
Citation: Tsoulos, I.G.; Tzallas, A.;

Karvounis, E. A Rule-Based Method

to Locate the Bounds of Neural

Networks. Knowledge 2022, 2,

412–428. https://doi.org/10.3390/

knowledge2030024

Academic Editor: José Manuel

Ferreira Machado

Received: 24 May 2022

Accepted: 9 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Rule-Based Method to Locate the Bounds of Neural Networks
Ioannis G. Tsoulos *, Alexandros Tzallas and Evangelos Karvounis

Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
* Correspondence: itsoulos@uoi.gr

Abstract: An advanced method of training artificial neural networks is presented here which aims
to identify the optimal interval for the initialization and training of artificial neural networks. The
location of the optimal interval is performed using rules evolving from a genetic algorithm. The
method has two phases: in the first phase, an attempt is made to locate the optimal interval, and
in the second phase, the artificial neural network is initialized and trained in this interval using a
method of global optimization, such as a genetic algorithm. The method has been tested on a range
of categorization and function learning data and the experimental results are extremely encouraging.

Keywords: neural networks; stopping rules; genetic algorithms

1. Introduction

Artificial neural networks (ANNs) are programming tools [1,2] based on a series
of parameters that are commonly called weights or processing units. They have been
used in a variety of problems from different scientific areas, such as physics [3–5], solv-
ing differential equations [6,7], agriculture [8,9], chemistry [10–12], economics [13–15],
medicine [16,17], etc. A common way to express a neural network is a function N(−→x ,−→w ),
with−→x the input vector (commonly called the pattern) and−→w the weight vector. A method
that trains a neural network should be used to estimate the vector −→w for a certain problem.
The training procedure can also be formulated as an optimization problem, where the
target is to minimize the so-called error function:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

In Equation (1), the set
(−→xi , yi

)
, i = 1, . . . , M, is the dataset used to train the neural

network, with yi being the actual output for the point −→xi . The neural network N(−→x ,−→w )
can be modeled as a summation of processing units, as proposed in [18]:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(2)

with H the number of processing units in the neural network and d the dimension of vector
−→x . The function σ(x) is the sigmoid function defined as:

σ(x) =
1

1 + exp(−x)
(3)

From Equation (2), one can obtain that the dimension of the weight vector w is
computed as: n = (d + 2)H. The function of Equation (1) has been minimized with a
variety of optimization methods during the past years such as: the back propagation
method [19,20], the RPROP method [21–23], quasi-Newton methods [24,25], simulated
annealing [26,27], genetic algorithms [28,29], particle swarm optimization [30,31] etc. In

Knowledge 2022, 2, 412–428. https://doi.org/10.3390/knowledge2030024 https://www.mdpi.com/journal/knowledge

https://doi.org/10.3390/knowledge2030024
https://doi.org/10.3390/knowledge2030024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/knowledge
https://www.mdpi.com
https://orcid.org/0000-0001-9043-1290
https://orcid.org/0000-0002-6243-3755
https://doi.org/10.3390/knowledge2030024
https://www.mdpi.com/journal/knowledge
https://www.mdpi.com/article/10.3390/knowledge2030024?type=check_update&version=3


Knowledge 2022, 2 413

addition, various researchers have worked on the initialization of the weights of neural
networks, such as initialization using decision trees [32], an initialization method based
on Cauchy’s inequality [33], a method based on discriminant learning [34], etc. Another
topic that has attracted the interest of many researchers is weight decaying, which is
a regularization method that adapts the weights of the network aiming to avoid the
overfitting problem. Several papers have appeared in this area with methods such as those
with positive correlation [35], the SarProp algorithm [36], the incorporation of pruning
techniques [37], etc. In addition, more advanced and more recent techniques from the
area of computational intelligence have been proposed for neural network training such
as the differential evolution method [38,39], the construction of neural networks with ant
colony optimization [40], the construction of neural networks using grammatical evolution
to solve differential equations [41], etc. Furthermore, due to development of GPU units, a
lot of works have been published that take advantage of these processing units [42,43].

The present work proposes an innovative interval generation technique for the ini-
tialization and training of artificial neural network parameters. This new method has its
roots in interval methods [44–46]. In the current work, using arithmetic intervals, a set of
rules for dividing the initial interval for the parameters of an artificial neural network is
constructed. The construction is carried out using a hybrid genetic algorithm, in which
chromosomes are the set of division rules. After the termination of the genetic algorithm,
the artificial neural network is initialized in the interval resulting from the application of
the optimal partitioning rules and then trained using a genetic algorithm.

