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Abstract: A non-uniform (skewed) mixture of probability density functions occurs in various
disciplines. One needs a measure of similarity to the respective constituents and its bounds. We
introduce a skewed Jensen–Fisher divergence based on relative Fisher information, and provide
some bounds in terms of the skewed Jensen–Shannon divergence and of the variational distance.
The defined measure coincides with the definition from the skewed Jensen–Shannon divergence
via the de Bruijn identity. Our results follow from applying the logarithmic Sobolev inequality and
Poincaré inequality.

Keywords: skewed Jensen–Fisher divergence; relative Fisher information; Fisher information; loga-
rithmic Sobolev inequality; Poincaré inequality

1. Introduction

Comparison of a probability density function with a mixture, i.e., a weighted sum
of several density functions, is frequently needed in various disciplines, such as statistics,
information theory, signal processing, bioinformatics, machine learning, neuroscience,
natural language processing, time series analysis, and many others. To quantify the close-
ness of the mixed density function to the respective one, the Jensen–Shannon divergence
(JSD) has been used since the definition by Lin [1]. JSD is a symmetrized Kullback–Leibler
(KL) divergence with an equally weighted mixture. The skewed version of JSD has also
been introduced as the generalized JSD in [1]. A symmetrized JSD through a skewed KL
divergence has been been studied in [2,3]. By the skewed divergence, we mean that one
chooses its reference density function as an unequally weighted density.

Recently, on the other hand, a Jensen–Fisher divergence (JFD) has been introduced [4]
to properly detect the highly oscillatory behavior of density functions. The JFD uses relative
Fisher information instead of a KL divergence, by which it is more sensitive to the change
of densities because of the gradient feature, whereas the KL divergence encapsulates the
overall feature. In this paper, we show that the skewed version of the Jensen–Fisher
divergence can be defined similarly to the skewed JSD, and express it in terms of the Fisher
information of respective density functions.

In the next two sections, we define it in two different ways, but we see that they are
identical. Some backgrounds for relative Fisher information and the previous applications
to physical sciences are also mentioned there. Then, we provide some lower bounds by
applying some integral inequalities for gradient functions. In the last section, we remark
on the application of the Sobolev inequality to the skewed Jensen–Fisher divergence.

2. Definition via Jensen–Shannon Divergence

Let p(x) and q(x) be two continuous probability density functions on Rn. The skewed
Jensen–Shannon divergence is defined as the weighted sum of the respective skewed KL
divergence:

JSDα(p, q) := (1− α)KL(p‖(1− α)p + αq) + αKL(q‖(1− α)p + αq), (1)
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where α ∈ [0, 1] controlls the weights in the mixture. We will use the separation symbol
‖ between the two functions for the single divergence and the comma , for the combined
divergences. Here, the skewed KL divergence of order α from p(x) to q(x) is defined
as [1,5,6]

KL(p‖(1− α)p + αq) :=
∫

Rn
p log

p
(1− α)p + αq

dx. (2)

We always assume absolute continuity when we encounter a division of density
functions. Similarly, from q(x) to p(x)

KL(q‖(1− α)p + αq) :=
∫

Rn
q log

q
(1− α)p + αq

dx. (3)

Thus, the weighted sum of the above two skewed KL divergences of order α provides
the following expression for the definition Equation (1)

JSDα(p, q) = S((1− α)p + αq)− (1− α)S(p)− αS(q), (4)

where S(p) = −
∫

p log pdx is the differential entropy of an arbitrary random variable
with a density function p(x), and others are defined similarly. For p 6= q, JSDα(p, q) shows
positivity, which means equivalently that S(p) is a concave function. When α = 1/2,
Equation (1) gives the usual Jensen–Shannon divergence (JSD) [1,7,8]:

JSD(p, q) =
1
2

∫
Rn

p log
2p

p + q
dx +

1
2

∫
Rn

q log
2q

p + q
dx

= S
(

p + q
2

)
− 1

2
(S(p) + S(q)), (5)

which is a symmetric measure with respect to p and q and quantifies the deviation of the
mean from their respective density functions in terms of the differential entropy.

Remark 1. A special instance of α = 1/2 in Equation (2) was considered in [9]. The
definition Equation (1) is also used in [10]. Lin [1] introduced the weighted combination
of any finite number of density functions into the Jensen–Shannon divergence in terms of
the differential entropy of the constituent functions. He termed it the generalized Jensen–
Shannon divergence. However, the expression Equation (1), in terms of the skewed KL
divergences, is useful as it clearly shows a distance of the mixture from the respective
density functions, and this form motivates us to introduce the definition of the skewed
Jensen–Fisher divergence in a similar way as we will see below. A special case of equal
weight in the above definition has previously been defined in [2,3]:

1
2

KL(p‖(1− α)p + αq) +
1
2

KL(q‖(1− α)p + αq).

