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Abstract: An advanced method of training artificial neural networks is presented here which aims
to identify the optimal interval for the initialization and training of artificial neural networks. The
location of the optimal interval is performed using rules evolving from a genetic algorithm. The
method has two phases: in the first phase, an attempt is made to locate the optimal interval, and
in the second phase, the artificial neural network is initialized and trained in this interval using a
method of global optimization, such as a genetic algorithm. The method has been tested on a range
of categorization and function learning data and the experimental results are extremely encouraging.
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1. Introduction

Artificial neural networks (ANNs) are programming tools [1,2] based on a series
of parameters that are commonly called weights or processing units. They have been
used in a variety of problems from different scientific areas, such as physics [3–5], solv-
ing differential equations [6,7], agriculture [8,9], chemistry [10–12], economics [13–15],
medicine [16,17], etc. A common way to express a neural network is a function N(−→x ,−→w ),
with−→x the input vector (commonly called the pattern) and−→w the weight vector. A method
that trains a neural network should be used to estimate the vector −→w for a certain problem.
The training procedure can also be formulated as an optimization problem, where the
target is to minimize the so-called error function:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

In Equation (1), the set
(−→xi , yi

)
, i = 1, . . . , M, is the dataset used to train the neural

network, with yi being the actual output for the point −→xi . The neural network N(−→x ,−→w )
can be modeled as a summation of processing units, as proposed in [18]:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(2)

with H the number of processing units in the neural network and d the dimension of vector
−→x . The function σ(x) is the sigmoid function defined as:

σ(x) =
1

1 + exp(−x)
(3)

From Equation (2), one can obtain that the dimension of the weight vector w is
computed as: n = (d + 2)H. The function of Equation (1) has been minimized with a
variety of optimization methods during the past years such as: the back propagation
method [19,20], the RPROP method [21–23], quasi-Newton methods [24,25], simulated
annealing [26,27], genetic algorithms [28,29], particle swarm optimization [30,31] etc. In
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addition, various researchers have worked on the initialization of the weights of neural
networks, such as initialization using decision trees [32], an initialization method based
on Cauchy’s inequality [33], a method based on discriminant learning [34], etc. Another
topic that has attracted the interest of many researchers is weight decaying, which is
a regularization method that adapts the weights of the network aiming to avoid the
overfitting problem. Several papers have appeared in this area with methods such as those
with positive correlation [35], the SarProp algorithm [36], the incorporation of pruning
techniques [37], etc. In addition, more advanced and more recent techniques from the
area of computational intelligence have been proposed for neural network training such
as the differential evolution method [38,39], the construction of neural networks with ant
colony optimization [40], the construction of neural networks using grammatical evolution
to solve differential equations [41], etc. Furthermore, due to development of GPU units, a
lot of works have been published that take advantage of these processing units [42,43].

The present work proposes an innovative interval generation technique for the ini-
tialization and training of artificial neural network parameters. This new method has its
roots in interval methods [44–46]. In the current work, using arithmetic intervals, a set of
rules for dividing the initial interval for the parameters of an artificial neural network is
constructed. The construction is carried out using a hybrid genetic algorithm, in which
chromosomes are the set of division rules. After the termination of the genetic algorithm,
the artificial neural network is initialized in the interval resulting from the application of
the optimal partitioning rules and then trained using a genetic algorithm.

The method used has two objectives: the first objective is to detect a small interval of
initialization for the parameters of the artificial neural network and the second objective
is to accelerate the training of the network. In the first target, using information from
the training data, the algorithm will make an attempt to identify the interval that will
ultimately give better results. In the second objective, once a small-value interval has been
detected, a global optimization method can be used more efficiently to detect the lowest
value of the network error.

The proposed method is expected to achieve significant results since in principle it
has all the advantages of genetic algorithms, such as tolerance for errors, possibilities for
parallel implementation, the efficient exploration of the research space, etc. In addition, the
first phase of the method will reduce the volume of the possible values for the weights so
that in the second phase the search for the global minimum of the network error function
will become more efficient and faster.

The proposed methodology can even be applied to different types of artificial neural
networks such as recurrent neural networks [47,48]. A simple recurrent neural network
can be expressed as single neural cell with a single input, a single output and a state (also
known as the memory of the cell). Given the input of the cell x(t) at step t and the previous
state of the cell h(t− 1) at step t− 1, the updated state of the cell h(t) is estimated as shown
in the equation:

h(t) = f (Whh ∗ h(t− 1) + Wxh ∗ x(t) + bh) (4)

y(t) = σ
(

Why*h(t) + by

)
(5)

where the f (x) function is usually the softmax function. The proposed method can be
used here to estimate a promising bounding box for the vector parameters W and b of the
network before any other training method is applied.

