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Abstract: Miniaturized Fourier transform infrared spectrometers serve emerging market needs in
many applications such as gas analysis. The miniaturization comes at the cost of lower performance
than bench-top instrumentation, especially for the spectral resolution. However, higher spectral
resolution is needed for better identification of the composition of materials. This article presents a
convolutional neural network (CNN) for 3X resolution enhancement of the measured infrared gas
spectra using a Fourier transform infrared (FTIR) spectrometer beyond the transform limit. The
proposed network extracts a set of high-dimensional features from the input spectra and constructs
high-resolution outputs by nonlinear mapping. The network is trained using synthetic transmission
spectra of complex gas mixtures and simulated sensor non-idealities such as baseline drifts and
non-uniform signal-to-noise ratio. Ten gases that are relevant to the natural and bio gas industry are
considered whose mixtures suffer from overlapped features in the mid-infrared spectral range of
2000–4000 cm−1. The network results are presented for both synthetic and experimentally measured
spectra using both bench-top and miniaturized MEMS spectrometers, improving the resolution from
60 cm−1 to 20 cm−1 with a mean square error down to 2.4× 10−3 in the transmission spectra. The
technique supports selective spectral analysis based on miniaturized MEMS spectrometers.

Keywords: FTIR spectroscopy; MEMS spectrometer; infrared gas analyzer; superresolution; deep
learning; convolutional neural-network

1. Introduction

Infrared spectroscopy is the science and technology of identifying and quantifying the
composition of matter based on the interaction of their molecular vibrations and rotations
with the light in the infrared region of the spectrum [1,2]. It is serving a huge number of
applications in different domains such as the biological, pharmaceutical, chemical, food
and beverage and environmental monitoring industries. One example is the infrared gas
analyzers that can serve natural gas analyses, air quality monitoring, threat or gas leakage
detection and medical diagnostics [3,4]. The market is growing fast and is expected to grow
even faster due to the introduction of the miniaturized spectrometers enabling portability
and ubiquitous spectral sensing for both professional and consumer use [5].

Different miniaturization or microscale technologies have emerged to serve the ex-
isting market and open new markets, such as microelectromechanical systems (MEMS)
Fourier transform infrared (FTIR) spectrometers [6,7], tunable selective filter spectrome-
ters [8], linear variable filters [9] and dispersive grating spectrometers [10]. The miniatur-
ization comes at the cost of lower performance than bench-top instrumentation, especially
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for the spectral resolution. In FTIR spectrometers, the resolution is limited by the travel
range of the micromirror of the scanning Michelson interferometer following the uncer-
tainty principle [1,11] ∆x∆ν ∼ 1, where ∆x is full travel range of the mirror and ∆ν is
the spectral resolution in the wavenumber domain. The resolution in the wavelength
domain ∆λ = ∆νλ2, where λ is the wavelength. For resonance filter-based techniques,
high reflectivity mirrors together with a longer physical cavity are needed to achieve fine
spectral resolution but this forces the filter to operate at high-resonance, thus limiting
the spectral range of operation [12]. Finally, for first diffraction order dispersive grating
spectrometers, the resolution follows the relation ∆λN = λ [13] where N is the number
of grooves on the diffraction grating. This is consistent with the transform limit theory
stating that the smallest resolvable unit transform is inversely proportional to the number
of samples.

Multivariate analysis, sometimes referred to as chemometrics, is usually used to
predict the concentration of the different compositions of the sample [1]. The accuracy of
prediction depends on many factors such as the ratio between signal and noise, spectral
resolution, accuracy of the x-axis (i.e., wavelength accuracy) and the accuracy of the
y-axis (i.e., photometric accuracy). In the case of gas analysis, spectral resolution is of
particular importance. Therefore, there is a need for realizing a high-resolution spectral
analysis over a wide spectral range based on a compact spectroscopic device. Higher (finer)
spectral resolution is required for better identification and quantification of materials.
In fact, the resolution plays an important role in the ability of material identification and
sometimes the sensitivity to lower concentration as well [1,14]. One notable example for
smart industry is the analysis of the biogas and natural gas contents as a primary source of
energy in domestic and industrial markets. On one hand, this kind of gas is composed of
a mixture of compounds whose spectral fingerprint is spread over a wide spectral range
as shown in Figure 1. On the other hand, the various hydrocarbons in such gases (e.g.,
CH4, C2H6, C3H8, C4H10) have a similar molecular structure requiring selective detection
(fine resolution).
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Figure 1. Transmittance of the 10 gases used in this study, with spectral resolution of 60 cm−1. Spectra
are shifted and scaled in the y-axis for clarity. Gases are (from below going up): CO2, H2O, CO, C2H2,
CH4, H2S, C2H4, C2H6, C3H8, and C4H10.

