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Abstract: In this work, we present a Big Rip scenario within the framework of the generalized
Brans-Dicke (GBD) theory. In the GBD theory, we consider an evolving BD parameter along with
a self-interacting potential. An anisotropic background is considered to have a more general view
of the cosmic expansion. The GBD theory with a cosmological constant is presented as an effective
cosmic fluid within general relativity which favours a phantom field dominated phase. The model
parameters are constrained so that the model provides reasonable estimates of the Hubble parameter
and other recent observational aspects at the present epoch. The dynamical aspects of the BD
parameter and the BD scalar field have been analysed. It is found that the present model witnesses
a finite time doomsday at a time of tBR ' 16.14 Gyr, and for this scenario, the model requires a large
negative value of the Brans-Dicke parameter.

Keywords: cosmological constant; generalised Brans-Dicke theory; Big Rip

1. Introduction

Late-time cosmic acceleration is one of the most bizarre and unsolved problems in modern
cosmology. In scalar field cosmological models, the late-time cosmic acceleration issue is
predominantly attributed to an exotic dark energy (DE) form that corresponds to a cosmic
fluid having low energy density, as well as negative pressure. This is usually understood
through a quantity dubbed as the equation of state (EoS) parameter ωD = p

ρ , where p
represents the DE pressure and ρ symbolises the dark energy density. The dark energy with
a negative pressure corresponds to a negative EoS parameter. Despite several attempts
made by astronomers and cosmologists, the experimental determination of ωD remains
challenging. Its precise estimation at the present epoch along with the knowledge of
its development over a long period may unravel the mystery of the dark energy whose
nature and origin remains speculative so far. In the ΛCDM model, the cosmological
constant Λ with ωD = 1 plays the role of dark energy. However, in canonical scalar
field models, quintessence fields or phantom fields shoulder the burden for the late-time
cosmic speed-up, while the EoS parameter for the quintessence field lies in the range
− 2

3 ≤ ωD ≤ − 1
3 [1–3], which for the phantom fields, becomes ωD < −1 [4]. However, the

EoS parameter as constrained from recent observational data favours a phantom phase
in the Universe with ωD < −1 [5], while constraints from the CMB data in the nine-year
WMAP survey suggest that ωD = −1.073+0.090

−0.089 [6], a combination of the CMB data with
Supernova data, predicts ωD = −1.084± 0.063 [7]. Other constraints on the EoS parameter
include ωD = −1.035+0.055

−0.059 from Supernova cosmology project [8], ωD = −1.03± 0.03
from recent Planck 2018 results [9] and from Pantheon data ωD = −1.006 ± 0.04 [10].
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In phantom dark energy models, the energy conditions are usually violated, and the
Universe may witness a blowing-up of the curvature of space-time at a finite time, leading
to the dissolution of the whole material Universe into pieces. This picture of the finite
future of the Universe, dubbed as the Big Rip singularity, concerns the recent cosmological
research [11,12]. The finite-time future singularity leads to inconsistencies which led to
different proposals in recent times, including the quantum effects to delay singularity,
possible gravity modification, or the coupling of dark energy and dark matter [13,14].

In recent times, because of the concern regarding the ultimate fate of the Universe
for phantom accreted dark energy with ωD < −1, a number of cosmological models
have been used to investigate the Rip cosmologies based on the general relativity (GR)
and modified gravity. Darbowski et al. studied the Big Rip singularity and the ultimate
cosmic fate [15,16], and Granda and Loaiza showed the occurrence of Big Rip for kinetic
and Gauss-Bonnet coupling [17]. The classical and quantum fate of the Big Rip cosmology
has been studied by Vasilev et al. [18]. Within the framework of f (T) gravity, Hanafy
and Saridakis presented a cosmological model where the Universe may last forever in
a Pseudo Rip scenario [19]. Recently, Ray et al. studied the Big Rip and some Pseudo
Rip cosmological models in the context of an extended gravity theory [20], and Pati et al.
investigated the possible occurrence of Rip scenarios in an extended symmetric teleparallel
theory [21]. Big Rip singularity is a unique singularity that possibly occurs in a phantom
scenario violating the Null Energy Condition. The occurrence of Big Rip singularity, for
which the energy density and the scale factor of the Universe diverge, dissolutes the
bound system and ultimately leads to the tearing up of the Universe in finite time. Such
a scenario has become a major concern for cosmologists. As such, the present study is
aimed at investigating the possibility of the occurrence of a Big Rip scenario within the
framework of the generalised Brans-Dicke (GBD) theory. The GBD theory incorporates
a self-interacting potential, as well as a dynamically varying Brans-Dicke(BD) parameter.
Previously, Montenegro and Carneiro have investigated some cosmological models leading
to Big Rip kinds of solutions within the Brans-Dicke theory in the presence of decaying
vacuum density. In that work, they considered a time-independent negative BD parameter
ω = −1 [22]. They obtained cosmological solutions with a time-varying deceleration
parameter which may lead to negative energy density. In general, the BD theory is a most
popular modified gravity theory proposed as an alternative to GR, where the gravity is
mediated by a scalar field. The BD theory has already been used emphatically in addressing
many issues in cosmology and astrophysics including the explanation for the inflationary
scenario [23]. Over a period of time, the BD theory has been well-studied through different
tests, including the gravitational radiation from gravitational wave bursts [24–27].