The rest of this article is as follows: in Section 2 the proposed method is discussed in
detail, in Section 3 the experimental datasets as well as the results from the application of
the proposed method are provided and finally in Section 4 some conclusions and guidelines
for future enhancements are presented.
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2. Method Description

The proposed method consists of two major steps: in the first step, the construction of
partition rules for the initial value interval for the parameters of the artificial neural network
is made, and in the second step, the artificial neural network is initialized in the optimal
space resulting from the first step and training takes place. The training is performed
through a second genetic algorithm. In the first genetic algorithm, the chromosomes are
sets of partition rules for the initial value interval of the artificial neural network, and in
the second genetic algorithm, the chromosomes are the parameters of the artificial neural
network. It is obvious that this is a time-consuming process and modern parallel techniques
such as the OpenMP [49] library must be used to accelerate it. The first genetic algorithm is
analyzed in Section 2.1 and the second in Section 2.5.

2.1. Locating the Best Rules

Firstly, we introduce the rule set In where:

In = {(l1, r1), (l2, r2), . . . , (ln, rn)} (6)

where li ∈ {0, 1}, ri ∈ {0, 1} and i = 1, . . . , n. The set In defines the set of partition rules
for a function defined as

f : S→ R, S ⊂ Rn (7)

with S:
S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn] (8)

If li = 1 then ai = ai
2 and if ri = 1 then bi = bi

2 . For example, consider the
Rastrigin function:

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2 (9)

Also consider the set I2 = {(1, 0), (0, 1)}. The produced bounding box for the Rastrigin
function is now S′ = [−0.5, 1]× [−1, 0.5].

Subsequently, we introduce the extended set CKn as a set of production rules defined as:

RKn =
{

I(1)n , I(2)n , . . . , I(K)n

}
, (10)

where I(i)n , i = 1, . . . , K, are the rule sets of Equation (6). For example, let K = 2 for the
Rastrigin function and R22 = {{(0, 1), (1, 0)}, {(1, 0), (1, 1)}}. The final bounding box is
considered after applying the sets {(0, 1), (1, 0)} and {(1, 0), (1, 1)} in the original box S.
The computation steps are:

1. Apply {(0, 1), (1, 0)}to S, yielding S′ = [−0.5, 1]× [−1, 0.5].
2. Apply {(1, 0), (1, 1)} to S′, yielding S′′ = [−0.25, 1]× [−0.5, 0.25].

We consider chromosomes in the form of Equation (10) for the first phase of the pro-
posed method. The value n is the total number of parameters for the neural network.
The fitness of every chromosome g is an interval fg =

[
fg,min, fg,max

]
. Hence, in or-

der to compare two different intervals a = [a1, a2] and b = [b1, b2], we incorporate the
following function:

L∗(a, b) =

{
TRUE, a1 < b1, OR (a1 = b1 AND a2 < b2)

FALSE, OTHERWISE
(11)

Hence, the steps of the genetic algorithm of the first phase are the following:
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2.1.1. Initialization Step

1. Set K as the number of rules.
2. Set S = [−D, D]n as the initial bounding box for the parameters of the neural network.

D is considered as a positive number with D > 1.
3. Set NC as the total number of chromosomes.
4. Set NS as the number of samples in the fitness evaluation.
5. Set Ps as the selection rate, where Ps ≤ 1.
6. Set Pm as the mutation rate, where Pm ≤ 1.
7. Set t = 0 as the current generation number.
8. Set Nt as the maximum number of generations allowed.
9. Initialize randomly the chromosomes Ci, i = 1, . . . , NC, as sets of Equation (10).

2.1.2. Termination Check Step

1. Set t = t + 1.
2. If t ≥ Nt, terminate.

2.1.3. Genetic Operations Step

1. For every chromosome Ci, i = 1, . . . , NC, calculate the corresponding fitness value fi
using the algorithm in Section 2.2.

2. Apply the selection operator. Initially, the chromosomes are sorted according to their
fitness values. The sorting utilizes the function L∗(a, b) of Equation (11) to compare
fitness values. The best (1− Ps) × Nc are copied to the next generation while the
rest of them are substituted by offspring created through the crossover procedure.
The mating parents for the crossover procedure are selected using the well-known
technique of tournament selection.

