correctly specified IRT model. If data in educational large-scale
assessment studies were indeed to follow a random DIF distribution, the currently used
linking methods (concurrent calibration, recalibration linking RC1) could be replaced by
better alternatives as proposed in this study (moment-based linking, recalibration linking
RC3). Of course, the extent of the bias and loss in the precision of the current methods
depends on the variance of the DIF effects and can vary from study to study.

Our study assumed that the utilized scaling model (i.e., the 2PL model) was correctly
specified. This assumption might be unrealistic in practice, and data could have been
generated with much more complex item response functions [118–122] or multidimen-
sional IRT models [123,124]. The performance of the linking methods for misspecified
IRT models [125,126] in the presence of random DIF might be an exciting topic for future
research [127,128].

In this article, we only considered random DIF effects with a normal distribution
and zero means. For relevance in practical applications, it might be interesting for future
research to study the DIF effects under different data-generating models. First, random DIF
could be simulation in a partial invariance situation in which only a few items have DIF ef-
fects, while the majority of DIF effects do not have DIF effects. Second, the case of normally
distributed random DIF and partial invariance could occur in tandem. DIF effects could be
simulated from a mixture distribution in which the first class includes normally distributed
DIF effects with zero means, while the second class of smaller proportion includes outlying
and large DIF effects. Due to the presence of outliers, the average of DIF effects will
typically differ from zero. For this kind of DIF effects, robust linking methods must be
employed for removing these outlying items from group comparisons [65,71,89,94,107].

In this article, we only studied linking in the two-group case. In the case of multiple
groups, different linking methods can be employed [65,84,93,129,130]. However, the find-
ings from two groups are likely to generalize to the multiple group case if the linking were
to be performed based on sequences of pairwise linking approaches [131–133]. Comparing
the performance of pairwise linking approaches and simultaneous linking of multiple
groups would be an exciting topic for future research.

Our findings are likely to have even more impact on vertical scaling in which groups
constitute time points or grades in the school career [134]. In this situation, differences in
the means and SDs between groups are expected to be larger, and the consequences of
choosing an inappropriate linking method can be much more pronounced [128,135–138].
As pointed out by an anonymous reviewer, vertical linking poses more assumptions than
cross-sectional linking because younger test-takers could incorporate guessing strategies if
they had a chance to respond to harder items designed for older test-takers (see also [25]).
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It should be noted that we did not investigate the computation of standard errors
for the linking methods. There is a rich literature that derives standard error formulas for
linking due to sampling of persons (e.g., [85,104,132,139–141]). In addition, variability in
estimated group means and SDs due to selecting items has been studied as linking errors
in the literature [66,72,99,142–145]. It might be interesting in future research to investigate
standard errors that reflect these sources of uncertainty [72,84,132,146]. Procedures that
rely on resampling of persons and items will likely correctly reflect uncertainty due to
persons and items in the parameters of interest.
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1PL one-parameter logistic model
2PL two-parameter logistic model
ANCH anchored item parameters
CC concurrent calibration
DIF differential item functioning
HAB Haberman linking with logarithmized item discriminations
HAB-nolog Haberman linking with untransformed item discriminations
HAE Haebara linking
HAE-asymm asymmetric Haebara linking
HAE-joint Haebara linking with joint item parameters
HAE-symm symmetric Haebara linking
IA2 invariance alignment with power p = 2
IRF item response function
IRT item response theory
logMM log-mean-mean linking
LSA large-scale assessment
MM mean-mean linking
MML marginal maximum likelihood
MSE mean-squared error
NUDIF nonuniform differential item functioning
PIRLS Progress in International Reading Literacy Study
PISA Programme for International Student Assessment
RC recalibration linking
RMSE root-mean-squared error
SD standard deviation
TIMSS Trends in International Mathematics and Science Study
UDIF uniform differential item functioning

Appendix A. Nonidentifiability of DIF Effects Distributions

In this Appendix, we show that some constraints on the distributions of DIF effects ei
and fi have to be posed in order to disentangle group differences in the ability distribution
from average DIF effects. In Appendixes A.1 and A.2, we discuss nonidentifiability for
item difficulties and item discriminations, respectively.

https://www.oecd.org/pisa/data/
https://www.oecd.org/pisa/data/
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Appendix A.1. DIF Effects for Item Difficulties