The manuscript is presented as follows: In Section 2, the basic field equations for the
GBD theory are estimated for an anisotropic LRS Bianchi I (LRSBI) metric. Additionally,
the dynamics of the GBD theory when incorporating a cosmological constant is appraised.
Section 3 is devoted to a Big Rip scenario through a scale factor that diverges at a specific
time, and discusses the time evolution of the BD scalar field, BD parameter, and the self-
interacting potential under the Big Rip scenario. Lastly, the conclusion is drawn, and
a concise summary of the present investigation is given in Section 4. Throughout this work,
we chose the natural unit system: 8πG0 = c = 1, where G0 symbolises the Newtonian
gravitational constant at the present epoch and c represents the speed of light in vacuum.

2. Basic Formalism

In a Jordan frame within the GBD theory with a self-interacting potential V(φ) and
a time-dependent BD parameter ω(φ), we have the action as [28,29]

S =
∫

d4x
√
−g
[

φR− ω(φ)

φ
φ,µφ,µ −V(φ) + Lm

]
, (1)

where R defines the curvature and Lm is the matter Lagrangian. The time-dependence
aspect of the BD parameter emerges naturally in the Kaluza-Klein theory, string theory, or
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in the supergravity theory [30,31]. Different issues in cosmology have been investigated in
recent times in the GBD framework with a time-dependent BD parameter [32–36]. Because
of the GBD field equations may be obtained as [36,37]

Gµν =
Tµν

φ
+

ω(φ)

φ2

[
φ,µφ,ν −

1
2

gµνφ,αφ,α
]
+

1
φ

[
φ,µ;ν − gµν�φ

]
− V(φ)

2φ
gµν, (2)

�φ =
T

2ω(φ) + 3
−

2V(φ)− φ
∂V(φ)

∂φ

2ω(φ) + 3
−

∂ω(φ)
∂φ φ,µφ,µ

2ω(φ) + 3
, (3)

where � represents the d’Alembert operator. A perfect fluid distribution with the energy-
momentum tensor Tµν = (ρ + p)uµuν + pgµν is considered, so that the T = gµνTµν is the
trace. In order to model the universe, we consider an LRSBI universe [38]

ds2 = −dt2 + A2dx2 + B2(dy2 + dz2). (4)

Even though the present observable Universe is mostly isotropic and homogeneous
and can be mostly described as an FRW metric, some of the observations obviously hint of
a possible departure from isotropy [39–42]. The amount of cosmic anisotropy present may
be very small, but we cannot simply rule out its possibility. Additionally, the LRSBI model
resembles the flat FRW model, but allowed us to incorporate a small but finite anistropy in
the model. The GBD field equations for the anisotropic model become [32,36]

(2k + 1)ξ2H2 =
ρ

φ
+

ω(φ)

2

(
φ̇

φ

)2

− 3H
(

φ̇

φ

)
+

V(φ)

2φ
, (5)

2ξḢ + 3ξ2H2 = − p
ρ
− ω(φ)

2

(
φ̇

φ

)2

− 2ξH
(

φ̇

φ

)
− φ̈

φ
+

V(φ)

2φ
, (6)

(k + 1)ξḢ + (k2 + k + 1)ξ2H2 = − p
φ
− ω(φ)

2

(
φ̇

φ

)2

− (k + 1)ξH
(

φ̇

φ

)
− φ̈

φ
+

V(φ)

2φ
. (7)

In the above equations, ξ = 3
k+2 is an anisotropic parameter where k is a positive

constant that decides the relationship among the directional expansion rates: Ȧ
A = k Ḃ

B .
One should note that the isotropic behaviour of the model may be obtained for ξ = 1.
H = 1

3

(
Ȧ
A + 2 Ḃ

B

)
= 1

ξ
Ḃ
B is the Hubble parameter.