3. Apply the crossover operator: For every pair of selected parents (z, w), two children
(cz, cw) are produced using the uniform crossover procedure described in Section 2.3.

4. Apply the mutation operator using the algorithm in Section 2.4.
5. Goto Termination Check Step.

2.2. Fitness Evaluation for the Rule Genetic Algorithm

The fitness value for each chromosome g is considered as an interval f =
[

fmin, fmax
]
,

where fmin is an estimation of the lower value obtained using the rules of the chromosome
g and fmax is an estimation of the maximum value. In order to calculate the fitness of
every set of rules C, the following steps are performed:

1. Set fmin = ∞.
2. Set fmax = −∞.
3. Apply the rule set g to the original bounding box S. The outcome of this application

is the new bounding box Sg.
4. For i = 1, . . . , NS do

(a) Produce a random sample w ∈ Sg.
(b) Calculate the training error Eg = E

(
N
(−→x ,−→w

))
using Equation (1).

(c) If Eg ≤ fmin then fmin = Eg.
(d) If Eg ≥ fmax then fmax = Eg.

5. EndFor
6. Return the interval f =

[
fmin, fmax

]
as the fitness of chromosome g.

2.3. Crossover for the Rule Genetic Algorithm

The crossover for the genetic algorithm of the first phase is performed using uniform
crossover. For every couple (z, w) of selected parents, two children (cz, cw) are produced
through the following procedure:
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1. For i = 1 . . . K do

(a) Let z(i) =
{

l(i)z , r(i)z

}
be the i-th item of the chromosome z.

(b) Let w(i) =
{

l(i)w , r(i)w

}
be the i-th item of the chromosome w.

(c) Produce a random number r ≤ 1.
(d) If r ≤ 0.5 then

i. Set cz(i) =
{

l(i)z , r(i)w

}
.

ii. Set cw(i) =
{

l(i)w , r(i)z

}
.

(e) Else

i. Set cz(i) =
{

l(i)w , r(i)z

}
.

ii. Set cw(i) =
{

l(i)z , r(i)w

}
.

(f) Endif

2. EndFor

2.4. Mutation for the Rule Genetic Algorithm

The steps for the mutation procedure for the genetic algorithm of the first phase are
the following:

1. For i = 1, . . . , NC do

(a) Let Ci =
{

C(1)
i , C(2)

i , . . . , C(K)
i

}
be the i-th chromosome of the population.

(b) For j = 1, . . . , K do

i. Let C(j)
i =

{
l(j)
i , r(j)

i

}
.

ii. Take r ≤1 a random number.

iii. If r ≤ Pm then alter randomly with probability 50% the l(j)
i or the r(j)

i part

of C(j)
i .

(c) EndFor

2. EndFor

2.5. Second Phase

In the second phase, the best chromosome gb defined as

gb =
{{

lb,1, rb,1
}

,
{

lb,2, rb,2
}

, . . . ,
{

lb,K, rb,K
}}

(12)

is used to transform the original bounding box S = [−F, F](n) into a new box Sb. The new
hyperbox is defined as

Sb =
[
ag,1, bg,1

]
×
[
ag,2, bg,2

]
× . . .×

[
ag,n, bg,n

]
(13)

This hyperbox will be used to bound the parameters of the neural network. The
parameters of the network are trained using a genetic algorithm with the following steps:

2.5.1. Initialization Step

1. Set NC as the total number of chromosomes.
2. Set Ps as the selection rate, where Ps ≤ 1.
3. Set Pm as the mutation rate, where Pm ≤ 1.
4. Set t = 0 as the current generation number.
5. Set Nt as the maximum number of generations allowed.
6. Initialize randomly the chromosomes Ci, i = 1, . . . , NC, inside the bounding box Sb.
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2.5.2. Termination Check Step

1. Set t = t + 1.
2. If t ≥ Nt goto Local Search Step.

2.5.3. Genetic Operations Step

1. Calculate the fitness value of every chromosome.

(a) For i = 1 . . . NC Do

i. Set fi = E
(

N
(−→x , Ci

))
using Equation (1).