Therefore, there is a need for realizing a high-resolution spectral analysis over a wide spec-
tral range based on compact spectroscopic devices. To this end, several infrared spectroscopy
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resolution enhancement techniques have been reported from, on one hand, by innovative
hardware architectures together with the corresponding signal processing [15–17] and, on the
other hand, by using signal processing techniques on the conventional hardware such as
auto-regression [18] and compressed sensing [19]. However, the offered resolution enhance-
ment of such techniques is still not enough compared to the resolution of bench-top devices,
and is accompanied with spectral distortion necessitating the need for incorporating new
directions. Deep learning (DL) was shown to be very successful in resolution enhancement
of different types of signals, such as images [20,21], medical imaging [22], interferome-
try [23], fluorescence microscopy [24,25], field-emission scanning electron microscopy [26],
magnetic resonance imaging (MRI) [27], and vascular ultrasound imaging [28]. DL was
also applied in enhancement of other one-dimensional (1D) signals such as speech [29,30].

In this article, we use a deep convolutional neural network (CNN) for virtual resolution
enhancement of FTIR gas spectra. The article extends and further improves previously
presented results [31]. The neural network considers the low-resolution spectrum as the
input and generates a high-resolution one. In [31], a CNN was introduced as a proof-
of-concept to enhance the resolution of gas spectra that are composed of mixtures of
different percentages of six gases. We extend the results by considering mixtures of ten
gases that are relevant to the gas industry. The consideration of extra gases poses an
extra problem, which is the overlapping of spectral peaks of different gases. The neural-
network parameters have to be carefully tuned to be able to resolve such overlapped
peaks. Additionally, the previously reported problem of false peaks in the enhanced
spectra was improved in the work presented here. Finally, we extend the results by
enhancing the resolution of experimentally measured spectra using both bench-top FTIR
spectrometer (bench-top device Tensor II by Bruker) and a miniaturized mid-infrared
MEMS FTIR spectrometer [32]. The training of the CNN required the consideration of data
with different spectral resolutions and signal-to-noise ratios (SNRs). Other features in the
data have also been accounted for, as discussed in detail below.

The rest of the article is structured as follows. Section 2 discusses the methodology of
datasets synthesis, the network architecture and the training process. In Section 3, we show
the results of the trained network and evaluate the performance of the proposed network
with synthetic and measured data. Conclusions are presented in Section 4.

2. Methodology

Generally, resolution enhancement methods apply signal processing techniques on
the low-resolution input signal to reach a higher resolution version (e.g., [33,34]). These
signal processing techniques mainly adopt either a local or global approach to generate
the missing samples needed to enhance the resolution. Interpolation based techniques
approaches are mainly dominated by the neighbor samples or hand crafted features to
deduce the missing samples; such a step does not directly benefit from potential useful
characteristics of the whole signal. On the other hand, frequency based enhancement
approaches inject the required information based on a theoretical assumption and ignore
the local information around each sample.

CNN architecture enables the processing of the input signal on different layers, where
the signal is convolved with many kernels to capture local features around each sample,
the output of each layer is fed to the next level to capture more abstract features as
wider neighborhood of the sample is involved. Finally, fully connected layers enable
the involvement of the whole signal to affect each output sample. The convolution kernels
at each layer and the weights at fully connected layers are initiated randomly and modified
iteratively through the learning process, where the output signal is kept closer to the ground
truth of the corresponding input. This CNN architecture enables both local features around
samples and global features of the whole signal to be employed in the enhancement process.
Instead of adopting theoretical assumptions about the signal, CNN uses the training data
(input low-resolution signals and corresponding ground truth high-resolution versions) to
adjust the kernels and weights and to extract features and to implicitly learn the required
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mapping based on realistic data which provides a superior performance when compared
with traditional approaches.

