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Abstract: The existence of a parametric fractional integral equation and its numerical solution is a
big challenge in the field of applied mathematics. For this purpose, we generalize a special type of
fixed-point theorems. The intention of this work is to prove fixed-point theorems for the class of
β−G, ψ−G contractible operators of Darbo type and demonstrate the usability of obtaining results
for solvability of fractional integral equations satisfying some local conditions in Banach space. In
this process, some recent results have been generalized. As an application, we establish a set of
conditions for the existence of a class of fractional integrals taking the parametric Riemann–Liouville
formula. Moreover, we introduce numerical solutions of the class by using the set of fixed points.

Keywords: ψG-contraction; βG-cotraction; fractional-order integral equation; fractional calculus;
fractional differential operator

1. Introduction

Approximately, a measure of noncompactness is a function demarcated on the class
of all nonempty and bounded subsets of a definite metric space where it is identical
to zero on the entire class of comparatively compact sets [1]. A survey of theory and
applications of measures of noncompactness is presented in [2]. The normal measures of
noncompactness are deliberated, and their possessions are associated. Some consequences
regarding normal measures of noncompactness in altered spaces are offered. Additionally,
the authors introduced some applications of the measure of noncompactness notion to
functional equations involving nonlinear integral equations of arbitrary orders, implicit
arbitrary integral equations and q-integral equations of arbitrary orders. The measure of
noncompactness plays very significant role in the theory of fixed points and applications.
The term measures of noncompactness were initially formulated in the elementary paper
of Kuratowski [3]. Furthermore, G. Darbo [4] defined condensing operator and established
a fixed-point theorem that involved the idea of a measure of noncompactness which is
abundant of applications in functional analysis, integral equations differential equations
approximation theory (see for example [4]. Owing to numerous applications of fixed-
point theory in proving the existence theorems, this theory has been considered to be
an evergreen and considered to be indispensable tool in nonlinear analysis. The Darbo
fixed-point theorem extends both the Banach and the Schauder fixed-point theorems. In
2012, Wardowski [5] defined F-contraction and generalized Banach contraction principle
in various aspects. Furthermore, Jleli et al. [1] define the F-contraction of Darbo type and
established a fixed-point theorem.

In our study, we state and prove fixed-point theorems which are generalized Jleli et al.
[1] results. Furthermore, as an application, we demonstrate the applicability of our main
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result in establishing the existence of solutions of an integral equation of fractional order of
the form:

z(t) = u(t) +
g(t, x)
Γ(α)

θ(t)∫
0

h(t, τ, x(t))

(θ(t)− τ)1−α
dτ, t ∈ R+, α > 0, (1)

where u, g, h and θ satisfies certain conditions.

2. Methods

Let us recall some notations, definitions and theorems which will be used throughout
this paper. In what follows E denotes the Banach space with the norm ‖.‖ and throughout
this article we use the following notations;

We proceed with an axiomatic definition of measure of noncompactness;

Definition 1 (Axiomatic Definition of Measure of Noncompactness [6–8]). A function
σ : ME −→ R+ is called M.N.C provided it fulfills the following axioms:

(i) (Regularity) σ(W) = 0 if and only if W is relatively compact.
(ii) The family kerσ = {W ∈ME : σ(W) = 0} is a nonempty and kerσ ⊆ NE.
(iii) (Monotonic) W ⊂W

′
=⇒ σ(W) ≤ σ(W

′
).

(iv) (Invariant under closure) σ(W) = σ(W).
(v) (Invariant under convex hull) σ(W) = σ(coW).
(vi) σ

(
α W + (1− α)W

′) ≤ α σ(W) + (1− α) σ(W
′
), for all α ∈ [0, 1].

(vii) (Generalized Cantor’s intersection theorem) If Wn ∈ME for n = 1, 2, · · · is a decreasing

sequence of closed subsets of E and lim
n→∞

σ(Wn) = 0 then W∞ =
∞⋂

n=1
Wn is nonempty.

The family defined in axiom (i) is called the kernel of the M.N.C and denoted by kerσ.
In fact, by the virtue of axiom (vi) we have σ(Ω∞) ≤ σ(Ωn) for any n, thus σ(Ω∞) = 0.
This yields that Ω∞ ∈ kerσ.

Theorem 1 (Schauder’s fixed-point theorem [9]). Let Ω be the member of the class N.B.C.C
of a Banach space E, then every continuous and compact mapping on Ω has at least one fixed point
in Ω.

The Darbo′s fixed-point theorem with respect to a M.N.C σ can be stated as below.

Theorem 2 (Darbo′s fixed-point theorem [4]). Let Ω be the member of the class N.B.C.C of a
Banach space E and T be the continuous self-mapping defined on every nonempty subset W of Ω
such that

σ(T(W)) ≤ λσ(W)

for some λ ∈ [0, 1). Then T has at least one fixed point in Ω.

Definition 2 (G -function). A function G : (0, η)→ R, where η ∈ R+ is said to be G -function
if it satisfies the following conditions;

(G1) G is non-decreasing;
(G2) For each sequence 〈αn〉 ⊂ (0, η) of positive real numbers lim

n→∞
αn = 0 if and only if

lim
n→∞

G(αn) = −∞;

(G3) There exists i ∈ (0, 1) such that lim
q→∞

qiF(q) = 0.

Example 1. Let G : (0, η)→ R defined as below are examples of G -functions

1. G(s) = − 1
s for all s ∈ Rs+.

2. G(s) = ln(s) for all t ∈ R+.
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Definition 3 (S -function). A function τ : R+ → R is said to be a S -function if it satisfies the
inequality;

lim inf
s→t+

τ(s) > 0, ∀ t ∈ R+.