(b) EndFor

2. Apply the crossover operator. In this phase, the best (1− Ps) × Nc chromosomes
are transferred intact to the next generation. The rest of the chromosomes are
substituted by offspring created through crossover. The selection of two parents
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) for crossover is performed using tourna-
ment selection. Having selected the parents, the offspring x̃ and ỹ are formed using
the following:

x̃i = rixi + (1− ri)yi

ỹi = riyi + (1− ri)xi (14)

where ri are random numbers in [−0.5, 1.5] [43].
3. Apply the mutation operator. The mutation scheme is the same as in the work of

Kaelo and Ali [50]:

(a) For i = 1 . . . NC do

i. For j = 1 . . . n do

A. Let r ∈ [0, 1] be a random number.
B. If r ≤ Pm alter the element Cij using the following:

Cij =

{
Cij + ∆

(
t, bg,i − Cij

)
t = 0

Cij − ∆
(
t, Cij − ag,i

)
t = 1

(15)

where t is a random number that takes either the value 0 or 1 and ∆(t, y)
is calculated as:

∆(t, y) = y
(

1− r
(

1− t
Nt

)
z
)

(16)

where r ∈ [0, 1] is a random number and z is a user-defined parameter.

ii. EndFor

(b) EndFor

4. Goto Termination check step.

2.5.4. Local Search Step

1. Set C∗ as the best chromosome of the population.
2. Apply a local search procedure C∗ = L(C∗). The local search procedure used here is

a BFGS method of Powell [51].

3. Experiments

The proposed method was evaluated on a series of classification and regression
problems from the relevant literature. The classification problems used for the experiments
were found in most cases in two internet databases:

1. UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on
23 May 2022.)

2. Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on 23 May 2022) [52].

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
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The regression datasets were in most cases available from the Statlib URL http://lib.
stat.cmu.edu/datasets/ (accessed on 11 August 2022). The proposed method was compared
against a neural network trained by a genetic algorithm and the results are reported.

3.1. Experimental Datasets

The following classification datasets were used:

1. Appendicitis, a medical dataset, proposed in [53].
2. Australian dataset [54], which is related to credit card applications.
3. Balance dataset [55], which is used to predict psychological states.
4. Cleveland dataset, a dataset used to detect heart disease used in various papers [56,57].
5. Bands dataset, a printing problem used to identify cylinder bands.
6. Dermatology dataset [58], which is used for the differential diagnosis of erythemato-

squamous diseases.
7. Hayes Roth dataset. This dataset [59] contains 5 numeric-valued attributes and 132 patterns.
8. Heart dataset [60], used to detect heart disease.
9. HouseVotes dataset [61], which is about votes for U.S. House of Representatives Congressmen.
10. Ionosphere dataset. The ionosphere dataset contains data from the Johns Hopkins

Ionosphere database and it has been studied in several papers [62,63].
11. Liverdisorder dataset [64], used for detecting liver disorders in people using blood analysis.
12. Mammographic dataset [65]. This dataset be used to identify the severity (benign or

malignant) of a mammographic mass lesion from BI-RADS attributes and the patient’s
age. It contains 830 patterns of 5 features each.

13. PageBlocks dataset [66], used to detect the page layout of a document.
14. Parkinsons dataset. This dataset is composed of a range of biomedical voice measure-

ments from 31 people, 23 with Parkinson’s disease (PD) [67].
15. Pima dataset [68], used to detect the presence of diabetes.
16. Popfailures dataset [69], which is related to climate model simulation crashes of

simulation crashes.
17. Regions2 dataset. It is created from liver biopsy images of patients with hepatitis

C [70]. From each region in the acquired images, 18 shape-based and color-based
features were extracted, while it was also annotated by medical experts. The resulting
dataset includes 600 samples belonging to 6 classes.

18. Saheart dataset [71], used to detect heart disease.
19. Segment dataset [72]. This database contains patterns from a database of 7 outdoor

images (classes).
20. Wdbc dataset [73], which contains data for breast tumors.
21. Wine dataset, used to detect through chemical analysis the origin of wines and has

been used in various research papers [74,75].
22. Eeg datasets. As a real-world example, consider an EEG dataset described in [9]

is used here. The dataset consists of five sets (denoted as Z, O, N, F and S) each
containing 100 single-channel EEG segments each having 23.6 sec duration. With
different combinations of these sets, the produced datasets are Z_F_S, ZO_NF_S and
ZONF_S.

23. ZOO dataset [76], where the task is to classify animals in seven predefined classes.

In addition, the following regression datasets were used:

1. ABALONE dataset [77]. This dataset can be used to obtain a model to predict the age
of abalone from physical measurements.