First, we show that the mean E(ei) must be set to zero for reasons of identification.
Assume that there are additive DIF effects for item difficulties (see Equation (4)). Let us
assume that DIF effects ei have a mean different from zero (i.e., E(ei) = δe. Then, we can
write ei = δe + e∗i with E(e∗i ) = 0. The IRF for item i for persons in the first group (i.e.,
g = 1) can be written as:

P(Xi = 1|θ) = Ψ(ai(θ − b∗i + e∗i )) , θ ∼ N(0, 1) , (A1)

where b∗i = bi − δe. For persons in the second group, the ability distribution is given by
θ ∼ N(µ2, σ2

2 ). However, the IRF can be equivalently formulated as:

P(Xi = 1|θ) = Ψ(ai(θ − b∗i − e∗i )) , θ ∼ N(µ2 − 2δe, σ2
2 ) . (A2)

Hence, the parameterization involving common item difficulties bi, DIF effects ei
with E(ei) = δe 6= 0, and θ ∼ N(µ2, σ2

2 ) for persons in the second group can be equiv-
alently parameterized with common item difficulties b∗i , DIF effects e∗i with E(e∗i ) = 0,
and θ ∼ N(µ2, σ2

2 ) for persons in the second group. This demonstrates that group mean
differences for abilities cannot be identified if the average DIF effect E(ei) is assumed to
differ from zero.

Appendix A.2. DIF Effects for Item Discriminations

Now, we show nonidentifiability for the DIF effects distribution of item discrimina-
tions. We assumed multiplicative DIF effects (see Equation (6)). It is shown that E(log fi)
cannot be identified from data if the standard deviation σ2 is simultaneously estimated.
Assume E(log fi) = δ f 6= 0. We can reparametrize the DIF effects as fi = exp(δ f ) f ∗i with
E(log f ∗i ) = 0. Then, we obtain the IRF for item i in the first group:

P(Xi = 1|θ) = Ψ
(

ai
fi
(θ − bi + ei)

)
= Ψ

(
a∗i
f ∗i
(θ − bi + ei)

)
, θ ∼ N(0, 1) , (A3)

where a∗i = ai exp(−δ f ). The IRF for persons in the second group is given as:

P(Xi = 1|θ) = Ψ(a∗i f ∗i (θ − bi + ei)) , θ ∼ N(µ2, σ2 exp(2δ f )) , (A4)

Hence, the mean of DIF effects fi (or log fi, respectively) must be fixed for identifica-
tion reasons.

Appendix B. Proof of Proposition 1

Appendix B.1. Consistency of Additive DIF Effects fi with Condition (I)

Define:
T̂g =

1
|I0| ∑

i∈I0

log âig for g = 1, 2 . (A5)

From Section 2.3.1 (Equation (9)), we know that âi1 = ai1 = ai − fi and âi2 = ai2σ2 =
σ2(ai + fi). Hence, we obtain:

E(T̂2) =
1
|I0| ∑

i∈I0

E(log (σ2(ai + fi))) = log σ2 +
1
|I0| ∑

i∈I0

E(log (ai + fi)) and (A6)

E(T̂1) =
1
|I0| ∑

i∈I0

E(log (ai − fi)) . (A7)
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Because the distribution of fi is symmetric with E( fi) = 0, we obtain E(log (ai + fi)) =
E(log (ai − fi)). Therefore, we obtain:

E(T̂2 − T̂1) = log σ2 . (A8)

Trivially, it follows that T̂2 − T̂1
p→ log σ2. Because σ̂2 = exp(T̂2 − T̂1), we obtain by

the continuous mapping theorem ([147], p. 7):

σ̂2 = exp(T̂2 − T̂1)
p→ exp(log σ2) = σ2 . (A9)

To derive the consistency of µ̂2, define:

B̂g =
1
|I0| ∑

i∈I0

b̂i2 for g = 1, 2 . (A10)

From Equation (9) in Section 2.3.1, it follows that b̂i1 = bi − ei and b̂i2 = σ−1
2 (bi + ei −

µ2). Thus,

E(B̂2) =
µ2

σ2
+

1
σ2

1
|I0| ∑

i∈I0

bi and (A11)

E(B̂1) =
1
|I0| ∑

i∈I0

bi . (A12)

We can rewrite:
µ̂2 = −σ̂2B̂2 + B̂1 . (A13)