The method used has two objectives: the first objective is to detect a small interval of
initialization for the parameters of the artificial neural network and the second objective
is to accelerate the training of the network. In the first target, using information from
the training data, the algorithm will make an attempt to identify the interval that will
ultimately give better results. In the second objective, once a small-value interval has been
detected, a global optimization method can be used more efficiently to detect the lowest
value of the network error.

The proposed method is expected to achieve significant results since in principle it
has all the advantages of genetic algorithms, such as tolerance for errors, possibilities for
parallel implementation, the efficient exploration of the research space, etc. In addition, the
first phase of the method will reduce the volume of the possible values for the weights so
that in the second phase the search for the global minimum of the network error function
will become more efficient and faster.

The proposed methodology can even be applied to different types of artificial neural
networks such as recurrent neural networks [47,48]. A simple recurrent neural network
can be expressed as single neural cell with a single input, a single output and a state (also
known as the memory of the cell). Given the input of the cell x(t) at step t and the previous
state of the cell h(t− 1) at step t− 1, the updated state of the cell h(t) is estimated as shown
in the equation:

h(t) = f (Whh ∗ h(t− 1) + Wxh ∗ x(t) + bh) (4)

y(t) = σ
(

Why*h(t) + by

)
(5)

where the f (x) function is usually the softmax function. The proposed method can be
used here to estimate a promising bounding box for the vector parameters W and b of the
network before any other training method is applied.

The rest of this article is as follows: in Section 2 the proposed method is discussed in
detail, in Section 3 the experimental datasets as well as the results from the application of
the proposed method are provided and finally in Section 4 some conclusions and guidelines
for future enhancements are presented.



Knowledge 2022, 2 414

2. Method Description

The proposed method consists of two major steps: in the first step, the construction of
partition rules for the initial value interval for the parameters of the artificial neural network
is made, and in the second step, the artificial neural network is initialized in the optimal
space resulting from the first step and training takes place. The training is performed
through a second genetic algorithm. In the first genetic algorithm, the chromosomes are
sets of partition rules for the initial value interval of the artificial neural network, and in
the second genetic algorithm, the chromosomes are the parameters of the artificial neural
network. It is obvious that this is a time-consuming process and modern parallel techniques
such as the OpenMP [49] library must be used to accelerate it. The first genetic algorithm is
analyzed in Section 2.1 and the second in Section 2.5.

2.1. Locating the Best Rules

Firstly, we introduce the rule set In where:

In = {(l1, r1), (l2, r2), . . . , (ln, rn)} (6)

where li ∈ {0, 1}, ri ∈ {0, 1} and i = 1, . . . , n. The set In defines the set of partition rules
for a function defined as

f : S→ R, S ⊂ Rn (7)

with S:
S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn] (8)

If li = 1 then ai = ai
2 and if ri = 1 then bi = bi

2 . For example, consider the
Rastrigin function:

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2 (9)

Also consider the set I2 = {(1, 0), (0, 1)}. The produced bounding box for the Rastrigin
function is now S′ = [−0.5, 1]× [−1, 0.5].

Subsequently, we introduce the extended set CKn as a set of production rules defined as:

RKn =
{

I(1)n , I(2)n , . . . , I(K)n

}
, (10)

where I(i)n , i = 1, . . . , K, are the rule sets of Equation (6). For example, let K = 2 for the
Rastrigin function and R22 = {{(0, 1), (1, 0)}, {(1, 0), (1, 1)}}. The final bounding box is
considered after applying the sets {(0, 1), (1, 0)} and {(1, 0), (1, 1)} in the original box S.
The computation steps are:

1. Apply {(0, 1), (1, 0)}to S, yielding S′ = [−0.5, 1]× [−1, 0.5].
2. Apply {(1, 0), (1, 1)} to S′, yielding S′′ = [−0.25, 1]× [−0.5, 0.25].

We consider chromosomes in the form of Equation (10) for the first phase of the pro-
posed method. The value n is the total number of parameters for the neural network.
The fitness of every chromosome g is an interval fg =

[
fg,min, fg,max

]
. Hence, in or-

der to compare two different intervals a = [a1, a2] and b = [b1, b2], we incorporate the
following function:

L∗(a, b) =

{
TRUE, a1 < b1, OR (a1 = b1 AND a2 < b2)

FALSE, OTHERWISE
(11)

Hence, the steps of the genetic algorithm of the first phase are the following:



Knowledge 2022, 2 415

2.1.1. Initialization Step

1. Set K as the number of rules.
2. Set S = [−D, D]n as the initial bounding box for the parameters of the neural network.