2. AIRFOIL dataset, which is used by NASA for a series of aerodynamic and acoustic
tests [78].

3. BASEBALL dataset, a dataset to predict the salary of baseball players.
4. BK dataset. This dataset comes from smoothing methods in statistics [79] and is used

to estimate the points scored per minute in a basketball game.
5. BL dataset: This dataset can be downloaded from StatLib. It contains data from an

experiment on the effects of machine adjustments on the time to count bolts.

http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
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6. CONCRETE dataset. This dataset is taken from civil engineering [80].
7. DEE dataset, used to predict the daily average price of electricity energy in Spain.
8. DIABETES dataset, a medical dataset.
9. HOUSING dataset. This dataset was taken from the StatLib library which is main-

tained at Carnegie Mellon University and it is described in [81].
10. FA dataset, which contains percentage of body fat and ten body circumference mea-

surements. The goal is to fit body fat to the other measurements.
11. MB dataset. This dataset is available from smoothing methods in statistics [79] and it

includes 61 patterns.
12. MORTGAGE dataset, which contains the economic data information of the U.S.
13. PY dataset (pyrimidines problem). The source of this dataset is the URL https://www.

dcc.fc.up.pt/~ltorgo/Regression/DataSets.html (accessed on 23 May 2022) and it is a
problem of 27 attributes and 74 patterns. The task consists of learning quantitative
structure activity relationships (QSARs) and is provided by [82].

14. QUAKE dataset. The objective here is to approximate the strength of an earthquake.
15. TREASURY dataset, which contains economic data information of the U.S. from 1

April 1980 to 2 April 2000 on a weekly basis.
16. WANKARA dataset, which contains weather information.

3.2. Experimental Results

The method was compared against three other methods:

1. A genetic algorithm with the same parameters that are shown in Table 1. In addition,
after the termination of the genetic algorithm, the local search procedure of BFGS was
applied to the best chromosome of the population, in order to enhance the quality
of the solution. The column GENETIC in the experimental tables denotes the results
from the application of this method.

2. The Adam stochastic optimization method [83] as implemented in OptimLib, freely
available from https://github.com/kthohr/optim (accessed on 23 May 2022). The
results for this method are listed in the column ADAM in the relevant tables.

3. The RPROP method [21] as implemented in the FCNN software package [84]. The
results for this method are listed in the column RPROP in the relevant tables.

4. The NEAT method (neuroevolution of augmenting topologies) [85] as implemented
in the EvolutionNet package which is freely available from https://github.com/
BiagioFesta/EvolutionNet (accessed on 23 May 2022). The maximum number of
generations was the same as in the case of the genetic algorithm.

All the experiments were conducted 30 times with different seeds for the random
number generator each time and averages were taken. To perform the experiments, the soft-
ware IntervalGenetic is freely available from https://github.com/itsoulos/IntervalGenetic
(accessed on 23 May 2022) was utilized. The experimental results for the classification
datasets are shown in Table 2 and the results for the regression datasets are outlined in
Table 3. For the classification problems, the average classification error on the test set
is shown, and for regression datasets, the average mean squared error on the test set is
displayed. In all cases, 10-fold cross validation was used and the number of hidden nodes
(parameter H) was set to 10. The column DATASET stands for the name of the dataset
incorporated, the column D = 50 represents the application of the proposed method with
D = 50 as the initial value for the interval of weights, the column D = 100 stands for the
results of the proposed method with D = 100 and finally the column D = 200 represents
the results of the proposed method with D = 200. In both tables, an additional row was
added at the end showing the average classification or regression error for all datasets and
it is denoted by the name AVERAGE. All the experiments were conducted on an AMD
Ryzen 5950X equipped with 128 GB of RAM. The operating system used was OpenSUSE
Linux and all the programs were compiled using the GNU C++ compiler.

As can be seen from the experimental results, the proposed method is significantly
superior to the other methods, especially in the case of regression data. The RPROP training

https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://github.com/kthohr/optim
https://github.com/BiagioFesta/EvolutionNet
https://github.com/BiagioFesta/EvolutionNet
https://github.com/itsoulos/IntervalGenetic
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method seems to overcome ADAM in most cases of classification datasets and the simple
genetic method is better than ADAM and RPROP for classification datasets but not for
regression datasets. In addition, the change in the parameter D does not seem to have a
significant effect on the performance of the algorithm and the proposed algorithm achieves
high performance even for small values of this parameter.