In this research, CNN is proposed for the FTIR resolution enhancement problem.
Training the proposed neural network requires the availability of large sets of low- and
high-resolution gas spectra, where the high-resolution spectra are considered as ground-
truth. Experimentally acquiring such large sets of data is very challenging. Therefore, we
relied on generating synthetic spectra that imitates the measured spectra. The network was
trained using the synthesized low- and high-resolution data. The details of the training
data set and the employed synthesis is covered in Section 2.1 and the network architecture
is discussed in Sections 2.2 and 2.3.

2.1. Training Datasets

For training the neural network, a very large set of high- and low-resolution gas
spectra was utilized at different SNRs. The utilized data of gas spectra were synthesized
using data available from both the spectroscopic HITRAN (high-resolution transmission
molecular absorption database) online database [35] and database generated by Pacific
Northwest National Laboratory (PNNL) [36]. Each generated spectrum represents a
mixture of different amount of gases that are relevant to the gas industry, namely, Carbon
dioxide CO2, water vapor H2O, Carbon monoxide CO, Acetylene C2H2, Methane CH4,
Hydrogen sulfide H2S, Ethene (Ethylene) C2H4, Ethane C2H6, Propane C3H8, and Butane
C4H10. PNNL provides the absorption for a sample concentration of one part-per million
(ppm) in one-meter optical path length at 296 kelvins, and HITRAN provides a compilation
of spectroscopic parameters that are used by a set of computer codes to predict and
simulate the transmission and emission of light in gases. The amount of gases in the
synthesized mixtures were limited to percentages that are relevant to the mentioned
industrial applications.

Synthesis of Different Resolution Spectra

The spectra obtained from HITRAN and PNNL are of high-resolution. Creating spec-
tra with lower resolutions was performed as follows. Spectral resolution depends directly
on the maximum optical path difference (OPD) that can be measured by the spectrome-
ter [1,37]. To simulate the effect of lower resolution FTIR spectrometers, a model based on a
Michelson interferometer was used for interferogram calculation taking into consideration
the limited OPD. Given the absorptivity of gases, the input spectrum (transmittance) Sin(v)
is calculated based on Beer-Lambert law,

Sin = e−ε(v)CL, (1)

where ε is the gas absorptivity, C is the gas concentration and L is the path length. The in-
terferogram I(x) is then calculated using the following equation, neglecting the disper-
sion effect

I(x) =
∫ v2

v1

Sin(v)cos(2πvx)dv, (2)

where x is the optical path difference between interferometer arms, v1 and v2 are minimum
and maximum wavenumbers. Then, the output gas spectrum Sout(v) is calculated using
Fourier transform of the interferogram as follows

Sout(v) =
∫ OPD

−OPD
I(x)cos(2πvx)dx, (3)

The resulting spectrum resolution is calculated as 0.604/OPD [1]. For synthesizing
the two sets of data (low- and high-resolution) used in our work, the corresponding
interferograms were generated and truncated to maximum OPDs of 0.01 and 0.03 m,
respectively. Applying FFT to the interferograms resulted in spectra of resolutions 60 and
20 cm−1. Next, different values of signal-to-noise ratios (SNRs) were considered in the data.
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The effect of the SNR was included by adding additive white Gaussian noise (AWGN) to
the interferograms. The SNR is defined as [38]

SNR (dB) = 10 log
(

1
Nrms

)
, (4)

where Nrms is the rms value of the added AWGN. Figure 2 shows an example of the low-
and high-resolution data.
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Figure 2. An example of low- and high-resolution spectrums of a gas mixture.