To proceed, recall that the de Bruijn identity [11–13] relates the differential entropy
of p to its Fisher information and it has been extended in such a way that the detailed
statistics of the noise do not enter [14]:

d
dδ

S(p +
√

δη)
∣∣∣
δ=0

=
1
2

I(p), (6)
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where η is an arbitrary symmetric density function with zero mean and unit variance, which
is not necessarily a standard Gaussian. Fisher information of p(x) on Rn is defined [15,16] as

I(p) :=
∫

Rn

||∇p||2
p

dx, (7)

where, as usual, || · || denotes l2-norm on Rn. Fisher information, in general, reflects
the gradient content (i.e., sharpness) of probability density functions. This feature is
informative as a measure because it is more sensitive to the degree of localization and
oscillatory behavior than using differential entropy. Indeed, it has been used to detect
information on the radial densities of relativistic and non-relativistic hydrogenic atoms
(e.g., [17,18], and many others).

Note that, for the perturbed density functions pδ = p +
√

δη and qδ = q +
√

δη,
we have

d
dδ

S((1− α)pδ + αqδ)
∣∣∣
δ=0

=
d
dδ

S((1− α)p + αq +
√

δη)
∣∣∣
δ=0

=
1
2

I((1− α)p + αq). (8)

Thus, in view of Equation (4), the skewed Jensen–Fisher divergence is induced by the
skewed Jensen–Shannon divergence, as described in the following result:

Proposition 1. The derivative of the skewed Jensen–Shannon divergence between the two
perturbed density functions pδ and qδ can be given as half of the skewed Jensen–Fisher
divergence, with the same order between the two original density functions:

d
dδ

JSDα(pδ, qδ)
∣∣∣
δ=0

= −1
2

JFDα(p, q), (9)

by which we can define the skewed Jensen–Fisher divergence of order α as follows:

Definition 1. For α ∈ [0, 1], let p and q be two probability density functions. Then, it is
defined by

JFDα(p, q) = (1− α)I(p) + αI(q)− I((1− α)p + αq). (10)

This definition is consistent with another one given in the next section. The special case
of α = 1/2 was devised and applied to see the behavior of some probability distributions
in [4]:

d
dδ

JSD 1
2
(p, q)

∣∣∣
δ=0

=
1
2

I
(

p + q
2

)
− 1

4
(I(p) + I(q)) = −1

2
JFD 1

2
(p, q). (11)

The defined form Equation (10) can be advantageous, because we can control the
mixture of Fisher information by changing the skew parameter α.

Remark 2. A connection to nonequilibrium processes through the de Bruijn-type iden-
tity can be obtained. The probability density functions p(x, t) and q(x, t) for systems
described by heat equations and linear Fokker-Planck equations satisfy the de Bruijn-type
identity [19]

d
dt

KL(p‖q) = −D I(p|q),

where t is time andD is the diffusion constant associated with the probability current of the
equations. We will define I(p|q) in the right-hand side (i.e., the relative Fisher information)
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soon in the next section. Thus, we have an expression of JFDα(p, q) in terms of the time
derivative of the skewed KL divergence:

JFDα(p, q) = − 1
D

d
dt
{KL(p‖(1− α)p + αq) + KL(q‖(1− α)p + αq)}. (12)

3. Definition via Relative Fisher Information

The relative Fisher information of p with respect to q is defined as

I(p|q) :=
∫

Rn
p(x)

∥∥∥∇ log
p(x)
q(x)

∥∥∥2
dx, (13)

where we use the separation symbol | between p and q instead of ‖, according to the
convention. It is an asymmetric measure in p and q. It is non-negative and vanishes
when p = q, which is desirable as a measure of statistical distance. Moreover, one does
not suffer from a difficult computation of the normalization factor of q, which is often
non-normalized in many cases: that is, I(p|kq) = I(p|q) for any constant k> 0. This
merit has recently been used in the machine learning community, and in related fields
such as Bayesian statistical inference [20–25]. Since this measure involves derivatives of
density functions, it is more sensitive to reflect the oscillatory behavior in density functions
that appear in quantum mechanical systems [4]. That is, since the probability densities
of quantum systems such as a particle in a quantum potential well, isotropic harmonic
oscillators, and hydrogen-like atoms oscillate spatially, and these characters increase as
the corresponding quantum numbers increase, the Jensen–Shannon divergence is not
necessarily an informative measure.