In addition, the average execution times for all the problems of this publication were
compared between the proposed method and the methods ADAM, RPROP, GENETIC and
NEAT mentioned above. The average execution times are presented graphically in Figure
1. In order to speed up the proposed method, the genetic algorithm used was parallelized
using the open source library OpenMP [49]. The column THREAD1 stands for the average
time execution of the proposed method with one thread, the column THREADS 2 represents
the average execution time of the proposed method using two threads in the OpenMP im-
plementation, the column THREADS 4 denotes the average execution time of the proposed
method for four threads and finally the column THREADS 8 denotes the average execution
time for eight threads for the OpenMP implementation. The proposed method has slow ex-
ecution times when performed on one thread, but as the number of threads used increases,
the execution time decreases dramatically. This is very important, because it means that
it could be used in large problems if the computer in use has enough execution threads.
Obviously, all the methods of training artificial neural networks could be parallelized in
one way or another. The parallelization of the proposed method was performed since it is
by nature an extremely slow method, since it requires the use of two genetic algorithms in
series. By using parallel techniques, this problem is alleviated; however, the computational
cost remains high. However, this is the only substantial price for using this technique. In
addition, a time comparison was made for the PageBlocks dataset between the proposed
method and a parallel implementation of the Adam algorithm named DADAM for the
number of threads ranging from 1 to 8. The time comparison is graphically illustrated in
Figure 2.

To make the dynamics of the proposed method clearer, another series of experiments
was performed. In these, the maximum number of generations (parameter Nt) received
three values: 20, 40 and 100. For each value, all experiments for the classification and
regression datasets were performed. The results for the classification datasets are listed
in Table 4 and the results for the regression datasets are shown in Table 5. As expected,
the proposed method improves its performance as the maximum number of generations
increases, but even for a small number of generations it has a satisfactory performance.

In addition, to make a better and fairer comparison of the results, another set of
experiments was performed with the genetic algorithm, in which the maximum number
of generations was varied from 100 to 800, and the results are presented in Table 6 for the
classification datasets and in Table 7 for the regression datasets. Observing these results,
we can say that after 200 generations there is no significant difference in the efficiency of
the genetic algorithm.

Table 1. Experimental parameters.

PARAMETER VALUE

K 20
H 10

NC 200
NS 50
Nt 200
Ps 0.10
Pm 0.01
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Table 2. Experiments for classification datasets.

DATASET GENETIC ADAM RPROP NEAT D = 50 D = 100 D = 200

Appendicitis 18.10% 16.50% 16.30% 17.20% 15.00% 14.00% 16.07%
Australian 32.21% 35.65% 36.12% 31.98% 24.85% 30.20% 28.52%

Balance 8.97% 7.87% 8.81% 23.14% 7.42% 7.42% 7.67%
Bands 35.75% 36.25% 36.32% 34.30% 32.00% 32.25% 33.06%

Cleveland 51.60% 67.55% 61.41% 53.44% 41.64% 44.66% 44.39%
Dermatology 30.58% 26.14% 15.12% 32.43% 15.49% 11.00% 10.80%
Hayes Roth 56.18% 59.70% 37.46% 50.15% 28.72% 28.84% 32.05%

Heart 28.34% 38.53% 30.51% 39.27% 15.58% 17.07% 16.22%
HouseVotes 6.62% 7.48% 6.04% 10.89% 3.92% 3.78% 3.26%
Ionosphere 15.14% 16.64% 13.65% 19.67% 12.25% 9.71% 7.12%

Liverdisorder 31.11% 41.53% 40.26% 30.67% 30.90% 29.54% 30.70%
Lymography 23.26% 29.26% 24.67% 33.70% 18.98% 17.52% 17.67%
Mammographic 19.88% 46.25% 18.46% 22.85% 17.01% 17.60% 15.97%
PageBlocks 8.06% 7.93% 7.82% 10.22% 7.73% 7.01% 6.71%
Parkinsons 18.05% 24.06% 22.28% 18.56% 14.81% 13.86% 12.53%

Pima 32.19% 34.85% 34.27% 34.51% 23.51% 25.31% 27.49%
Popfailures 5.94% 5.18% 4.81% 7.05% 6.13% 5.93% 5.30%

Regions2 29.39% 29.85% 27.53% 33.23% 24.01% 23.14% 23.62%
Saheart 34.86% 34.04% 34.90% 34.51% 28.94% 29.04% 29.93%