In order to avoid possible sources of overfitting of the neural network, different
random number generating methods were used in generating the noise. Additionally,
to induce variability in the training dataset, additional sets were added to the low-resolution
(input) training data with different OPDs.

2.2. The Proposed Convolutional Neural Network

In this section, we propose a CNN for the FTIR resolution enhancement problem.
The CNN structure is shown in Figure 3. It consists of four layers: two convolutional and
two fully-connected layers. The given dataset contains low-resolution spectrums and their
associated high-resolution versions, denoted by X and Y, respectively. The network is
trained to learn a function F that maps between the low- and high-resolution spectra, such
that the discrepancy between F(X) and Y is minimized. In the following, we describe the
network architecture and the training process.

Figure 3. The proposed 1D CNN architecture with two convolutional and two fully-connected layers.
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2.3. Network Architecture

The proposed network includes two convolutional layers that extract a set of high-
dimensional features from the input spectra. These extracted features are fed into two
fully connected layers that serve as a nonlinear mapping that constructs a high-resolution
output spectrum through the training process. The number of input and output neurons
are equal to the number of samples in the input and output spectra, respectively.

2.3.1. Feature Extraction Layers

The feature extraction is achieved using two convolutional layers, each of which is
followed by a pooling layer. At each convolutional layer, the input is convolved by Kl
trainable kernels in order to extract Kl feature maps at the layer output X[l]. The superscript
in the following refers to the layer number where X[0] = X. The kernel size at the lth layer
is Kl−1 × 1× Fl . The nth feature map can be expressed as

X[l]
n = σl

(
Kl−1

∑
k=1

θ
[l]
k,n ∗ X[l−1]

k

)
, (5)

where ∗ is the 1D-convolution operator, σl a point-wise activation function, and θ
[l]
k,n ∈ R1×Fl

the kernel trainable weights with k = 1, . . . Kl−1. The function of the pooling layer, applied
to the output of each convolutional layer, is twofold. First, it is used to reduce the dimension
of the extracted features, and accordingly, the computational complexity. Second, it quickly
expands the kernel reach when we go deep in the network. Accordingly, the first layer,
conv1, learns an arbitrary set of local features of the low-resolution spectra. However,
the second layer conv2 involves more samples from the input spectrums and becomes able
to extract global features. The kernel reach of the two layers is highlighted in Figure 3 with
dark and light gray boxes, respectively.

2.3.2. Nonlinear Mapping Layers

The final nonlinear mapping is achieved using two fully-connected layers, FC1 and
FC2, to map the extracted features into a high-resolution spectrum. The output of each
layer is given by

X[l] = σl

(
W[l] ◦ X[l−1]

)
, (6)

where the operator ◦ is the matrix multiplication, and W[l] contains the trainable weights
of the lth layer. The non-linearity is introduced by the nonlinear activation function σl used
at each layer. The activation function used in all layers in this work is the Rectified Linear
Unit (ReLU).

2.3.3. Loss Function

The network is trained to estimate the trainable weights that minimize a pre-defined
loss function. We define the loss function as the mean square error (MSE) between the
predicted spectrum F(Xi) and the ground-truth spectrum Yi:

L(Θ) =
1
N

N

∑
i=1
||F(Xi; Θ)− Yi||22, (7)

where the subscript i refers to the ith example in the training dataset, and N is the total
number of spectrums in the dataset. Moreover, Θ is a set of all trainable weights in the
network that should be optimally chosen to minimize the loss function. In our experiments,
we use the Adam algorithm to solve the minimization problem.

3. Synthetic and Experimental Results and Discussion

Without loss of generality, we execute experiments to scale up the resolution of the
gas spectra from 60 cm−1 to 20 cm−1. The range of wavelengths of our interest (relevant to
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the miniaturized FTIR spectrometers [39]) falls between 2000 and 4000 cm−1. This range
of wavenumbers was chosen based on the supported range of the miniature MEMS FTIR
device and based on the application under study related to the group of gases of interest
for natural gas, biogas analysis and environmental monitoring. Infrared gas analysis
with smaller wavenumbers can be needed in other applications such as industrial process
control and medical diagnostics [40].