Example 2. The mapping τ : R+ → R+ described by the rule τ(t) = (2t)−1 ∀ t ∈: R+ is an
example of S -function.

Definition 4 (Φ-function). A function φ : R+ → R+ is said to be a Φ-function if it fulfills the
following assumptions;

(i) φ is non-decreasing;
(ii) φ is right-continuous on R+;
(iii) φ(t) < t ∀ t ∈ R+;
(iv) lim

n→∞
φn(t) = 0 for each t ∈ R+.

Theorem 3. Let Ω be the member of the class N.B.C.C and T be the self-mapping defined on Ω.
The mapping T is said to be a φ-condensing if

σ(T(W)) 6 φ(σ(W))

for some φ ∈ Φ and every nonempty subset W of Ω.

Definition 5 (Ψµ-function). A function ψ : (−∞, µ) → (−∞, µ) is called Ψµ-function if it
satisfies the following conditions:

(i) ψ is increasing;
(ii) ψ is right-continuous on (−∞, µ);
(iii) ψ(t) < t ∀ t ∈ (−∞, µ);
(iv) lim

n→∞
ψn(t) = −∞ for each t ∈ (−∞, µ).

Example 3. (1) For every µ ∈ [0, ∞), the mapping ψ : (−∞, µ) → (−∞, µ), defined by
ψ(t) = t− f (t), where f : (−∞, µ)→ R+ is continuous and non-increasing function is an
example of Ψµ-function.

(2) Foe each δ < e−1, let us define ψδ : R → R by the rule ψδ(t) = δe−t is an example of
Ψµ-function.

Definition 6 (G-Contraction of Darbo Type [10]). Let Ω be member of the class N.B.C.C and
T is continuous self-operator on Ω. The operator T is called Darbo-type G-contraction if ∃ G ∈ G
and τ ∈ S such that

τ(σ(W)) + G(σ(TW)) 6 G(σ(W)),

for any nonempty W ⊂ Ω with σ(W), σ(TW) > 0, where σ is a M.N.C defined in E.

Theorem 4 ([10]). Let Ω be member of the class N.B.C.C of a Banach space E and T is continuous
self-operator on Ω. If T is Darbo-type G-contraction for any nonempty subset W ⊂ Ω, then T has
a fixed point in the set Ω.

Definition 7 (βµ-function). A function β : (−∞, µ)→ (−∞, 1) is said to be a βµ-function if it
satisfies the condition that β(tn)→ 1⇒ tn → −∞.

Example 4. The mapping β : (−∞, µ)→ (−∞, 1), defined by

β(t) =


1
2 if t = 0,

1− τ
t otherwise.

for any τ > 0 is an example of βµ-function.
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3. Results

In this section, we establish new fixed-point theorems for self-mappings in the setting
of measure of noncompactness. Therefore, to obtain our first theorem, we use the following
class of functions.

Definition 8. Let Ω be member of the class N.B.C.C and T is continuous self-operator on Ω.
The operator T on Ω is called Darbo-type βG-contraction if ∃ G ∈ G and β ∈ βµ and µ =
sup

o<t<η
G(t) > σ(E) such that;

G(σ(TW)) 6 β(G(σ(W)))G(σ(W)),

for any W ⊂ Ω with σ(W) > 0, σ(TW) > 0, where σ is a measure of noncompactness defined
in E.

Next, we establish the existence of at least one fixed point.

Theorem 5. Let Ω be member of the class N.B.C.C of a Banach space E and T is Darbo-type
βG-contraction on Ω, for G ∈ G and β ∈ βµ, then T has at least one fixed point in Ω.

Proof. The proof begins with the construction of the sequence 〈Wn〉 of nonempty, closed
and convex subset of W such that the following relation holds:

TWn ⊂Wn ⊂Wn−1 for all n ∈ N

Let W0 = W, we construct a sequence 〈Wn〉 by the rule Wn+1 = ConvP(Wn) for
n ∈ {0} ∪N. For n = 0, we can easily check that TW0 ⊂ TW ⊂W = W0. Now assume that
the rule holds for k = 1, 2, 3, · · · n. Then, by the definition of 〈Wn〉 we deduce that

TWn ⊂Wn implies Wn+1 = conv(TAn) ⊂ An,

Therefore TWn+1 ⊂ TWn ⊂ Wn+1. If there exist a positive integer K ∈ N such that
σ(WK) = 0, then WK is pre-compact set. Since T(WK) ⊆ conv(TWK) = WK+1 ⊆WK, i.e., T
is a self-operator on WK. Then Theorem 2.1 concludes that T has a fixed point in WK ⊂W.
On the other hand, we assume that σ(Wn) > 0, ∀n ≥ 1 and prove that σ(Wn) → 0 as
n→ +∞. Now using assumption v) of Definition 1 we have,

G(σ(Wn+1)) = G(σ(convPWn))

= G(σ(TWn))

6 β(G(σ(Wn)))G(σ(Wn))

i.e.,
G(σ(Wn+1)) ≤ β(G(σ(Wn)))G(σ(Wn)). (2)

If G(σ(Wn)) 6 G(σ(Wn+1)) then β(G(σ(Wn))) > 1, which is contradiction. Hence
G(σ(Wn+1)) 6 G(σ(Wn)) for all n ∈ N. i.e., 〈G(σ(Wn))〉 is decreasing sequence of real
numbers. Since the sequence 〈G(σ(Wn))〉 decreasing sequence hence it must be bounded
above and may or may not be bounded below.