Segment 57.72% 49.75% 52.14% 66.72% 47.38% 49.49% 40.61%
Wdbc 8.56% 35.35% 21.57% 12.88% 6.23% 5.28% 5.49%
Wine 19.20% 29.40% 30.73% 25.43% 5.51% 6.55% 6.22%
Z_F_S 10.73% 47.81% 29.28% 38.41% 4.70% 5.61% 6.01%

ZO_NF_S 8.41% 47.43% 6.43% 43.75% 5.39% 4.67% 5.81%
ZONF_S 2.60% 11.99% 27.27% 5.44% 1.85% 2.07% 2.24%

ZOO 16.67% 14.13% 15.47% 20.27% 14.83% 11.40% 8.50%

AVERAGE 23.47% 30.81% 25.37% 28.87% 17.49% 17.42% 17.08%

Table 3. Experiments for regression datasets.

DATASET GENETIC ADAM RPROP NEAT D = 50 D = 100 D = 200

ABALONE 7.17 4.30 4.55 9.88 4.22 4.18 3.89
AIRFOIL 0.003 0.005 0.002 0.067 0.003 0.003 0.003

BASEBALL 103.60 77.90 92.05 100.39 49.47 51.07 53.57
BK 0.027 0.03 1.599 0.15 0.017 0.017 0.019
BL 5.74 0.28 4.38 0.05 0.0019 0.0016 0.0016

CONCRETE 0.0099 0.078 0.0086 0.081 0.0053 0.0044 0.0042
DEE 1.013 0.63 0.608 1.512 0.187 0.205 0.203

DIABETES 19.86 3.03 1.11 4.25 0.31 0.31 0.29
HOUSING 43.26 80.20 74.38 56.49 19.28 18.50 17.75

FA 1.95 0.11 0.14 0.19 0.011 0.012 0.012
MB 3.39 0.06 0.055 0.061 0.048 0.047 0.047

MORTGAGE 2.41 9.24 9.19 14.11 0.57 0.70 0.53
PY 105.41 0.09 0.039 0.075 0.016 0.014 0.014

QUAKE 0.040 0.06 0.041 0.298 0.036 0.036 0.036
TREASURY 2.929 11.16 10.88 15.52 0.473 0.677 0.622
WANKARA 0.012 0.02 0.0003 0.005 0.0003 0.0002 0.0002

AVERAGE 18.55 11.70 12.44 12.70 4.67 4.74 4.81
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Figure 1. Execution time comparison between the proposed algorithm and the other mentioned methods.

Table 4. Experiments with Nt for the classification datasets.

DATASET Nt = 20 Nt = 40 Nt = 100

Appendicitis 15.23% 15.37% 15.77%
Australian 32.85% 33.15% 30.18%

Balance 11.92% 7.61% 8.71%
Bands 35.61% 33.86% 32.96%

Cleveland 43.91% 43.35% 41.29%
Dermatology 28.41% 21.28% 14.33%
Hayes Roth 50.33% 38.56% 36.80%

Heart 20.61% 21.16% 19.99%
HouseVotes 4.07% 4.31% 3.58%
Ionosphere 12.14% 11.19% 9.23%

Liverdisorder 31.47% 33.01% 31.24%
Lymography 22.24% 22.57% 20.74%

Mammographic 18.66% 17.37% 15.71%
PageBlocks 7.95% 7.68% 6.81%
Parkinsons 17.28% 17.44% 13.86%

Pima 33.19% 31.94% 30.71%
Popfailures 6.65% 5.81% 5.24%

Regions2 26.33% 26.03% 22.25%
Saheart 36.11% 32.96% 34.45%

Segment 66.37% 58.33% 49.85%
Wdbc 7.38% 6.95% 7.68%
Wine 13.49% 11.55% 8.39%
Z_F_S 7.77% 7.59% 8.38%

ZO_NF_S 8.21% 7.52% 7.28%
ZONF_S 2.26% 1.87% 1.99%

ZOO 14.70% 12.30% 13.50%

AVERAGE 22.12% 20.41% 18.88%
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Table 5. Experiments with different values of Nt parameter for the regression datasets.

DATASET Nt = 20 Nt = 40 Nt = 100

ABALONE 4.88 4.77 4.63
AIRFOIL 0.004 0.004 0.004

BASEBALL 69.83 65.37 69.72
BK 0.02 0.02 0.02
BL 0.006 0.005 0.007

CONCRETE 0.008 0.006 0.005
DEE 0.224 0.225 0.199

DIABETES 0.357 0.343 0.321
HOUSING 26.43 25.88 20.65

FA 0.019 0.019 0.017
MB 0.05 0.05 0.05

MORTGAGE 2.11 1.76 1.44
PY 0.02 0.018 0.022

QUAKE 0.042 0.037 0.037
TREASURY 2.37 2.12 1.48
WANKARA 0.0004 0.0003 0.0003

AVERAGE 6.65 6.29 6.16

Figure 2. Time comparison between the proposed method and a parallel implementation of Adam
algorithm. The comparison is made for the dataset PageBlocks.
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Table 6. Experiments with the genetic method and various values of Nt for the classification datasets.