D is considered as a positive number with D > 1.
3. Set NC as the total number of chromosomes.
4. Set NS as the number of samples in the fitness evaluation.
5. Set Ps as the selection rate, where Ps ≤ 1.
6. Set Pm as the mutation rate, where Pm ≤ 1.
7. Set t = 0 as the current generation number.
8. Set Nt as the maximum number of generations allowed.
9. Initialize randomly the chromosomes Ci, i = 1, . . . , NC, as sets of Equation (10).

2.1.2. Termination Check Step

1. Set t = t + 1.
2. If t ≥ Nt, terminate.

2.1.3. Genetic Operations Step

1. For every chromosome Ci, i = 1, . . . , NC, calculate the corresponding fitness value fi
using the algorithm in Section 2.2.

2. Apply the selection operator. Initially, the chromosomes are sorted according to their
fitness values. The sorting utilizes the function L∗(a, b) of Equation (11) to compare
fitness values. The best (1− Ps) × Nc are copied to the next generation while the
rest of them are substituted by offspring created through the crossover procedure.
The mating parents for the crossover procedure are selected using the well-known
technique of tournament selection.

3. Apply the crossover operator: For every pair of selected parents (z, w), two children
(cz, cw) are produced using the uniform crossover procedure described in Section 2.3.

4. Apply the mutation operator using the algorithm in Section 2.4.
5. Goto Termination Check Step.

2.2. Fitness Evaluation for the Rule Genetic Algorithm

The fitness value for each chromosome g is considered as an interval f =
[

fmin, fmax
]
,

where fmin is an estimation of the lower value obtained using the rules of the chromosome
g and fmax is an estimation of the maximum value. In order to calculate the fitness of
every set of rules C, the following steps are performed:

1. Set fmin = ∞.
2. Set fmax = −∞.
3. Apply the rule set g to the original bounding box S. The outcome of this application

is the new bounding box Sg.
4. For i = 1, . . . , NS do

(a) Produce a random sample w ∈ Sg.
(b) Calculate the training error Eg = E

(
N
(−→x ,−→w

))
using Equation (1).

(c) If Eg ≤ fmin then fmin = Eg.
(d) If Eg ≥ fmax then fmax = Eg.

5. EndFor
6. Return the interval f =

[
fmin, fmax

]
as the fitness of chromosome g.

2.3. Crossover for the Rule Genetic Algorithm

The crossover for the genetic algorithm of the first phase is performed using uniform
crossover. For every couple (z, w) of selected parents, two children (cz, cw) are produced
through the following procedure:



Knowledge 2022, 2 416

1. For i = 1 . . . K do

(a) Let z(i) =
{

l(i)z , r(i)z

}
be the i-th item of the chromosome z.

(b) Let w(i) =
{

l(i)w , r(i)w

}
be the i-th item of the chromosome w.

(c) Produce a random number r ≤ 1.
(d) If r ≤ 0.5 then

i. Set cz(i) =
{

l(i)z , r(i)w

}
.

ii. Set cw(i) =
{

l(i)w , r(i)z

}
.

(e) Else

i. Set cz(i) =
{

l(i)w , r(i)z

}
.

ii. Set cw(i) =
{

l(i)z , r(i)w

}
.

(f) Endif

2. EndFor

2.4. Mutation for the Rule Genetic Algorithm

The steps for the mutation procedure for the genetic algorithm of the first phase are
the following:

1. For i = 1, . . . , NC do

(a) Let Ci =
{

C(1)
i , C(2)

i , . . . , C(K)
i

}
be the i-th chromosome of the population.

(b) For j = 1, . . . , K do

i. Let C(j)
i =

{
l(j)
i , r(j)

i

}
.

ii. Take r ≤1 a random number.

iii. If r ≤ Pm then alter randomly with probability 50% the l(j)
i or the r(j)

i part

of C(j)
i .