Claim that the sequence 〈G(σ(Wn))〉 is unbounded below. We will prove the claim
by assuming the contradiction that the sequence 〈G(σ(Wn))〉 is bounded below. Since the
sequence is decreasing and bounded below hence it has a convergent sub-sequence say〈

G
(
σ
(
Wnk

))〉
, and a finite real number r such that

〈
G
(
σ
(
Wnk

))〉
→ r as k→ +∞.

G
(
σ
(
Wnk+1

))
G
(
σ
(
Wnk

)) ≤ β
(
G
(
σ
(
Wnk

)))
< 1

which yields,
β
(
G
(
σ
(
Wnk

)))
→ 1 as k→ +∞.



Foundations 2021, 1 290

Since β ∈ Γµ we obtain r = −∞ which is a contradiction. This implies that 〈G(σ(Wn))〉
unbounded below and so lim

n→+∞
G(σ(Wn)) = −∞. So, from (G2) of Definition 2 we obtain

that σ(Wn)→ 0 as n→ +∞. On the flip side, if 〈G(σ(Wn))〉 is unbounded then obviously
σ(Wn) → 0 as n → +∞. Hence from (vi) of the Definition 1 , the countable interaction

W∞ =
∞⋂

n=1
Wn is a nonempty set which is convex & closed invariant under T and relatively

compact. Hence applying Theorem 1 to the set W∞ =
∞⋂

n=1
Wn we obtain desired result.

Remark 1. For ψ ∈ Ψµ and µ ∈ [0, ∞) define β : (−∞, µ)→ (−∞, 1) by

β(t) =


1
2 if t = 0,

ψ(t)
t otherwise.

then β is member of the family βµ.

Proof. Assume that β(rn) → 1 then β ∈ Γµ if rn → −∞. Assume the contradiction that
〈rn〉 is bounded below, hence it has convergent sub-sequence say

〈
rnk

〉
such that rnk → r0

as k→ +∞, where r0 is some finite real number. Now, since ψ is upper semi-continuous,
we obtain;

r0 = lim
k→∞

rnk = lim sup
k→∞

ψ(rnk ) ≤ ψ(r0).

⇒ r0 ≤ ψ(r0)

which contradicts the condition ψ(t) < t for t ∈ (−∞, µ). Hence the sequence rn is
unbounded below, it follows that β ∈ βµ.

Definition 9. Let Ω be the member of the class N.B.C.C and T is continuous self-operator on Ω.
The operator T on Ω is called Darbo-type ψG-contraction if ∃ G ∈ G, ψ ∈ Ψµ and µ = sup

o<t<η
G(t)

such that
G(σ(PW)) 6 ψ(G(σ(W))),

for any W ⊂ Ω with σ(W) > 0, σ(TW) > 0, where σ is a M.N.C defined on E.

Next, we establish the existence of unique fixed point.

Theorem 6. Let Ω be the member of the class N.B.C.C of a Banach space E and T be continuous
self-operator on Ω. If T is Darbo-type ψG-contraction for G ∈ G and ψ ∈ Ψµ then T has a fixed
point in Ω.

Proof. The proof begins with the construction of the sequence 〈Wn〉 of nonempty, convex
& closed subset of W, such that the sequence 〈Wn〉 validate following relation:

TWn ⊂Wn ⊂Wn−1 for all n ∈ N

Let W0 = W, we construct a sequence 〈Wn〉 by the rule Wn+1 = ConvT(Wn) for
n ∈ {0} ∪N. For n = 0 we can easily check that TW0 ⊂ TW ⊂W = W0. Now assume that
the rule holds for k = 1, 2, 3, · · · n. Then, by the pattern of 〈Wn〉 we deduce that

TWn ⊂Wn implies Wn+1 = conv(TWn) ⊂Wn,

Therefore TWn+1 ⊂ TWn ⊂ Wn+1. If there exist a positive integer K ∈ N such that
σ(WK) = 0, then WK is relatively compact set. Since T(WK) ⊂ conv(TWK) = WK+1 ⊆WK,
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i.e., T is a self-operator on WK. Then Theorem 2.1 concludes that T has a fixed point in
WK ⊂W.

On the flip side, if σ(Wn) > 0, ∀n ≥ 1 then by the axiomatic definition of M.N.C
we have,

G(σ(Wn+1)) = G(σ(convTWn))

= G(σ(TWn))

6 ψ(G(σ(Wn)))

Hence, we remain with the inequality,

G(σ(Wn+1)) ≤ ψ(G(σ(Wn))) < G(σ(Wn)) (3)

From Equation (3) we assure that 〈G(σ(Wn))〉 is decreasing sequence of real numbers.
Since the sequence 〈G(σ(Wn))〉 decreasing sequence hence it must be bounded above and
may or may not be bounded below.

Claim that the sequence 〈G(σ(Wn))〉 is unbounded below. We will prove the claim
by assuming the contradiction that the sequence 〈G(σ(Wn))〉 is bounded below. Since
the sequence is decreasing and bounded below hence it has a convergent sub-sequence
say

〈
G
(

σ
(

W k

))〉
, and a finite real number r such that

〈
G
(
σ
(
Wnk

))〉
→ r as k→ +∞. By

Equation (3) we have,

G
(

σ
(

W(n+1)k

))
≤ ψ

(
G
(
σ
(
Wnk

)))
< G

(
σ
(
Wnk

))
,

keep in mind that ψ is lower semi-continuous and apply limit as k→ +∞ we obtain,

r ≤ ψ(r) < r.