Assume the existence of B = lim|I0|→∞
1
|I0| ∑i∈I0

bi. It holds that B̂2
p→ µ2/σ2 + B/σ2

and B̂1
p→ B. Hence, we obtain from (A13):

µ̂2 = −σ̂2B̂2 + B̂1
p→ −σ2(µ2/σ2 + B/σ2) + B = µ2 . (A14)

Appendix B.2. Consistency for Multiplicative DIF Effects fi with Condition (II)

From Section 2.3.1 (Equation (9)), we know that âi1 = ai1 = ai/ fi and âi2 = ai2σ2 =
σ2ai fi. Then, we obtain:

T̂2 − T̂1 = log σ2 +
1
|I0| ∑

i∈I0

log fi . (A15)

With E(log fi) = 0, we obtain from (A15):

E(T̂2 − T̂1) = log σ2 . (A16)

This proves σ̂2
p→ σ2 using the same reasoning as in (A9).

The derivations for B̂g (g = 1, 2) are the same as in Appendix B.1. Due to the
consistency of σ̂2, we also obtain the consistency of µ̂2 as in (A14).

Appendix C. Proof of Proposition 2

Appendix C.1. Consistency for Additive DIF Effects fi with Condition (I)

Define:
Ûg =

1
|I0| ∑

i∈I0

âig for g = 1, 2 . (A17)
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The expected values for Û1 and Û2 are given in as:

E(Û2) =
1
|I0| ∑

i∈I0

E((σ2(ai + fi))) = σ2
1
|I0| ∑

i∈I0

ai and (A18)

E(Û1) =
1
|I0| ∑

i∈I0

ai . (A19)

Using the notation A = lim|I0|→∞
1
|I0| ∑i∈I0

ai, we obtain Û1
p→ A and Û2

p→ σ2 A. By
the continuous mapping theorem ([147], p. 7), we obtain:

σ̂2 =
Û2

Û1

p→ σ2 . (A20)

The steps for deriving the consistency of µ̂2 are the same as in Appendix B.1.

Appendix C.2. Consistency for Multiplicative DIF Effects fi with Condition (IO)

For multiplicative DIF effects, we have:

Û2 =
1
|I0| ∑

i∈I0

âiσ2 fi = σ2
1
|I0| ∑

i∈I0

âi exp(log fi) and (A21)

Û1 =
1
|I0| ∑

i∈I0

âi/ fi = σ2
1
|I0| ∑

i∈I0

âi exp(− log fi) . (A22)

Because fi has a symmetric distribution, it follows that α ≡ E(exp(log fi)) = E(exp
(− log fi)). Then, we have:

E(Û2) = σ2α
1
|I0| ∑

i∈I0

âi and E(Û1) = α
1
|I0| ∑

i∈I0

âi . (A23)

Assuming the existence of A = lim|I0|→∞
1
|I0| ∑i∈I0

âi, one obtains Û2
p→ σ2αA and

Û1
p→ αA. By the continuous mapping theorem ([147], p. 7), we obtain:

σ̂2 =
Û2

Û1

p→ σ2αA
αA

= σ2 . (A24)

As in Appendix C.1, the derivation for the consistency of µ̂2 does not require new
calculations.

Appendix D. Estimates in Haberman Linking

For the HAB linking with logarithmized item loadings, the linking function for the
standard deviation is given as:

H1,log(σ2, a) = ∑
i∈I0∪I1

(log âi1 − log ai)
2

+ ∑
i∈I0∪I2

(log âi2 − log ai − log σ2)
2 . (A25)

Taking the derivative of H1,log with respect to log ai for i ∈ I0 and setting it to zero
provide (up to multiplication with a constant):

(log âi1 − log ai) + (log âi2 − log ai − log σ2) = 0 . (A26)
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Similarly, setting the derivative of H1,log with respect to log σ2 to zero provides:

∑
i∈I0

(log âi2 − log ai − log σ2) = 0 (A27)

Summing the equations of all |I0| items of (A26) and subtracting (A27) provide:

∑
i∈I0

(log âi1 − log ai) = 0 . (A28)

With an estimate log σ̂2 of log σ2, we obtain from (A26):

log âi =
1
2
(log âi1 + log âi2 − log σ̂2) . (A29)