The training input and output spectra are accordingly limited to this range. A fixed
number of samples is selected for both input and output spectra. Each spectrum is rep-
resented in exactly 520 discrete points (samples). One example is shown in Figure 2.
The training and validation datasets have 70,000 and 8000 synthetic spectrums, respectively,
generated as described in Section 2.1, at the two defined resolutions. The SNR used in
the datasets ranges from 20 to 40 dB. Feature normalization is the only pre-processing
step executed before training the network. The CNN hyper-parameters are set to the
values shown in Table 1. We use 1D average pooling in Pool1 and Pool2 layers, which
averages out each patch of two and four elements, respectively. The network is trained
for 100 epochs using the Adam algorithm with a learning rate of 10−3 and a weight decay
of 10−2. The trained network is examined with both a synthetic dataset and real spectra
measured using both a bench-top device and MEMS FTIR spectrometers.

Table 1. Convolutional Neural Network hyper-parameters.

Hyper-Parameters conv1 conv2 FC1 FC2

Kl 32 64 - -
Fl 7 11 - -

Stride 1 2 - -
Padding 3 5 - -
Pooling Avg2 Avg4 - -

Batch Normalization N N Y Y
Dropout - - 0.5 0.5

Activation Relu Relu Relu Relu

No. of neurons - - 2048 4000

3.1. Synthetic Data

We first tested the trained data with a synthetic dataset of another 8000 synthesized
spectrums. The test loss, calculated as in (7), was 1.2× 10−4. Figure 4 shows the output
of the trained CNN for two different examples of the test data. The network was able
to construct the high-resolution spectrum with an average MSE identical to the test loss.
The low-resolution (input) spectra in the figures was shifted by an amount of 0.25 for the
sake of clarity. As can be seen from the figures, overall, the trained network performs
well in resolving the overlapped peaks from the low-resolution spectra. As shown in
Figure 4b,c, in some cases, (specially for lower SNR values), the noise in the low-resolution
spectra are misidentified as peaks with small amplitude (e.g., the peak at ∼3000-cm−1

in Figure 4b and the peak around ∼2350-cm−1 in Figure 4c). The MSEs of these three
examples were 1.3× 10−4, 2.2× 10−4, and 5.7× 10−5, respectively.
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Figure 4. Predicted high-resolution spectra from the synthetic low-resolution versions and the high-
resolution spectra (ground truth), (the low-resolution spectra are shifted in the y-axis for clarity) for
different gas mixtures measured at different SNRs: (a) mixture of CO2 (4.2%), H2O (10%), C2H2

(0.7%), CH4 (21.7%), H2S (40.7%), C2H4 (1.2%), C2H6 (7.6%), C2H8 (6.8%), and C2H10 (7.2%) at
SNR = 34.5 dB, (b) mixture of CO2 (5%), CO (3.9%), C2H2 (1.4%), and H2S (89.7%) at SNR = 28.8 dB,
(c) mixture of CO (2.6%), C2H2 (1.1%), CH4 (89.4%), C2H4 (3.3%) and C2H6 (3.7%) at SNR = 23.7 dB.



Foundations 2021, 1 312

3.2. Experimental Measurements

The synthetic data show the theoretical gas spectra; however, the measured spectra
are affected by many background distractors, such as light sources and the gases in the
surrounding atmosphere resulting in distortions in the measured spectrum. Additionally,
other artifacts and nonlinearities affect the measured spectra from different devices. This
includes non-constant baselines. Theoretical transmission spectra have all the spectral
peaks ’dropped’ from horizontal baselines while the baselines of the measured spectra are
affected by the device and the orientation of the gas cell, which cause them to have tilted
baselines (see [41] and the figures therein). Additionally, non-uniform SNR commonly
occur in miniaturized MEMS spectrometers, where the noise affects some wavelengths
more than others. Also, the shape of the apodization function is another source of artifacts
in the measured spectra. In this subsection, we discuss the performance of the trained
network with real measurements. For the experiment, we measured the spectrum of a
cell that contains a mixture of CO2 (0.25%), CO (4%), CH4 (1.2%) and H2S (94.5%) using
both the bench-top device and a mid-infrared MEMS FTIR spectrometer at a resolution
of 60 cm−1. The details of the measurement was as follows. A 10-cm length free-space
gas cell filled with the gas mixture and sealed was specially ordered (from Wavelength
References). The pressure inside the cell is the atmospheric pressure. The cell has wedged
MgF2 windows transparent in the wavelength range of interest. The diameter of the cell is
about 25 mm. The cell was measured using the setup shown in the schematic in Figure 5a,
while a photo for the real setup is shown in Figure 5b with the light source switched on. An
infrared light source (Thorlabs, HEP3965) was used. The light is collimated and focused
using CaF2 lenses (Thorlabs) by placing them at a distance equal to their focal length away
from the source and spectrometer input. A measurement background is taken while the
two lenses are in close proximity. Then the gas cell is inserted and measured referenced to
the background.