Since ψ(r) < r ∀ r ∈ (−∞, µ), hence by the Definition 5 we obtain r = −∞ which a
contradiction. This implies that 〈G(σ(Wn))〉 unbounded below and so lim

n→+∞
G(σ(Wn)) =

−∞. So, from (G2), we obtain that σ(Wn)→ 0 as n→ +∞. On the flip side, if 〈G(σ(Wn))〉
is unbounded then obviously σ(Wn)→ 0 as n→ +∞. Hence from (vi) of the Definition

1 , the countable intersection W∞ =
∞⋂

n=1
Wn is a nonempty set which is convex & closed

invariant under T and relatively compact. Hence applying Theorem 1 to the set W∞ =
∞⋂

n=1
Wn we obtain the desired result.

Corollary 1 ([1]). Let Ω be member of class B.N.C.C of the Banach space E. Let a self-operator T
on Ω is of Darbo-type G-contraction if there exist G ∈ G and τ ∈ S such that

τ(σ(W)) + G(σ(TW)) 6 G(σ(W)),

for any W ⊂ Ω with σ(W), σ(TW) > 0, where σ is a M.N.C defined in E. Then T has a fixed
point in the set Ω.

Proof. Let us define ψ(t) = t− τ(t) we obtain the required result from Theorem 6

Corollary 2. Let Ω be member of class B.N.C.C of the Banach space E. Let a self-operator T be a
of Darbo-type ψG-contraction, where ψ ∈ Ψµ and G is continuous and non-decreasing function.
Then for φ ∈ Φ such that T is a φ-contraction.

Proof. Since the function G is monotonic and continuous function, hence ∃ G−1 : G(R+)→
R+ inverse of G, which is also monotonic.



Foundations 2021, 1 292

Now using the Definition 9 we can have,

G(σ(TW)) ≤ ψ(G(σ(W)))

⇒ σ(TW) ≤ G−1(ψ(G(σ(W)))),

Denote φ(t) = (G−1ψG)(t)
Notice that

φn(t) =
(

G−1ψG
)n

(t)

=
(

G−1ψG.G−1ψG...G−1ψG
)
(t)

= G−1ψnG(t)

= G−1(ψn(G(t)))→ 0 as n→ ∞ (4)

For every W ⊂ Ω with σ(W) 6= 0, G ∈ G and ψ ∈ Ψµ, if T is Darbo-type ψG-
contraction then for φ ∈ Ψ, T is φ contraction.

4. Discussion

Presently, there are several results available in the literature about study of existence
and behavior of solutions of various types of fractional-order integral equations. The
fractional-order integral equations have numerous applications in porous media, con-
trol theory, rheology, viscoelasticity, elector chemistry, electromagnetism fluid dynamics
(see [11–14]).

In this article, we will use the measures of noncompactness in BC(R+); the space of
all bounded and continuous functions defined on R+ [7]. Let z = z(t) be any real valued
bounded and continuous function defined on R+, then the norm on BC(R+) is defined as;

||z||BC(R+) = sup{|z(t)| : t ≥ 0}.

Let us take W 6= φ be subset of the Banach space BC(R+) and fix ε > 0, M > 0 and
z ∈W. Now, let us recall the term usually known as modulus of continuity of z on [0, M]:

ωM(z, ε) = sup{|z(t)− z(s)|; t, s ∈ [0, M], |t− s| ≤ ε}.

The modulus of continuity of W on the interval [0, M] is expressed by the following
term,

ωM(W, ε) = sup{ωM(z, ε) : z ∈ C}.

Furthermore, we define the term ω∞(W) in the following fashion:

ω∞(W) = lim
M→+∞

ωM
0 (W)

where
ωM

0 (W) = lim
ε→0

ωM(W, ε)

Next, define the quantity B(W) as:

B(W) = lim
n→∞

{
sup
z∈C
{sup{|z(t)− z(s)|; t, s > M}}

}
(5)

Finally, we will define the quantity which satisfies the axioms of M.N.C in the follow-
ing manner;

σ(W) = ω∞(W) + B(W) (6)
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We have, σ(W) = ω∞(W) + B(W) is the M.N.C in the space BC(R+) and satisfies
regularity, monotonically, invariant under closure, invariant under convex hull, generalized
Cantor intersection theorem etc. [7].

4.1. Fractional Integral Equation

In this section, we will validate the existence of the solution of fractional ordered
integral Equation (1), using the results of Section 2 of this paper. Let us assume that the
integral Equation (1) will satisfies the following conditions;

(a) The function u(t) is a member of the space BC(R+) which has finite limit at infinity.
(b) The function g(t, z) = g : R+×R→ R is continuous and Mg = max{|g(t, 0)| : z ∈ R+},

moreover there exist continuous function ρ(t) : R+ → R with ρ(0) = 0 such that the
following inequality will satisfies;

|g(t, z)− g(t, y)| 6 ρ(t)|z− y|

for all t ∈ R+ and z, y ∈ R.
(c) The function h(t, τ, z(τ)) is continuous and there exists a non-decreasing and continu-

ous function φ : R+ → R+ and η : R+ → R such that;

|h(t, τ, z(τ))| 6 η(t)φ(||z||)

for all t, τ ∈ R+ and z ∈ BC(R+).
(d) The function h(t, τ, z(τ)) is uniformly continuous on R+ ×R+ × [−r, r] for any r > 0,

moreover, for any t, τ ∈ R+ such that τ ≤ t and z ∈ BC(R+) the following equal-
ity hold:

lim
M→∞

{sup{|h(t, τ, z)− h(s, τ, z)| : t, s ≥ M, τ ∈ R+, τ ≤ t, τ ≤ s, |z| ≤ r}} = 0.