Some Background on Relative Fisher Information

First, we mention the original source of relative Fisher information, which has been
defined and was named differently in different disciplines. As far as the author knows, the
form was first proposed in 1978 in Equations (14) and (25) by Hammad in [26], in which
the gradient of a density function f (x, θ) is taken with respect to the parameter θ:

∫
Rn

p(x, θ)

(
∂

∂θ
log

p(x, θ)

q(x, θ)

)2

dx. (14)

In 1986, Barron [27] defined the counterpart of the above by replacing the θ-derivative
with the x-derivative (i.e., the so-called shift transformation families) to show that the
sequence of Fisher information converges to the Cramér-Rao bound. He termed it stan-
dardized Fisher information. Johnson [28,29] in 2000 has also defined the same form as
Equation (13) in connection with the central limit theorem and termed it as Fisher infor-
mation distance. Moreover, in mathematics, Otto and Villani introduced it with a measure
theoretical notation as an equivalent of the logarithmic Sobolev inequality [30,31]. On the
other hand, Hyvärinen [20,21], in 2005, was able to reach the proposal of the same form to
estimate statistical models whose normalization constant of a density function is not known
in closed form. In a recent machine learning community, some researchers call it Fisher
divergence [22,23]. However, Hammad used the term Fisher divergence to denote the
symmetrized form I(p|q) + I(q|p) (see Equation (41) of [26]). Relative Fisher information
is potentially useful in many areas of science. In quantum mechanical applications, the
excited states of density functions (the square of the wave functions) are compared with its
ground state one, and the information shows significant changes according to the eigen
states in respective quantum systems under potentials (e.g., [17,32–38]). We mention two
more examples of the role of relative Fisher information in statistical physics. It connects
the phase space gradient of the dissipated work in nonequilibrium processes: the dis-
tance between canonical equilibrium densities that correspond to forward and backward
processes is proportional to the average of the squared gradient of the work dissipated
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into the environment [39]. When heat exchange occurs between two bodies with different
temperatures under the exchange fluctuation theorem, relative Fisher information of the
heat probability with respect to its reverse is proportional to the square of the inverse
temperature difference before contact [40].

We now define the skewed Jensen–Fisher divergence of order α as follows:

Definition 2. For α ∈ [0, 1], let p and q be two probability density functions. Then it is
defined by

JFDα(p, q) = (1− α)I(p|(1− α)p + αq) + αI(q|(1− α)p + αq). (15)

When α = 0 and α = 1, it vanishes. By this definition and Equation (13), the skewed
Jensen–Fisher divergence of order α can be expressed by the Fisher information of respective
density functions

JFDα(p, q) = (1− α)
∫

Rn
p
∥∥∥∇p

p
− (1− α)∇p + α∇q

(1− α)p + αq

∥∥∥2
dx

+ α
∫

Rn
q
∥∥∥∇q

q
− (1− α)∇p + α∇q

(1− α)p + αq

∥∥∥2
dx

= (1− α)
∫

Rn

||∇p||2
p

dx + α
∫

Rn

||∇q||2
q

dx−
∫

Rn

||(1− α)∇p + α∇q||2
(1− α)p + αq

dx

= (1− α)I(p) + αI(q)− I((1− α)p + αq), (16)

which is the same form as Equation (10) as desired. From the definitions Equation (13)
and Equation (10), JFDα(p, q) is clearly positive, and vanishes when p = q. This property
also means that Fisher information I(p) is a convex function. We easily find that this
divergence measure does not keep symmetry with respect to the exchange of p and q; that
is, JFDα(p, q) 6= JFDα(q, p). Instead, under the index change α ↔ 1− α, the following
relation is satisfied:

JFD1−α(p, q) = JFDα(q, p). (17)

Next, we find that an immediate consequence of the application of the Blachman–
Stam inequality gives an interesting lower bound for JFDα(p, q). The Blachman–Stam
inequality [11,41] asserts that, for all α ∈ [0, 1], Fisher information of p and q satisfies an
inequality

αI(p) + (1− α)I(q) ≥ I(
√

αp +
√

1− αq). (18)

Therefore, we find the following bound:

Proposition 2. The skewed Jensen–Fisher divergence of order α is lower bounded by the difference
of two Fisher information as follows:

JFDα(p, q) ≥ I(
√

1− αp +
√

αq)− I((1− α)p + αq). (19)

From the positivity of JFDα(p, q) because of the definition Equation (15) and of the
positivity of the relative Fisher information, the above inequality also means an interesting
relation I(

√
1− αp +

√
αq) ≥ I((1− α)p + αq).