Plugging (A29) into (A27) provides:

log σ̂2 =
1
|I0| ∑

i∈I0

log âi2 −
1
|I0| ∑

i∈I0

log âi1 . (A30)

Hence, it holds that:

σ̂2 = exp

(
1
|I0| ∑

i∈I0

log âi2 −
1
|I0| ∑

i∈I0

log âi1

)
. (A31)

For Haberman linking with untransformed item discriminations (HAB-nolog), the
linking function for the standard deviation of the second group is given as:

H1,nolog(σ2, a) = ∑
i∈I0∪I1

(âi1 − ai − 1)2 + ∑
i∈I0∪I2

(âi2 − ai − σ2)
2 . (A32)

Taking the derivative of H1,nolog with respect to ai for i ∈ I0 and setting it to zero provide:

(âi1 − ai − 1) + (âi2 − ai − σ2) = 0 . (A33)

Estimates âi are then given by:

âi =
1
2
(âi1 + âi2 − (1 + σ2)) . (A34)

Setting the derivative of H1,nolog with respect to σ2 to zero provides:

∑
i∈I0

(âi2 − ai − σ2) = 0 . (A35)

Substituting (A34) into (A35) provides:

σ̂2 = 1 +
1
|I0| ∑

i∈I0

âi2 −
1
|I0| ∑

i∈I0

âi1 . (A36)

Appendix E. Estimates in Invariance Alignment

We now derive closed expressions for the estimates from IA2 (see Section 3.4). To
estimate σ2, define:

f (σ2) = ∑
i∈I0

(
âi1 −

âi2
σ2

)2
. (A37)
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Then, it follows that:

f (σ2) = ∑
i∈I0

(
â2

i1 +
â2

i2
σ2

2
− 2

âi1 âi2
σ2

.

)
(A38)

The derivative of f in (A38) is:

∂ f
∂σ2

= ∑
i∈I0

(
−2

â2
i2

σ3
2
+ 2

âi1 âi2

σ2
2

)
. (A39)

To find the minimum, setting the derivative to zero provides:

∑
i∈I0

(
−â2

i2 + âi1 âi2σ2

)
= 0 (A40)

and we have:

σ̂2 =

∑
i∈I0

â2
i2

∑
i∈I0

âi1 âi2
. (A41)

To estimate µ2, define:

g(µ2) = ∑
i∈I0

(
ν̂i1 − ν̂i2 + µ2

âi2
σ̂2

)2
. (A42)

We obtain:

g(µ2) = ∑
i∈I0

(
(ν̂i1 − ν̂i2)

2 + µ2
2

â2
i2

σ̂2
2
− 2µ2

âi2
σ̂2

(ν̂i1 − ν̂i2)

)
. (A43)

Setting the derivative of g with respect to µ2 to zero provides:

∑
i∈I0

(
2µ2

â2
i2

σ̂2
2
− 2

âi2
σ̂2

(ν̂i1 − ν̂i2)

)
= 0 . (A44)

Then, we obtain using (A41):

µ̂2 =

∑
i∈I0

âi2
σ̂2

(ν̂i1 − ν̂i2)

∑
i∈I0

â2
i2

σ̂2
2

= σ̂2

∑
i∈I0

âi2(ν̂i1 − ν̂i2)

∑
i∈I0

â2
i2

=

∑
i∈I0

âi2(ν̂i1 − ν̂i2)

∑
i∈I0

âi1 âi2
. (A45)

Appendix F. Item Parameters Used in the Simulation Study

In Table A1, the item parameters used in the simulation study are shown. Item
discriminations ai had a mean of 1.00 (SD = 0.28, Min = 0.50, Max = 1.42), and item
difficulties bi had an average of 0.00 (SD = 1.00, Min = −1.62, Max = 1.39)
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Table A1. Item parameters used in the simulation study.

Item ai bi

1 0.95 −0.97
2 0.88 0.59
3 0.75 0.75
4 1.29 −0.79
5 1.28 1.23
6 1.29 −1.10
7 1.25 −0.67
8 0.97 0.20
9 0.73 1.26

10 1.27 0.05
11 1.42 1.22
12 0.75 −0.01
13 0.50 0.20
14 0.81 1.39
15 1.12 0.61
16 0.78 −1.00
17 1.30 −1.58
18 0.70 −1.62
19 1.29 1.06
20 0.74 −0.81

Note. ai = item discrimination; bi = item difficulty.
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