(e) The functions ξ, ϑ, ψ : R+ → R defined as ξ(t) = ρ(t)η(t)(θ(t))α, ϑ(t) = ρ(t)(θ(t))α

and ψ(t) = g(t, 0)(θ(t))α are bounded on R+. The functions ϑ and ψ are vanishes
at infinity.

(f) There exist a positive number r0 and κ ∈ R+ satisfying the inequality
||u||Γ(α + 1) + φb[ξbr + ψb] 6 rΓ(α + 1) and ξbφ(r0) 6 e−κΓ(α + 1)
where ξb = sup{ξ(t)| t ∈ R+}, ψb = sup{ψ(t)| t ∈ R+}.

Theorem 7. Under the assumptions (a)–(f), there exist at least one solution v = v(s) of Equation (1)
in the space BC(R+) converges to a finite limit at infinity.

Proof. For the sake of calculations let us define the operators H, I, and T on the Banach
space BC(R+) in the following manner;

(Hz)(t) = g(t, z(t)),

(Iz)(t) =
1

Γ(α)

∫ θ(t)

0

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ, (7)

(Tz)(t) = f (t) + (Hz)(t)(Iz)(t),

for t ∈ R+. Obviously Equation (1) can be written in the from z(t) = (Tz)(t). We know
that Tz is operator on the interval R+ for fixed z ∈ BC(R+), now we prove that Tz is
continuous operator on R+.
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To do this, fix M > 0 and ε > 0. Choose the numbers s, t ∈ [0, M] with |t− s| ≤ ε. For
s < t we obtain;

|(Iz)(t)− (Iz)(s)| = 1
Γ(α)

∣∣∣∣∣
∫ θ(t)

0

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ −

∫ θ(s)

0

h(s, τ, z(τ))

(θ(s)− τ)1−α
dτ

∣∣∣∣∣
6

1
Γ(α)

∣∣∣∣∣
∫ θ(t)

0

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ −

∫ θ(s)

0

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ

∣∣∣∣∣
+

1
Γ(α)

∣∣∣∣∣
∫ θ(s)

0

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ −

∫ θ(s)

0

h(t, τ, z(τ))

(θ(s)− τ)1−α
dτ

∣∣∣∣∣
+

1
Γ(α)

∣∣∣∣∣
∫ θ(s)

0

h(t, τ, z(τ))

(θ(s)− τ)1−α
dτ −

∫ θ(s)

0

h(s, τ, z(τ))

(θ(s)− τ)1−α
dτ

∣∣∣∣∣
φ(||z||)η(t)

Γ(α)

∣∣∣∣∣
∫ θ(t)

θ(s)

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ

∣∣∣∣∣
+

φ(||z||)η(t)
Γ(α)

∣∣∣∣∣
∫ θ(s)

0

(
1

(θ(t)− τ)1−α
− 1

(θ(s)− τ)1−α

)
dτ

∣∣∣∣∣
+
ℵ||z||M, (h)

Γ(α)

∣∣∣∣∣
∫ θ(s)

0

1

(θ(s)− τ)1−α
dτ

∣∣∣∣∣ (8)

where we denoted

ℵK
M,ε(h) = sup{ |h(t, τ, z)− h(s, τ, z)| : t, s, τ ∈ [0, M], |t− s| 6 ε, z ∈ [K,−K]}

Next, from the expression (8) we obtain

|(Iz)(t)− (Iz)(s)| 6 φ(||z||)η(t)
Γ(α + 1)

(
(θ(t)− θ(s))α)

+
φ(||z||)η(t)

Γ(α + 1)
(
(θ(t)− θ(s))α +

(
θ(s)α − θ(t)α))

+
ℵ||z||M, (g)
Γ(α + 1)

(θ(s))α

(9)

Since, ℵ||z||M,ε(g) → 0 as ε → 0, hence we infer that the function (Iz) is continuous on
[0, M]. As M is arbitrary, hence we can say that (Iz) is continuous on R+.

Additionally, from the assumption (b) we deduce the following expression;

|(Hz)(s)− (Hz)(t)| = |g(s, z(s))− g(t, z(t))|
≤ |g(s, z(s))− g(s, z(t))|+ |g(s, z(t))− g(t, z(t))|

6 ρ(s)|z(t)− z(s)|+ ℵ||z||M,ε(q) (10)

where

ℵδ
M,ε(g) = sup{|g(t, z(t))− g(s, z(s))| : t, s ∈ [0, M], |t− s| 6 ε, z ∈ [−δ, δ]}

for an arbitrary δ > 0.
By the virtue of assumption (c) we have ℵ||z||M,ε(g)→ 0 as ε→ 0. Thus, the expression (10)

we conclude that (Hz) is continuous on [0, M], and hence continuous on the interval R+.
Hence, representation (7) and assumption (a) implies that (Tz) is continuous on the interval
R+.
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Furthermore, let us choose z ∈ BC(R+) and arbitrarily t, τ ∈ R+, we will derive the
following expression;

|(Tz)(t)| 6 |u(t)|+ |g(t, z(t))|
Γ(α)

∫ θ(t)

0

|h(t, τ, z(τ))|
(θ(t)− τ)1−α

dτ

6 |u(t)|+
(
|g(t, z(t))− g(t, 0) + g(t, 0)|

Γ(α)

) ∫ θ(t)

0

φ(||z||)η(t)
(θ(t)− τ)1−α

dτ

6 ||u||+ 1
Γ(α + 1)

{[ρ(t)||z||+ g(t, 0)]φ(||z||)η(t)}(θ(t))α

6 ||u||+ φ(||z||)
Γ(α + 1)

[(ξ(t)||z||+ ψ(t))]

6 ||u||+ φ(||z||)
Γ(α + 1)

[ξb||z||+ ψb] (11)

The above estimation shows that the function (Tz) is bounded on the interval R+.
Since The operator (Tz) is bounded and continuous on R+ therefore we conclude that the
operator T transforms the space BC(R+) into itself. Moreover, form the assumptions we
deduce that there exist number r0 > 0 such that H maps the ball Br0 into itself.