Remark 3. A similar bound can be obtained for the skewed Jensen–Shannon divergence
of order α by way of the Shannon–Stam inequality [11]:

(1− α)S(p) + αS(q) ≥ S(
√

1− αp +
√

αq).
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Applying this to the definition Equation (1), we readily obtain an upper bound instead
of the lower one

JSDα(p, q) ≤ S((1− α)p + αq)− S(
√

1− αp +
√

αq).

From the positivity of JSDα(p, q), this inequality also means the relation S((1− α)p +
αq) ≥ S(

√
1− αp +

√
αq).

4. A Bound by Skewed Jensen–Shannon Divergence

It will be useful to relate a divergence measure to another existing one in terms of a
bound because the convergence (or similarity) in a divergence can be stronger or weaker
than convergence in other measures. This section aims at providing such an example. We
consider a lower bound from an integral inequality for gradient functions f . Contrary to
the Sobolev inequality, the logarithmic Sobolev inequality does not depend on dimension n,
in which we consider f as probability density functions. Recalling that when all functions
f and the distributional gradient ∇ f belong to L2, the probability density function ρ(x) on
Rn satisfies the Gross’ logarithmic Sobolev inequality [42]∫

Rn
| f |2 log | f |ρ(x)dx ≤ c

∫
Rn
||∇ f ||2ρ(x)dx + || f ||22 log || f ||22, (20)

where the constant c is independent of f . As a special case, when ρ(x) is the standard
Gaussian density with zero mean and unit variance, we have c = 1 (the so-called LSI(1)).
Thus, by applying the above by identifying f =

√
p/q and ρ(x) = q(x), we have an

inequality

c
4

I(p|q) ≥ 1
2

KL(p‖q). (21)

Therefore, the skewed Jensen–Fisher divergence of order α is lower bounded by the
skewed Jensen–Shannon divergence, as

JFDα(p, q) ≥ 2
c
(1− α)KL(p‖(1− α)p + αq) +

2
c

αKL(q‖(1− α)p + αq)

=
2
c

JSDα(p, q). (22)

This lower bound indicates that, when we can set the constant as c ≥ 2, we have a
tighter distance than the skewed Jensen–Shannon divergence gives.

5. A Lower Bound by Variational Distance

The purpose of this section is to find a bound of the skewed Jensen–Fisher divergence
of order α in terms of the variational distance between p and q. We apply the Poincaré
inequality to bound JFDα(p, q) from below. It states that the probability density function
ρ(x) on Rn satisfies the inequality (e.g., [31])

∫
Rn

(
f (x)−

∫
Rn

f (y)dy
)2

ρ(x)dx ≤ 1
λ

∫
Rn
||∇ f ||2ρ(x)dx (23)

for all functions f that belong to L2, such that its distributional gradient also belongs to
∇ f ∈ L2. The Poincaré constant or the spectral gap λ is a positive constant.

Proposition 3. The skewed Jensen–Fisher divergence of order α is lower bounded by the variational
distance V as

JFDα(p, q) ≥ λ

2
α2V2. (24)
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Proof. Identifying f =
√

p/q and ρ(x) = q in the Poincaré inequality, the right-hand side
becomes I(p|q)/4λ. On the other hand, we evaluate the left-hand side as

1−
(∫

Rn

√
pqdy

)2
≥ 1

2

∫
Rn
(
√

p−√q)2dy, (25)

where we have used the magnitute relationship
∫ √

pqdy ≥ (
∫ √

pqdy)2. In this sense, the
bound becomes loose here, and it states

1
4λ

I(p|q) ≥ 1
2

∫
Rn
(
√

p−√q)2dy. (26)

We want to bound JFDα(p, q) in terms of the variational distance V:

V =
∫

Rn

∣∣∣p(x)− q(x)
∣∣∣dx. (27)

Applying the Schwarz inequality, one has V2 ≤ (
∫
(
√

p−√q)2dx)(
∫
(
√

p +
√

q)2dx).
Thus, the second factor of the right-hand side can be bounded by 4 due to

∫ √
pqdx ≤ 1.