(a)

(b)
Figure 5. Gas cell measurement setup; (a) schematic diagram, (b) photo of the real setup with the
light source turned on.

Next, the measured spectra went through two pre-processing steps. First, we followed
the algorithm of [41] in order to correct the baseline of the measured spectrum. The second
pre-processing step is re-sampling. Commonly, down-sampling process has to be executed
as the measured spectrum is usually represented in more than 520 samples (the number
of inputs to the CNN). Figure 6 depicts both the synthetic low-resolution and measured
spectrums of the same cell using both bench-top device and MEMS FTIR spectrometers.
The bench-top device measured spectrum is shown after baseline removal, as mentioned
above. As the figure shows, even after baseline removal, there is still some discrepancy
between the theoretical and measured spectra; this is expected to affect the performance of
the trained network in resolving real measurements. Moreover, the spectrum measured



Foundations 2021, 1 313

using the MEMS FTIR spectrometer shows further differences compared to the other two
spectra, as it is affected by the other factors mentioned above.
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Figure 6. Synthetic and measured spectra of the experimental gas cell at a resolution of 60 cm−1. Mea-
surements were performed using both bench-top (Bruker Tensor II) and MEMS-FTIR (NeoSpectra)
devices. The gas cell measured contains CO2 (0.25%), CO (4%), CH4 (1.2%) and H2S (94.5%).

3.2.1. Enhancing Bench-Top Spectrometer Measured Spectrum

The predicted high-resolution spectrum from the bench-top device measurement
using the trained CNN is illustrated in Figure 7 (in blue-dashed line). The figure also shows
the low-resolution measured spectrum. And for comparison, two high-resolution versions
of the same spectrum are shown; a synthetic (theoretical ground truth) version that was
constructed given the contents of the gas cell, and an experimental high-resolution version
that was measured using the bench-top spectrometer.

We note here that there is amplitude discrepancy between the synthetic spectrum and
the high-resolution measured spectrum (as well as the enhanced spectrum). This is mainly
due to distortions in the measurement process. The major difference in peak amplitude
is encountered around 2400 and 3700 cm−1, the location of Carbon dioxide peaks. This
indicates that the measuring process was affected by some factors such as the CO2 in the
atmosphere or the measuring setup itself. A CNN model that is trained over synthetic data
would not be able to mitigate this effect.