Next, we will show that the operator T is continuous on the ball Br0 .
To do this, let us fix an arbitrary positive number ε and choose z, y ∈ Br0 such that
||z− y|| ≤ ε. Let us choose an arbitrary t ∈ R+ then we can obtain the following expression
by the virtue of assumptions (c) & (d);

|(Iz)(t)− (Iy)(t)| 6
∣∣∣∣∣ g(t, z(t))

Γ(α)

∫ θ(t)

0

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ

− g(t, y(t))
Γ(α)

∫ θ(t)

0

h(t, τ, y(τ))

(θ(t)− τ)1−α
dτ

∣∣∣∣∣
6

∣∣∣∣∣ g(t, z(t))− g(t, y(t))
Γ(α)

∫ θ(t)

0

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ

∣∣∣∣∣
+

∣∣∣∣∣ g(t, y(t))
Γ(α)

∫ θ(t)

0

h(t, τ, z(τ))− h(t, τ, y(τ))

(θ(t)− τ)1−α
dτ

∣∣∣∣∣
6

∣∣∣∣ρ(t)||z− y||
Γ(α + 1)

φ(||z||)η(t)(θ(t))α

∣∣∣∣
+

∣∣∣∣ g(t, y(t))− g(t, 0) + g(t, 0)
Γ(α + 1)

ω2(h, ε)(θ(t))α

∣∣∣∣
6

∣∣∣∣ρ(t)||z− y||
Γ(α + 1)

φ(||z||)η(t)(θ(t))α

∣∣∣∣
+

∣∣∣∣ρ(t)||z||+ g(t, 0)
Γ(α + 1)

ω2(h, ε)(θ(t))α

∣∣∣∣
6

φ(||z||)
Γ(α + 1)

(ξ(t)||z− y||)

+
ω2(h, ε)

Γ(α + 1)
(
ρ(t)(θ(t))α||z||+ g(t, 0)(θ(t))α)

6
φ(||z||)

Γ(α + 1)
(ξ(t)||z− y||) + ω2(h, ε)

Γ(α + 1)
(β(t)||z||+ ψ(t)) (12)

where

ω2(h, ε) = sup{|h(t, τ, z(τ))− h(t, τ, y(τ))| : t, τ ∈ R+, z, y ∈ R, ||z− y|| ≤ ε}.
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From assumption (e), it follows that ω2(h, ε)→ 0 as ε→ 0.
From Equations (7)–(9) we conclude that (Iz) is continuous on the ball Br0 . The

operator Iz is continuous and bounded on the ball Br0 which implies that the operator I
transform the ball Br0 into itself.

Let us fix an arbitrary nonempty subset W of the ball Br0 . Choose z ∈W and fix the
positive numbers M and ε such that t, s ∈ [0, M] and |t− s| ≤ ε. Then from the above
estimated expressions (7)–(10) we obtain

|(Tz)(t)− (Tz)(s)| 6 ℵ||z||M (u) + |(Hz)(t)(Iz)(t)− (Hz)(s)(Iz)(s)|

6 ℵ||z||M (u) + |(Hz)(t)||(Iz)(t)− (Iz)(s)|+ |(Iz)(s)||(Hz)(t)− (Hz)(s)|

6 ℵ||z||M (u) +
(

ρ(t)||z||+ g(s, 0)
){ η(t)φ(||z||)

Γ(α + 1)

(
(θ(t)− θ(s))α

+
η(t)φ(||z||)

Γ(α + 1)
(
(θ(t)− θ(s))α +

(
θ(s)α − θ(t)α)))+

ℵ||z||M (h)
Γ(α + 1)

(θ(s))α

}

+
η(s)φ(||z||)

Γ(α + 1)
(θ(s))α

(
ρ(s)|z(t)− z(s)|+ ℵ||z||M (g)

)
(13)

Applying the supreme to both sides we obtain

ωM(Tz, ε) 6 ℵ||z||M (u) + (ρ̂(M)||z||+ ĝ(M, 0))

(
ℵ||z||M (h)
Γ(α + 1)

φ(||z||)η̂(M)
(

θ̂(M)
)α
)

+
φ(||z||)

Γ(α + 1)

(
θ̂(M)

)α
η̂(M)

(
ρ̂(M)ωM(z, ε) + ℵ||z||M (g)

)
(14)

Applying ε→ 0 we obtain

ω0
M(Tz) 6

φ(||z||)
Γ(α + 1)

(
θ̂(M)

)α
η̂(M)ρ̂(M)

(
ω0

M(z)
)

At length as M→ ∞ we have with the following expression,

ω∞(Tz) 6
φ(||z||)

Γ(α + 1)
ξb(ω

∞(z)) (15)
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In what follows let us take a nonempty set W ⊂ Br0. Then, for arbitrary t ∈ R+ and
z, y ∈ BC(R+) such that ||z− y|| ≤ ε using the assumptions (b), (c) & (e) we can derive
the following expression,

|(Tz)(t)− (Ty)(t)| 6
∣∣∣∣∣ g(t, z(t))