Hence, the right-hand side of Equation (26), which is the squared Hellinger distance aside
from 1/2, is lower bounded by V2/8. Regarding q as (1− α)p + αq in this inequality, the
skewed relative Fisher information is lower bounded as

I(p|(1− α)p + αq) ≥ λ

2
α2V2. (28)

Finally, from the definition of JFDα(p, q) (i.e., Equation (15)), we have the lower
bound as desired.

6. Summary and Discussion

We have defined the skewed Jensen–Fisher divergence of order α and found some
bounds. These bounds come from inequalities in which the broadness of a function in terms
of Lq norm bounds an average gradient of a function from below in suitable ways. The loga-
rithmic Sobolev inequality is a tool that provides such a link with the skewed Jensen–Fisher
divergence through the relative Fisher information. We know that the Sobolev inequality
(not the logarithmic) is also an integral inequality that involves the gradient of a function.
Therefore, one may think that it offers a bound for our divergence measure because the
Sobolev inequality also relates the L2 norm of the gradient of a function with an Lr norm
of the function, where r is an index that depends on the dimension of space n. However,
an unthinking application of it leads to inappropriate bounds. To see this aspect clearly,
we consider the case n ≥ 3 and see first that JFDα(p, q) is lower bounded in terms of the
Chernoff α distance; then, we see that the derived bound loses its effectiveness.

When n ≥ 3, the Sobolev inequality states [43]

‖∇ f ‖2
2 ≥ Sn‖ f ‖2

r , Sn =
n(n− 2)2

2
n π1+ 1

n

4Γ((n + 1)/2)
2
n

, (29)

where r is the Sobolev exponent r = 2n/(n− 2). Identifying f =
√

p/q and taking the
measure for the norms as q(x)dx, we have

‖∇ f ‖2
2 =

1
4

I(p|q), ‖ f ‖2
r =

(∫
Rn

p
r
2 q1− r

2 dx
)2/r

. (30)
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Note that the power exponent appearing in the latter is r/2 = n/(n− 2) > 1. We
recall here that the Chernoff α distance [44] between two density functions p and q is
defined as (we here use β instead of α to avoid confusion with α for JFDα(p, q))

Cβ(p, q) = − log
(∫

Rn
pβq1−βdx

)
. (31)

This is also called the skewed Bhattacharyya distance [45], because when β = 1/2, it
reduces to the Bhattacharyya distance [46]. The distance Cβ(p, q) becomes zero when p = q,
and takes positive values for 0 ≤ β ≤ 1; however, it can be negative for other ranges, which
is our present case. Indeed, for β ≥ 1, Cβ(p, q) ≤ 0 follows, because Cβ(p, q) is concave

with respect to β and C0(p, q) = C1(p, q) = 0. Thus, rewriting
∫

Rn pβq1−βdx = e−Cβ(p,q),
the Sobolev inequality provides

1
4

I(p|q) ≥ Sn exp
[
−n− 2

n
C n

n−2
(p, q)

]
. (32)

Therefore, identifying this q as pq := (1− α)p + αq and from the definition of Equa-
tion (15), we have the following lower bound in terms of the Chernoff α distance:

JFDα(p, q) ≥ 4Sn

{
(1− α) exp

[
−n− 2

n
C n

n−2
(p, pq)

]
+ α exp

[
−n− 2

n
C n

n−2
(q, pq)

]}
,

(n ≥ 3). (33)

The value of the Chernoff distance becomes negatively large as p and q differ largely,
and when we consider a higher dimensional space. Indeed, the coefficient Sn is an in-
creasing function of n, which starts from S3 = 5.4779.... Even when the Chernoff distance
vanishes by increasing n (recall C1(p, q) = 0) or by approaching the one density function
q to the other one p, Equation (33) asserts the finitely large lower bound 4Sn. Thus, the
derived lower bound loses its effectiveness. The same argument is true for two- and one-
dimensional cases. Where does this inexpedience come from? The Sobolev inequality holds
for functions f that have compact support (thus vanishes at infinity) with ∇ f ∈ L2(Rn).
On the other hand, the log-Sobolev inequality holds for a class of functions with f ∈ L2(Rn)
and ∇ f ∈ L2(Rn). The density functions vanish at infinity. However, when we choose
f =

√
p/q to make I(p|q) (and

√
q/p for I(q|p)), the ratio p/q (and q/p) does not vanish

when |x| → ∞ or at the boundary. This fact indicates that the Sobolev inequality cannot be
applied in our present study.
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