The BD scalar field satisfies the Klein-Gordon equation

φ̈

φ
+ 3H

φ̇

φ
=

ρ− 3p
2ω(φ) + 3

−
∂ω(φ)

∂φ φ̇2

2ω(φ) + 3
−

2V(φ)− φ
∂V(φ)

∂φ

2ω(φ) + 3
. (8)

The GBD theory may be recast as an effective GR picture by incorporating a cosmolog-
ical constant Λ. In such a case, the total energy density and the total pressure respectively
become ρT = ρ + Λ and pT = p−Λ, and the GBD field equations reduce to

(2k + 1)ξ2H2 = ρT + ρφ, (9)(
k + 3

2

)
ξḢ +

(
k2 + k + 4

2

)
ξ2H2 = −

(
pT + pφ

)
, (10)

where,

ρφ = (2k + 1)ξ2 H24φ− 3Hφ̇ +
ω(φ)

2

(
φ̇2

φ

)
, (11)

pφ = −
(

k2 + k + 4
2

)
ξ2 H24φ−

(
k + 3

2

)
ξḢ4φ + φ̈ +

(
k + 3

2

)
ξHφ̇ +

ω(φ)

2

(
φ̇2

φ

)
, (12)
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where4φ = 1− φ, which ensures the reduction to GR behaviour for4φ = 0. It is interesting
to note here that the GBD theory provides an extra cosmic fluid which may shoulder the
burden of late-time acceleration. The corresponding effective EoS parameter becomes

ωe f f =
pφ −Λ
ρφ + Λ

= −1 +
−
(

k+3
2

)
ξḢ4φ +

[
(2k + 1)−

(
k2+k+4

2

)]
ξ2H24φ + f (φ, φ̇, φ̈)

Λ + (2k + 1)ξ2H24φ + g(φ, φ̇)
, (13)

with f (φ, φ̇, φ̈) = φ̈ +
[(

k+3
2

)
ξ − 3

]
Hφ̇ + ω(φ)

(
φ̇2

φ

)
and g(φ, φ̇) = −3Hφ̇ + ω(φ)

2

(
φ̇2

φ

)
.

In the low redshift epoch, there can be small values of |4φ|, and consequently, Λ
becomes the dominant term in the denominator of the second term in Equation (13).
Additionally, in the numerator of Equation (13), the contribution of f (φ, φ̇, φ̈) may be
neglected compared to other terms. In the limit of |4φ| → 0, the effective EoS may be
expressed as

ωe f f ' −1− 4φ

Λ

[
−
(

k + 3
2

)
ξḢ +

[
(2k + 1)−

(
k2 + k + 4

2

)]
ξ2H2

]
, (14)

which may be reduced to

ωe f f ' −1 + 2
4φ

Λ
ξḢ. (15)

for a small departure from cosmic anisotropy. The above equation tells us that we get
a quintessence-like phase for4φ > 0 and a phantom-dominated phase for4φ < 0, at least
in the low redshift epochs. In an earlier work, it has been shown from the reconstruction of
the BD scalar field from observational H(z) data that4φ < 0. This shows phantom-like
behaviour in the GBD theory [38].

3. A Big Rip Scenario

An explanation of the late-time cosmic speed-up issue with dark energy requires
that the EoS parameter should be ωD < −1/3. The cosmological constant corresponds
to ωD = −1. For dark energy, cosmological models favouring ωD < −1 are usually
dominated with phantom energy for which the energy density goes up with time violating
the dominant energy condition. The energy density in a phantom dominated dark energy
model is proportional to the scale factor. As a consequence, the scale factor blows up at
a finite time tBR − t0 ' 2

3|1+ωD |
1

H0
√

1−Ωm
, where H0 represents the present value of the

Hubble parameter and Ω ' 0.3 is the matter density parameter [43]. Such a scenario is
termed as the Big Rip, whose occurrence dissolutes the bounded system [43–45]. The Big
Rip scenario in Phantom models leads to a unique singularity in the Universe and can be
associated with the fundamental quantum gravity formalism [46].