Γ(α)

∫ θ(t)

0

h(t, τ, z(τ))

(θ(t)− τ)1−α
dτ

− g(t, y(t))
Γ(α)

∫ θ(t)

0

h(t, τ, y(τ))

(θ(t)− τ)1−α
dτ

∣∣∣∣∣
6

∣∣∣∣∣ g(t, z(t))− g(t, y(t))
Γ(α)

∫ θ(t)

0

h(t, τ, x(τ))

(θ(t)− τ)1−α
dτ

∣∣∣∣∣
+

∣∣∣∣∣ g(t, y(t))
Γ(α)

∫ θ(t)

0

h(t, τ, z(τ))− h(t, τ, y(τ))

(θ(t)− τ)1−α
dτ

∣∣∣∣∣
6

∣∣∣∣ρ(t)||z− y||
Γ(α + 1)

η(t)φ(||z||)(θ(t))α

∣∣∣∣
+

∣∣∣∣ g(t, y(t))− g(t, 0) + g(t, 0)
Γ(α + 1)

ω2(h, ε)(θ(s))α

∣∣∣∣
6

∣∣∣∣ρ(t)||z− y||
Γ(α + 1)

φ(||z||)η(t)(θ(t))α

∣∣∣∣
+

∣∣∣∣ρ(t)||z||+ g(t, 0)
Γ(α + 1)

ω2(h, ε)(θ(t))α

∣∣∣∣
6

φ(||z||)
Γα + 1

(ξ(t)||z− y||)

+
ω2(h, ε)

Γ(α + 1)
(
ρ(t)(θ(t))α||z||+ g(t, 0)(θ(t))α)

6
φ(||z||)

Γ(α + 1)
(ξ(s)||z− y||) + ω2(h, ε)

Γ(α + 1)
(ϑ(t)||z||+ ψ(t))

Hence, we can easily deduce the following inequality,

diam(TW) 6
φ(||v||)
Γα + 1

ξb(diam(W))

Hence, from assumption ( f ) and expression (5) we can deduce the following inequality,

B(TW) 6
φ(||v||)
Γ(α + 1)

ξb(B(W)) (16)

From Equations (6), (15) and (16) we obtain

σ(TW) = ω∞(TW) + B(TW)

6
φ(||v||)
Γ(α + 1)

ξb (ω
∞(W)) +

φ(||v||)
Γ(α + 1)

ξb(B(W))

6
φ(||v||)
Γ(α + 1)

ξb σ(W) (17)

By the virtue of assumption ( f ) and properties of functions G & ψ we derive the
following expression,

G(σ(TW)) 6 ψ(G(σ(W))) (18)

where G : (0, η)→ R by G(y) = ln(y) and ψ : (−∞, 0)→ (−∞, 0) by ψ(w) = w− τ. Link-
ing the expression (18) with Theorem 6 of Section 2 and assuming the properties of G & ψ
we obtain the desired result. In the view of the definition of measure of noncompactness
we conclude that the solution of an integral Equation (1) has a finite limit at infinity.
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Now we will discuss an illustrative example for the obtained result.

4.2. Numerical Example

Consider the following fractional-order integral equation in the Banach space BC(R+);

z(s) =
s2

s2 + 1
+

1
1 + s3

arctan(a + z(s))
Γ(α)

s∫
0

(
τ2s2e−s(z(s))2 + s4

τ
1
4 +1

sin
(

z(s)2
))

(s− τ)1−α
dτ. (19)

(
α ∈ (0, 1], s ∈ BC(R+)

)
Suppose that α = 1/4 then we obtain

z(s) =
s2

s2 + 1
+

1
1 + s3

arctan(a + z(s))
Γ(1/4)

s∫
0

(
τ2s2e−s(z(s))2 + s4

τ
1
4 +1

sin
(

z(s)2
))

(s− τ)1− 1
4

dτ, (20)

where s ∈ R+, & a ∈ R− {0}.
Notice that the integral Equation (20) is particular case of integral Equation (1).
Indeed, if we replace α = 1

4 and

u(s) =
as

s2 + 1

g(s, z(s)) =
1

1 + s6 arctan(|a|+ v(s))

h(s, t, z(t)) = t2s2e−sz2 +

(
s4

t
1
4 + 1

)
sin
(

z2
)

. (21)

In fact, we have functions u(s) = as
s2+1 and g(s, z(s)) = 1

1+s6 arctan(|a|+ z(s)) satisfies
assumption (a) and (b). The function g(s, z(s)) satisfies assumption (b) with ρ(s) = 1

1+s6

and g(s, 0) = 1
1+s6 arctan(|a|). The function

h(s, t, z(t)) = t2s2e−sz2 +

(
s4

t
1
4 + 1

)
sin
(

z2
)

satisfies the assumption (c) with η(s) = s4e−s + s4

s
1
4 +1

and φ(r) = r2.

Now to show the functions ξ, ϑ, ψ satisfies the assumption (e) we have the following
expressions,

ξ(s) =

 s4.e−s

s4 + 1
+

s4(s)
1
4(

s
1
4 + 1

)
s4 + 1

, ϑ(s) =
s

1
4

1 + s4 , ψ(s) =
s

1
4

1 + s6 arctan(s).

It has been easily seen that all the above-defined functions are bounded on R+ among
them ψ, ϑ vanishes at infinity i.e., lim

s→∞
ψ(s) = lim

s→∞
ϑ(s) = 0. So all the conditions of

Theorem 7 are satisfied by the integral Equation (20). Hence, the integral equation admits
at least one solution in the space BC(R+).