(c) EndFor

2. EndFor

2.5. Second Phase

In the second phase, the best chromosome gb defined as

gb =
{{

lb,1, rb,1
}

,
{

lb,2, rb,2
}

, . . . ,
{

lb,K, rb,K
}}

(12)

is used to transform the original bounding box S = [−F, F](n) into a new box Sb. The new
hyperbox is defined as

Sb =
[
ag,1, bg,1

]
×
[
ag,2, bg,2

]
× . . .×

[
ag,n, bg,n

]
(13)

This hyperbox will be used to bound the parameters of the neural network. The
parameters of the network are trained using a genetic algorithm with the following steps:

2.5.1. Initialization Step

1. Set NC as the total number of chromosomes.
2. Set Ps as the selection rate, where Ps ≤ 1.
3. Set Pm as the mutation rate, where Pm ≤ 1.
4. Set t = 0 as the current generation number.
5. Set Nt as the maximum number of generations allowed.
6. Initialize randomly the chromosomes Ci, i = 1, . . . , NC, inside the bounding box Sb.



Knowledge 2022, 2 417

2.5.2. Termination Check Step

1. Set t = t + 1.
2. If t ≥ Nt goto Local Search Step.

2.5.3. Genetic Operations Step

1. Calculate the fitness value of every chromosome.

(a) For i = 1 . . . NC Do

i. Set fi = E
(

N
(−→x , Ci

))
using Equation (1).

(b) EndFor

2. Apply the crossover operator. In this phase, the best (1− Ps) × Nc chromosomes
are transferred intact to the next generation. The rest of the chromosomes are
substituted by offspring created through crossover. The selection of two parents
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) for crossover is performed using tourna-
ment selection. Having selected the parents, the offspring x̃ and ỹ are formed using
the following:

x̃i = rixi + (1− ri)yi

ỹi = riyi + (1− ri)xi (14)

where ri are random numbers in [−0.5, 1.5] [43].
3. Apply the mutation operator. The mutation scheme is the same as in the work of

Kaelo and Ali [50]:

(a) For i = 1 . . . NC do

i. For j = 1 . . . n do

A. Let r ∈ [0, 1] be a random number.
B. If r ≤ Pm alter the element Cij using the following:

Cij =

{
Cij + ∆

(
t, bg,i − Cij

)
t = 0

Cij − ∆
(
t, Cij − ag,i

)
t = 1

(15)

where t is a random number that takes either the value 0 or 1 and ∆(t, y)
is calculated as:

∆(t, y) = y
(

1− r
(

1− t
Nt

)
z
)

(16)

where r ∈ [0, 1] is a random number and z is a user-defined parameter.

ii. EndFor

(b) EndFor

4. Goto Termination check step.

2.5.4. Local Search Step

1. Set C∗ as the best chromosome of the population.
2. Apply a local search procedure C∗ = L(C∗). The local search procedure used here is

a BFGS method of Powell [51].

3. Experiments

The proposed method was evaluated on a series of classification and regression
problems from the relevant literature. The classification problems used for the experiments
were found in most cases in two internet databases:

1. UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on
23 May 2022.)

2. Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on 23 May 2022) [52].

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php


Knowledge 2022, 2 418

The regression datasets were in most cases available from the Statlib URL http://lib.
stat.cmu.edu/datasets/ (accessed on 11 August 2022). The proposed method was compared
against a neural network trained by a genetic algorithm and the results are reported.

3.1. Experimental Datasets

The following classification datasets were used:

1. Appendicitis, a medical dataset, proposed in [53].
2. Australian dataset [54], which is related to credit card applications.
3. Balance dataset [55], which is used to predict psychological states.
4. Cleveland dataset, a dataset used to detect heart disease used in various papers [56,57].
5. Bands dataset, a printing problem used to identify cylinder bands.
6. Dermatology dataset [58], which is used for the differential diagnosis of erythemato-

squamous diseases.
7. Hayes Roth dataset. This dataset [59] contains 5 numeric-valued attributes and 132 patterns.
8. Heart dataset [60], used to detect heart disease.
9. HouseVotes dataset [61], which is about votes for U.S. House of Representatives Congressmen.
10. Ionosphere dataset. The ionosphere dataset contains data from the Johns Hopkins

Ionosphere database and it has been studied in several papers [62,63].
11. Liverdisorder dataset [64], used for detecting liver disorders in people using blood analysis.
12. Mammographic dataset [65]. This dataset be used to identify the severity (benign or

malignant) of a mammographic mass lesion from BI-RADS attributes and the patient’s
age. It contains 830 patterns of 5 features each.