The original CNN model recognized all the peaks of the spectrum and enhanced the
resolution of the given low-resolution spectrum. The main discrepancy between the two
spectra is the existence of a ’flipped’ peak around 3300 cm−1 in the predicted spectrum.
This is mainly due to the difference between the measured and synthetic spectra as shown
in Figure 6, which is mainly a baseline error that was not totally corrected in the pre-
processing of the measured spectrum. This problem was mitigated by re-training the
network with an extra set of synthetic data in which artificial baselines were induced.
The new spectrum enhanced using the re-trained CNN is shown in the same figure in
black solid line. In comparison to the synthetic spectrum, using the re-trained CNN has
reduced the MSE of the enhanced spectrum from 4.2 ×10−3, to 3.5 ×10−3. The MSE
between the enhanced spectrum and the high-resolution measurement is approximately
2.75 × 10−3. The amplitude discrepancy between the predicted and measured high-
resolution spectrum is lower than that between the predicted and the synthetic, therefore
the error is lower. However, because the measured spectrum has to go through a baseline
correction process, as explained above, and the baseline correction algorithm is not unique,
a baseline error can be seen in the measured spectrum between wavenumber values of
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3200 and 3600 cm−1, which would contribute to increasing the overall error between the
measured and predicted spectra.
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Figure 7. Predicted high-resolution spectrum (dashed-blue line) from a low-resolution measured
spectrum (solid-green line) captured using a bench-top device spectrometer (Bruker). Also shown
is the synthetic high-resolution spectrum and measured high-resolution spectrum of the same cell.
The gas cell measured contains CO2 (0.25%), CO (4%), CH4 (1.2%) and H2S (94.5%). The measured
spectra are shown after pre-processing.

Moreover, in Figure 7, regardless of the overestimation of some peaks, all the peaks
between 3600 and 4000 cm−1 that are due to the overlapped spectra of CO2 and H2S were
resolved, even though not all of them appeared in the low-resolution measured spectrum.
This comes as no surprise as the trained network relies on the global features of the spectra
and was able to recognize the existence of both gases. This represents one example in
which the influence of global features is desirable.

3.2.2. Enhancing MEMS FTIR Spectrometer Measured Spectrum

The predicted high-resolution spectrum from the MEMS FTIR measurement using
the originally trained CNN is illustrated in Figure 8 (in blue dashed line) along with the
ground-truth high-resolution spectrum.

Similar to the previously discussed case, the original CNN recognized all the peaks of
the spectrum and enhanced the resolution of the given low-resolution spectrum. The main
discrepancy between the two spectra was the existence of a ’flipped’ peak around 3300 cm−1

in the predicted spectrum. Again, this is due to the difference between the measured and
synthetic spectra as shown in Figure 6. As discussed earlier, miniaturized MEMS FTIR
spectrometers induce several effects on their measurements. Data that model these effects
were added to the training process in different trials. The network performance showed
improvement when re-trained with an extra set of synthetic data in which the effect of
non-uniform SNR was modeled. The new enhanced spectrum is shown in the same figure
in black solid line. The MSE of both enhanced spectra are 4.7 ×10−3, and 2.4 × 10−3,
respectively. It is worth mentioning here that although the false peaks were not totally
removed, the SNR in this case is better than the enhancement of the bench-top device’s
measurement compared to the synthetic spectra as discussed above, because the other
peaks of the spectrum better match the synthetic ground truth. The reason can be seen
when comparing the low-resolution measurements shown in Figure 6, where MEMS
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FTIR measurement (due to the non-linearities of the device) is closer in amplitude to the
theoretical spectrum of the content of the cell.
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Figure 8. Predicted high-resolution spectrum from a measured spectrum captured using a MEMS
FTIR spectrometer. The gas cell measured contains CO2 (0.25%), CO (4%), CH4(1.2%) and H2S
(94.5%). The measured spectrum is shown after pre-processing.

Since a mean square error down to 2.4×10−3 in the transmission spectra was obtained,
it is expected that the error in production will be in that order. The exact values depend on
the specific gas mixture concentrations and has to be calculated for case by case. Since the
transmission T = exp (−εCL), one can deduce that the error in concentration is given by
∆C = ∆T[εL(1− T)]−1.

4. Conclusions

While miniaturized Fourier transform infrared spectrometers are finding increasing
numbers of important applications, such as gas analysis, they generally suffer from the
problem of low spectral resolution. Higher spectral resolution is needed for better identifica-
tion of materials. This article discussed a deep learning method for resolution enhancement
of FTIR gas spectra. The proposed convolutional neural network can effectively enhance
the low-resolution spectra by extracting a set of high-dimensional features from the input
of low-resolution data and the constructing of high-resolution outputs. The network was
trained using synthetic data and tested using both synthetic and measured spectra of
gas mixtures. The proposed method was shown to result in better identification of the
absorption peaks by producing a threefold resolution enhancement.
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