We consider a Big Rip scenario with the scale factor evolving as

a(t) ' (tBR − t)α, (16)

where tBR is the epoch where the scale factor blows up. α is a constant parameter related to
the EOS parameter as

α =
2

3(1 + ωD)
. (17)

In a phantom field-dominated Universe, the EoS parameter is usually less than unity,
that is, ωD < −1, which requires that the constant parameter α appearing in the scale
factor should be negative, that is, α < 0. For the given Big Rip scenario, the Hubble
parameter and the deceleration parameter (DP) are, respectively, H(t) = − α

tBR−t and

q = −1− Ḣ
H2 = −1 + 1

α . Additionally, we have Ḣ = −H2

α and Ḧ = 2
α2 H3. One should note

that, while the Hubble parameter contains two adjustable parameters, the deceleration
parameter contains only one parameter, α. The deceleration parameter in the present Big
Rip scenario comes out to be a constant quantity which should be negative to provide
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an accelerating model. Because of this, we may constrain the parameter α from some recent
observational constraint on the deceleration parameter. In a recent work, Camarena and
Marra used the observational data from supernovae in a redshift range to constrain the
DP as q0 = −1.08± 0.29 [47]. The central value of the deceleration parameter immediately
fixes up the scale factor parameter as α = −12.49. Consequently, the EoS parameter may
be constrained as ωD = −1.0533. This value is in close agreement with some recent
measurements, as mentioned earlier. Once α is fixed, the other parameter tBR may be
obtained from the present value of the Hubble parameter. In Figure 1, we show the
evolution of the Hubble parameter for the constrained value of α that predicts a finite-time
future singularity. The Hubble parameter increases with the cosmic expansion and blows
up at a finite future. Assuming H0 = 74.3 km s−1 Mpc−1, the present model predicts a Big
Rip occurring at a cosmic time tBR ' 16.14 Gyr.

- 1 0 1 2 3 4 5 6 7 8 9 1 0
6 0

7 0

8 0

9 0

1 0 0

H (
t)

z
Figure 1. Hubble parameter as a function redshift. The Hubble parameter is in km s−1 Mpc−1 units.

3.1. Brans-Dicke Scalar Field

Considering the Big Rip scenario, the evolutionary aspect of the Brans-Dicke scalar
field may be studied within the framework of the GBD theory. Algebraic simplification of
the field Equations (6) and (7) leads to the evolution equation for the BD scalar field as

− Ḣ
H
− 3H =

φ̇

φ
. (18)

In terms of DP, we may express the evolution equation as

(q− 2)H =
φ̇

φ
. (19)

In our model, we obtained the deceleration parameter to be a constant quantity, and
consequently, the BD scalar field may be obtained by integrating Equation (19) as

φ =
φ0

an
0

an, (20)

where n = q− 2 = 1
α − 3. a0 and φ0 are respectively the value of the scale factor and the

BD scalar field at the present epoch. This relation clearly articulates a power-law behaviour
of the BD scalar field with respect to the scale factor. It is worth mentioning here that the
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use of power-law functional behaviour of the scalar field is quite common in the literature.
Since the deceleration parameter is a negative quantity in our model, the BD scalar field
should decrease with the cosmic expansion.

The scale factor may be expressed as a =
(
− α

H
)α, and consequently, the BD scalar

field becomes
φ

φ0
=

(
H0

H

)nα

, (21)

which ultimately leads to
φ̈

φ
= −3nH2. (22)

In terms of the redshift defined as z = a0
a − 1, the BD scalar field reduces to

φ

φ0
= (1 + z)−n. (23)

In Figure 2, the evolutionary aspect of the BD field is shown. The BD scalar field shows
a decreasing trend from large positive values to vanishingly small values at late cosmic
times. One should note from the figure that the BD scalar field behaves like ∼(1 + z)3 in
low redshift epochs.

- 1 0 1 2 3 4 5 6 7 8 9 1 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

f /
 f 0

z
Figure 2. Evolutionary behaviour of the BD scalar field.