13. PageBlocks dataset [66], used to detect the page layout of a document.
14. Parkinsons dataset. This dataset is composed of a range of biomedical voice measure-

ments from 31 people, 23 with Parkinson’s disease (PD) [67].
15. Pima dataset [68], used to detect the presence of diabetes.
16. Popfailures dataset [69], which is related to climate model simulation crashes of

simulation crashes.
17. Regions2 dataset. It is created from liver biopsy images of patients with hepatitis

C [70]. From each region in the acquired images, 18 shape-based and color-based
features were extracted, while it was also annotated by medical experts. The resulting
dataset includes 600 samples belonging to 6 classes.

18. Saheart dataset [71], used to detect heart disease.
19. Segment dataset [72]. This database contains patterns from a database of 7 outdoor

images (classes).
20. Wdbc dataset [73], which contains data for breast tumors.
21. Wine dataset, used to detect through chemical analysis the origin of wines and has

been used in various research papers [74,75].
22. Eeg datasets. As a real-world example, consider an EEG dataset described in [9]

is used here. The dataset consists of five sets (denoted as Z, O, N, F and S) each
containing 100 single-channel EEG segments each having 23.6 sec duration. With
different combinations of these sets, the produced datasets are Z_F_S, ZO_NF_S and
ZONF_S.

23. ZOO dataset [76], where the task is to classify animals in seven predefined classes.

In addition, the following regression datasets were used:

1. ABALONE dataset [77]. This dataset can be used to obtain a model to predict the age
of abalone from physical measurements.

2. AIRFOIL dataset, which is used by NASA for a series of aerodynamic and acoustic
tests [78].

3. BASEBALL dataset, a dataset to predict the salary of baseball players.
4. BK dataset. This dataset comes from smoothing methods in statistics [79] and is used

to estimate the points scored per minute in a basketball game.
5. BL dataset: This dataset can be downloaded from StatLib. It contains data from an

experiment on the effects of machine adjustments on the time to count bolts.

http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/


Knowledge 2022, 2 419

6. CONCRETE dataset. This dataset is taken from civil engineering [80].
7. DEE dataset, used to predict the daily average price of electricity energy in Spain.
8. DIABETES dataset, a medical dataset.
9. HOUSING dataset. This dataset was taken from the StatLib library which is main-

tained at Carnegie Mellon University and it is described in [81].
10. FA dataset, which contains percentage of body fat and ten body circumference mea-

surements. The goal is to fit body fat to the other measurements.
11. MB dataset. This dataset is available from smoothing methods in statistics [79] and it

includes 61 patterns.
12. MORTGAGE dataset, which contains the economic data information of the U.S.
13. PY dataset (pyrimidines problem). The source of this dataset is the URL https://www.

dcc.fc.up.pt/~ltorgo/Regression/DataSets.html (accessed on 23 May 2022) and it is a
problem of 27 attributes and 74 patterns. The task consists of learning quantitative
structure activity relationships (QSARs) and is provided by [82].

14. QUAKE dataset. The objective here is to approximate the strength of an earthquake.
15. TREASURY dataset, which contains economic data information of the U.S. from 1

April 1980 to 2 April 2000 on a weekly basis.
16. WANKARA dataset, which contains weather information.

3.2. Experimental Results

The method was compared against three other methods:

1. A genetic algorithm with the same parameters that are shown in Table 1. In addition,
after the termination of the genetic algorithm, the local search procedure of BFGS was
applied to the best chromosome of the population, in order to enhance the quality
of the solution. The column GENETIC in the experimental tables denotes the results
from the application of this method.

2. The Adam stochastic optimization method [83] as implemented in OptimLib, freely
available from https://github.com/kthohr/optim (accessed on 23 May 2022). The
results for this method are listed in the column ADAM in the relevant tables.

3. The RPROP method [21] as implemented in the FCNN software package [84]. The
results for this method are listed in the column RPROP in the relevant tables.

4. The NEAT method (neuroevolution of augmenting topologies) [85] as implemented
in the EvolutionNet package which is freely available from https://github.com/
BiagioFesta/EvolutionNet (accessed on 23 May 2022). The maximum number of
generations was the same as in the case of the genetic algorithm.