To find the set of fixed points of Equation (20), using (c), we have the approximated
solution for a = 1

z(s) =
2.93379s1/4 z(s) arctan(z(s) + 1)

s3 + 1
+

s2

s2 + 1
.
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A calculation implies that the set of fixed points f ixα(a, s) is

f ix1/4(1, s) = {s1 = 0, s2 = 0.188507, s3 = 1.35044}.

For α = 1/2, we have the solution formula

z(s) =
1.46689

√
s z(s) arctan(z(s) + 1)

s3 + 1
+

s2

s2 + 1
.

A computation yields that the set of fixed points is

f ix1/2(1, s) = {s1 = 0, s2 = 0.304319, s3 = 1.42606}.

Finally, we consider α = 3/4 and a = 1, then we obtain the solution

z(s) =
1.41421s3/4 z(s) arctan(z(s) + 1)

s3 + 1
+

s2

s2 + 1
;

consequently, the set of fixed point is as follows:

f ix3/4(1, s) = {s1 = 0, s2 = 0.411379, s3 = 1.47203}.

Figure 1 shows the stable periodicity solutions of the integral equation z(s) depending
on the fixed points. Figure 2 indicates the solution for the ordinary case when α = 1 and
a = 1. In this case, we obtain

z(s) =
1.3sz(s) arctan(z(s) + 1)

s3 + 1
+

s2

s2 + 1

and
f ix1(1, s) = {s1 = 0, s2 = 0.513503, s3 = 1.50813}.

Figure 3 represents the solution for the ordinary case when α = 1 and a = 2. In this
case, we have

z(s) =
1.3sz(s) arctan(z(s) + 2)

s3 + 1
+

s2

s2 + 1

and
f ix1(2, s) = {s1 = 0, s2 = 0.436612, s3 = 1.58647}.

4.3. Convergence to the Fixed Point

In this place, we iterate the solution of the integral Equation (19). We start with
α = 1/4, the iteration solution imposes (see Figure 4)

z(n + 1) =
2.9n1/4z(n) arctan(z(n) + 1)

n3 + 1
+

n2

1 + n2

=
n1/4

(
n7/4 + n19/4 + 2.9n2z(n) arctan(z(n) + 1) + 2.9z(n) arctan(z(n) + 1)

)
(n2 + 1)(n3 + 1)

.

For α = 1/2 we obtain the iteration solution

z(n + 1) =
1.4n1/2z(n) arctan(z(n) + 1)

n3 + 1
+

n2

1 + n2

=
n1/2

(
n9/2 + n3/2 + 1.4n2z(n) arctan(z(n) + 1) + 1.4z(n) arctan(z(n) + 1)

)
(n2 + 1)(n3 + 1)

.
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Moreover, for α = 3/4 we obtain

z(n + 1) =
1.4n3/4z(n) arctan(z(n) + 1)

n3 + 1
+

n2

1 + n2

=
n3/4

(
n5/4 + n17/4 + 1.4n2z(n) arctan(z(n) + 1) + 1.4z(n) arctan(z(n) + 1)

)
(n2 + 1)(n3 + 1)

.

Figure 1. The stable periodicity solution of z(s) based on the set of fixed points when α = 1/4, 1/2, 3/4 respectively.
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Figure 2. The stable periodicity solution of z(s) based on the set of fixed points when α = 1 and a = 1.

Figure 3. The solution of z(s) based on the set of fixed points when α = 1 and a = 2.

Finally, we assume that α = 1 then we have

z(n + 1) =
1.3nz(n) arctan(z(n) + 1)

n3 + 1
+

n2

1 + n2

=
n
(
n4 + 1.3n2z(n) arctan(z(n) + 1) + 1.3z(n) arctan(z(n) + 1)

)
(n2 + 1)(n3 + 1)

.

Table 1 shows the number of iterations and the error, which calculated by |z(n)−
si|, i = 1, 2, 3.
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Table 1. Iteration solution of Equation (19).

α n 0 1 2 3 4 Error = |z(n)− si|
1/4 z(n) 1 0 0.5 0.98829 1.04883 0.301
1/2 z(n) 1 0 0.5 0.908102 0.98557 0.41
3/4 z(n) 1 0 0.5 0.928555 1.01562 0.454

1 z(n) 1 0 0.5 0.941959 1.0437 0.464

Figure 4. The iteration solution of z(n) for α = 1/4, 1/2, 3/4, 1 respectively.

5. Conclusions

In our current work, we defined βG-contraction and ψG-contraction of Darbo type
and proved corresponding fixed-point theorems using M.N.C. Furthermore, the fixed-
point theorem proved in Section 2 is applied to demonstrate the existence of a solution of
fractional-order integral equation. At the end, an example is given to validate the result.
We indicate that the values of the fixed-point increase whenever the values of α increase
in (0, 1]. Moreover, the set of fixed points imposed the periodicity and stability of the
fractional integral Equation (20). All figures are presented with the help of Mathematica
11.2.
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Abbreviations

B(x, r) The closed ball centered at x with radius r
N.B.C.C The class of nonempty, bounded, closed and convex sets.
M.N.C Measure of noncompactness.
R Set of all real numbers.
R+ Set of all positive real numbers.
N Set of all positive integers.
Ω̄ Closer of set Ω.
ME The family of all bounded subsets of the space E
NE The subfamily of ME consisting only relatively compact sets.
co(Ω), co(Ω̄) The convex hull and closed convex hull of Ω respectively.
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