3.2. Brans-Dicke Parameter

The BD parameter is a dynamical quantity in the GBD theory, and its behaviour
depends on the dynamical behaviour of the BD scalar field. The BD parameter may be
obtained from the GBD field Equations (5)–(7) as

ω(φ) =
1(
φ̇
φ

)2

[
−ρ + p

φ
− φ̈

φ
+ kξH

φ̇

φ
− 2ξḢ + 2(k− 1)ξ2H2

]
. (24)

It should be mentioned here that, for a given Big Rip scenario as specified by a Hubble
parameter H and a given cosmic anisotropy ξ, the dynamics of the BD scalar field is
suitably obtained. Once the BD scalar field is obtained, the time-dependent aspect of the
BD parameter now requires an equation of state p = ωDρ, a relationship between the
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pressure p and the energy density ρ. Replacing ρ + p by (1 + ωD)ρ and using the fact that
φ̇
φ = nH in Equation (24), we get

ω(φ) = n−2H−2
[
−
(

1 + ωD
φ

)
ρ +

(
(kξ + 3)n + 2(k− 1)ξ2

)
H2
]

. (25)

For the given Big Rip scenario, the conservation equation for the cosmic fluid

ρ̇ + 3H(ρ + p) = 0 (26)

can be reduced to
ρ̇

ρ
= − 2

α
H. (27)

The energy density may be obtained from the integration of the conservation equation as

ρ = ρ0

(
H
H0

)2
, (28)

where ρ0 is the present value of the energy density. Here, we used the fact that a
a0

=
(

H0
H

)α
.

It is now straight-forward to obtain the pressure as

p =

(
2

3α
− 1
)

ρ0

(
H
H0

)2
, (29)

so that p + ρ = 2
3α ρ0

(
H
H0

)2
. The Brans-Dicke parameter may now be expressed in terms of

the Hubble parameter as

ω(H, ξ, α) = ω0(H0, ξ, α)− χ

[(
H
H0

)(nα−2)
− 1

]
, (30)

where χ =
2ρ0 H((3+n)α−1)

0
3αφ0n2 and ω0(H0, ξ, α) = kξ+3

n + 2(k− 1)
(

ξ
n

)2
− χ is the present value

of the BD parameter.
One may note that the anisotropy affects the Brans-Dicke parameter, but it does not

participate in its evolution. Only the non-evolving part of the Brans-Dicke parameter is
modified in the presence of cosmic anisotropy. In fact, as is evident from Equation (30), the
cosmic anisotropy brings about a change in the required present value of the BD parameter.
Similar results have already been observed in an earlier work [32], where it was shown that
for a power-law expansion and an exponential expansion law of the scale factor, the cosmic
anisotropy affects only that part of the BD parameter which does not evolve with time.
The similarity between this Big Rip model and that of the power-law behaviour and the
exponential expansion model is that the deceleration parameter is non-evolving. Because
of this, we may infer that, for the time-independent deceleration parameter, the cosmic
anisotropy will not contribute to the evolution of the Brans-Dicke parameter. However, for
models with a time-dependent deceleration parameter, the cosmic anisotropy affects the
BD parameter as a whole [36,38]. In Figure 3, the BD parameter (normalized to its value
at the present epoch) is shown for a representative value of the cosmic anisotropy ξ. It is
observed that the BD parameter increases with the cosmic expansion. Since the Hubble
parameter blows up at a time t ' tBR, the BD parameter also blows up at that epoch. In
Figure 4, the evolutionary aspect of the BD parameter with respect to the BD scalar field is
shown. With an increase in the BD scalar field, ω(H, ξ, α) decreases from a much higher
value to low positive values. However, the decrement in ω(H, ξ, α) slows down for higher
values of the scalar field. One may estimate the BD parameter at the present epoch within
the purview of the present formalism to get a rip scenario at a finite future. In fact, for
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a finite time future singularity such as the one discussed in the present work within GBD
theory, we require the BD parameter to be approximately ω(z = 0) ' −3.6× 109 at the
present epoch.

0 1 2 3 4 5 6 7 8 9 1 0
0

1

2

3

4

ω
 (φ

)

z
Figure 3. Brans-Dicke parameter as a function of redshift.

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

ω
 (φ

)

φ / φ0

Figure 4. Evolutionary behaviour of the Brans-Dicke parameter with respect to the BD field.