All the experiments were conducted 30 times with different seeds for the random
number generator each time and averages were taken. To perform the experiments, the soft-
ware IntervalGenetic is freely available from https://github.com/itsoulos/IntervalGenetic
(accessed on 23 May 2022) was utilized. The experimental results for the classification
datasets are shown in Table 2 and the results for the regression datasets are outlined in
Table 3. For the classification problems, the average classification error on the test set
is shown, and for regression datasets, the average mean squared error on the test set is
displayed. In all cases, 10-fold cross validation was used and the number of hidden nodes
(parameter H) was set to 10. The column DATASET stands for the name of the dataset
incorporated, the column D = 50 represents the application of the proposed method with
D = 50 as the initial value for the interval of weights, the column D = 100 stands for the
results of the proposed method with D = 100 and finally the column D = 200 represents
the results of the proposed method with D = 200. In both tables, an additional row was
added at the end showing the average classification or regression error for all datasets and
it is denoted by the name AVERAGE. All the experiments were conducted on an AMD
Ryzen 5950X equipped with 128 GB of RAM. The operating system used was OpenSUSE
Linux and all the programs were compiled using the GNU C++ compiler.

As can be seen from the experimental results, the proposed method is significantly
superior to the other methods, especially in the case of regression data. The RPROP training

https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://github.com/kthohr/optim
https://github.com/BiagioFesta/EvolutionNet
https://github.com/BiagioFesta/EvolutionNet
https://github.com/itsoulos/IntervalGenetic


Knowledge 2022, 2 420

method seems to overcome ADAM in most cases of classification datasets and the simple
genetic method is better than ADAM and RPROP for classification datasets but not for
regression datasets. In addition, the change in the parameter D does not seem to have a
significant effect on the performance of the algorithm and the proposed algorithm achieves
high performance even for small values of this parameter.

In addition, the average execution times for all the problems of this publication were
compared between the proposed method and the methods ADAM, RPROP, GENETIC and
NEAT mentioned above. The average execution times are presented graphically in Figure
1. In order to speed up the proposed method, the genetic algorithm used was parallelized
using the open source library OpenMP [49]. The column THREAD1 stands for the average
time execution of the proposed method with one thread, the column THREADS 2 represents
the average execution time of the proposed method using two threads in the OpenMP im-
plementation, the column THREADS 4 denotes the average execution time of the proposed
method for four threads and finally the column THREADS 8 denotes the average execution
time for eight threads for the OpenMP implementation. The proposed method has slow ex-
ecution times when performed on one thread, but as the number of threads used increases,
the execution time decreases dramatically. This is very important, because it means that
it could be used in large problems if the computer in use has enough execution threads.
Obviously, all the methods of training artificial neural networks could be parallelized in
one way or another. The parallelization of the proposed method was performed since it is
by nature an extremely slow method, since it requires the use of two genetic algorithms in
series. By using parallel techniques, this problem is alleviated; however, the computational
cost remains high. However, this is the only substantial price for using this technique. In
addition, a time comparison was made for the PageBlocks dataset between the proposed
method and a parallel implementation of the Adam algorithm named DADAM for the
number of threads ranging from 1 to 8. The time comparison is graphically illustrated in
Figure 2.

To make the dynamics of the proposed method clearer, another series of experiments
was performed. In these, the maximum number of generations (parameter Nt) received
three values: 20, 40 and 100. For each value, all experiments for the classification and
regression datasets were performed. The results for the classification datasets are listed
in Table 4 and the results for the regression datasets are shown in Table 5. As expected,
the proposed method improves its performance as the maximum number of generations
increases, but even for a small number of generations it has a satisfactory performance.

In addition, to make a better and fairer comparison of the results, another set of
experiments was performed with the genetic algorithm, in which the maximum number
of generations was varied from 100 to 800, and the results are presented in Table 6 for the
classification datasets and in Table 7 for the regression datasets. Observing these results,
we can say that after 200 generations there is no significant difference in the efficiency of
the genetic algorithm.

Table 1. Experimental parameters.

PARAMETER VALUE

K 20
H 10

NC 200
NS 50
Nt 200
Ps 0.10
Pm 0.01



Knowledge 2022, 2 421

Table 2. Experiments for classification datasets.