DATASET Nt = 100 Nt = 200 Nt = 400 Nt = 800

Appendicitis 17.70% 18.10% 18.87% 18.97%
Australian 33.00% 33.21% 33.16% 33.03%

Balance 9.09% 8.97% 9.43% 9.36%
Bands 34.87% 35.75% 33.92% 33.88%

Cleveland 54.91% 51.60% 57.25% 55.83%
Dermatology 33.59% 30.58% 24.83% 20.07%
Hayes Roth 58.44% 56.18% 57.21% 55.51%

Heart 30.20% 28.34% 29.65% 29.43%
HouseVotes 7.45% 6.62% 8.22% 8.02%
Ionosphere 14.69% 15.14% 10.02% 9.84%

Liverdisorder 33.30% 31.11% 33.24% 33.19%
Lymography 23.48% 23.26% 23.95% 25.45%

Mammographic 20.83% 19.88% 21.19% 21.13%
PageBlocks 8.28% 8.06% 8.04% 7.42%
Parkinsons 19.55% 18.05% 18.81% 19.14%

Pima 34.64% 32.19% 33.54% 33.62%
Popfailures 5.37% 5.94% 5.30% 5.38%

Regions2 29.11% 29.39% 28.54% 28.47%
Saheart 35.25% 34.86% 34.60% 34.93%

Segment 56.07% 57.72% 52.43% 51.00%
Wdbc 9.08% 8.56% 9.02% 9.19%
Wine 30.43% 19.20% 25.35% 21.55%
Z_F_S 18.23% 10.73% 11.94% 11.49%

ZO_NF_S 16.61% 8.41% 10.85% 10.09%
ZONF_S 2.70% 2.60% 2.75% 2.10%

ZOO 16.37% 16.67% 13.47% 13.33%

AVERAGE 25.12% 23.47% 23.68% 23.13%

Table 7. Experiments with the genetic method and various values of Nt for the regression datasets.

DATASET Nt = 100 Nt = 200 Nt = 400 Nt = 800

ABALONE 6.88 7.17 6.28 6.49
AIRFOIL 0.008 0.003 0.04 0.01

BASEBALL 106.47 103.60 107.04 107.30
BK 0.65 0.027 0.038 0.097
BL 9.80 5.74 1.38 2.85

CONCRETE 0.017 0.01 0.29 0.42
DEE 0.36 1.01 0.48 0.25

DIABETES 38.04 19.86 13.70 13.50
HOUSING 38.44 43.26 36.51 35.81

FA 1.55 1.95 0.74 2.06
MB 0.61 3.39 1.13 0.62

MORTGAGE 2.12 2.41 1.94 1.84
PY 151.49 105.41 96.79 90.59

QUAKE 0.22 0.04 0.05 0.04
TREASURY 2.72 2.93 2.28 2.19
WANKARA 0.065 0.012 0.001 0.003

AVERAGE 22.47 18.55 16.74 16.51

4. Conclusions

An innovative method of training artificial neural networks was presented in this
paper. The method consists of two important phases: in the first phase, through a hybrid
genetic algorithm, an attempt is made to identify the optimal interval of initialization
and the training of the network parameters, and in the second phase, the training of the
parameters in the optimal intervals of the first phase is performed using a genetic algorithm.
The optimization of the optimal interval in the first phase is conducted by using partition
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rules for the initial interval which are applied in order. This technique aims to reduce the
parameter search space and then significantly speed up network configuration training.

The proposed method was tested on a series of classification and regression datasets
from the relevant literature and the experimental results seem to be very promising com-
pared to the genetic algorithm procedure. However, since the method consists of two
computational phases, it is much slower than other training techniques for artificial neural
networks, and therefore, the use of parallel processing techniques is considered necessary.

Future improvements to the proposed method may include the incorporation of
additional global optimization techniques instead of genetic algorithms, the usage of
more advanced stopping rules and the application of the method to other types of neural
networks such as radial basis function networks (RBF).
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