3.3. Self-Interacting Potential

Within the GBD formalism, the time-dependence aspect of the self-interacting potential
may be obtained as

V(φ) = 2φ

[{
(2k + 1)ξ2 + 3n− ω(φ)

2
n2
}

H2 − ρ

φ

]
. (31)
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In order to assess the effect of the cosmic anisotropy, we may express the self-interacting
potential as

V(φ)

2φ
=
{
(2k + 1)ξ2 − ω0

2
n2
}

H2 +

[
3n +

χn2

2

((
H
H0

)(nα−2)
− 1

)]
H2 − ρ

φ
. (32)

In the above Equation (32), the first term in the right-hand side bears the contribution
of the cosmic anisotropy. In Figure 5, we show the evolutionary behaviour of the self-
interacting potential for a given cosmic anisotropy. Since in the Big Rip scenario, we
discussed in the present work a large negative value of ω0 = ω(z = 0) is being required,
the effect of the cosmic anisotropy becomes negligibly small. However, in other scenarios
such as a bouncing one, we may get a substantial effect of the cosmic anisotropy on the
self-interacting potential [36]. Because of this, we chose a representative value k = 1.0001 or
a corresponding ξ = 0.999967 to plot the figure. The value of the self-interacting potential
in the figure is normalized to its present value. One should note that, with the growth of
cosmic expansion, V(φ) decreases from a higher value to small values at late times. This
behaviour may be translated in terms of the scalar field to infer that the self-interacting
potential shows an increasing trend with the BD scalar field.

- 1 0 1 2 3 4 5 6 7 8 9 1 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

V (
φ) 

z
Figure 5. Evolutionary behaviour of the self-interacting potential.

4. Summary and Conclusions

In the present work, we studied a Big Rip scenario within the framework of a gen-
eralized Brans-Dicke theory. An LRSBI Universe is considered to incorporate directional
anisotropy in the expansion rates. Such a model provides a more general approach com-
pared to the FRW model. The generalized Brans-Dicke theory having a cosmological
constant can be recast as a GR-like theory with cosmic fluid dominated by dark energy. The
effective cosmological constant for such effective cosmic fluid dominated by dark energy
may provide a quintessence-like or phantom-like behaviour depending on the nature of the
scalar field. On the basis of the nature of the BD scalar field which has been reconstructed
from the observational H(z) data, we showed that the present model favours a phantom
dark energy model. In Phantom models, the energy density and the scale factor may grow
sharply within a finite time, leading to a Big Rip situation. We considered a Big Rip scale
factor with an arbitrary parameter, that was fixed from a recent observational value of the
deceleration parameter, which ultimately fixes the effective EoS parameter as ωD = −1.05
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in close conformity with recent observational estimates. Additionally, the present model
witnesses a Big Rip scenario at a time tBR ' 16.14 Gyr. We studied the dynamical aspects
of the scalar field, Brans-Dicke parameter, and the self-interacting potential. In conformity
with other scalar field models, the BD scalar field shows a decreasing behaviour with cosmic
time. The Brans-Dicke parameter, on the other hand, increases with the cosmic expansion.
To the BD scalar field, the BD parameter (as normalized to its present value) decreases
from a high value to almost constant values for higher values of the scalar field. In some
recent tests concerning the gravitational radiation from gravitational wave bursts on the
BD theory, the bounds on the BD parameter may be ω ≥ 104∼105 [27] or ω ≥ 106 [24].
Montenegro et al. used ω = −1 to obtain Big Rip kinds of solutions in the BD theory [22].
However, our present model requires a high negative value of the BD parameter at the
present epoch of the order of ∼−109 to witness a Big Rip scenario in the finite future.

In our model, the anisotropy parameter does not affect the BD scalar field. It affects
the BD parameter, but does not contribute to its time evolution aspect. In principle, only
the non-evolving part of the BD parameter is affected by the anisotropy parameter. This is a
feature usually observed for BD gravity models with a constant deceleration parameter [32].
However, the anisotropy affects the self-interacting potential. Since we require quite a large
magnitude of the present epoch value of the BD parameter to get a viable Big Rip scenario,
a small variation of the cosmic anisotropy does not substantially bring about a change in
its numerical value.
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Λ CDM Λ dominated Cold Dark Matter
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