DATASET GENETIC ADAM RPROP NEAT D = 50 D = 100 D = 200

Appendicitis 18.10% 16.50% 16.30% 17.20% 15.00% 14.00% 16.07%
Australian 32.21% 35.65% 36.12% 31.98% 24.85% 30.20% 28.52%

Balance 8.97% 7.87% 8.81% 23.14% 7.42% 7.42% 7.67%
Bands 35.75% 36.25% 36.32% 34.30% 32.00% 32.25% 33.06%

Cleveland 51.60% 67.55% 61.41% 53.44% 41.64% 44.66% 44.39%
Dermatology 30.58% 26.14% 15.12% 32.43% 15.49% 11.00% 10.80%
Hayes Roth 56.18% 59.70% 37.46% 50.15% 28.72% 28.84% 32.05%

Heart 28.34% 38.53% 30.51% 39.27% 15.58% 17.07% 16.22%
HouseVotes 6.62% 7.48% 6.04% 10.89% 3.92% 3.78% 3.26%
Ionosphere 15.14% 16.64% 13.65% 19.67% 12.25% 9.71% 7.12%

Liverdisorder 31.11% 41.53% 40.26% 30.67% 30.90% 29.54% 30.70%
Lymography 23.26% 29.26% 24.67% 33.70% 18.98% 17.52% 17.67%
Mammographic 19.88% 46.25% 18.46% 22.85% 17.01% 17.60% 15.97%
PageBlocks 8.06% 7.93% 7.82% 10.22% 7.73% 7.01% 6.71%
Parkinsons 18.05% 24.06% 22.28% 18.56% 14.81% 13.86% 12.53%

Pima 32.19% 34.85% 34.27% 34.51% 23.51% 25.31% 27.49%
Popfailures 5.94% 5.18% 4.81% 7.05% 6.13% 5.93% 5.30%

Regions2 29.39% 29.85% 27.53% 33.23% 24.01% 23.14% 23.62%
Saheart 34.86% 34.04% 34.90% 34.51% 28.94% 29.04% 29.93%

Segment 57.72% 49.75% 52.14% 66.72% 47.38% 49.49% 40.61%
Wdbc 8.56% 35.35% 21.57% 12.88% 6.23% 5.28% 5.49%
Wine 19.20% 29.40% 30.73% 25.43% 5.51% 6.55% 6.22%
Z_F_S 10.73% 47.81% 29.28% 38.41% 4.70% 5.61% 6.01%

ZO_NF_S 8.41% 47.43% 6.43% 43.75% 5.39% 4.67% 5.81%
ZONF_S 2.60% 11.99% 27.27% 5.44% 1.85% 2.07% 2.24%

ZOO 16.67% 14.13% 15.47% 20.27% 14.83% 11.40% 8.50%

AVERAGE 23.47% 30.81% 25.37% 28.87% 17.49% 17.42% 17.08%

Table 3. Experiments for regression datasets.

DATASET GENETIC ADAM RPROP NEAT D = 50 D = 100 D = 200

ABALONE 7.17 4.30 4.55 9.88 4.22 4.18 3.89
AIRFOIL 0.003 0.005 0.002 0.067 0.003 0.003 0.003

BASEBALL 103.60 77.90 92.05 100.39 49.47 51.07 53.57
BK 0.027 0.03 1.599 0.15 0.017 0.017 0.019
BL 5.74 0.28 4.38 0.05 0.0019 0.0016 0.0016

CONCRETE 0.0099 0.078 0.0086 0.081 0.0053 0.0044 0.0042
DEE 1.013 0.63 0.608 1.512 0.187 0.205 0.203

DIABETES 19.86 3.03 1.11 4.25 0.31 0.31 0.29
HOUSING 43.26 80.20 74.38 56.49 19.28 18.50 17.75

FA 1.95 0.11 0.14 0.19 0.011 0.012 0.012
MB 3.39 0.06 0.055 0.061 0.048 0.047 0.047

MORTGAGE 2.41 9.24 9.19 14.11 0.57 0.70 0.53
PY 105.41 0.09 0.039 0.075 0.016 0.014 0.014

QUAKE 0.040 0.06 0.041 0.298 0.036 0.036 0.036
TREASURY 2.929 11.16 10.88 15.52 0.473 0.677 0.622
WANKARA 0.012 0.02 0.0003 0.005 0.0003 0.0002 0.0002

AVERAGE 18.55 11.70 12.44 12.70 4.67 4.74 4.81



Knowledge 2022, 2 422

Figure 1. Execution time comparison between the proposed algorithm and the other mentioned methods.

Table 4. Experiments with Nt for the classification datasets.

DATASET Nt = 20 Nt = 40 Nt = 100

Appendicitis 15.23% 15.37% 15.77%
Australian 32.85% 33.15% 30.18%

Balance 11.92% 7.61% 8.71%
Bands 35.61% 33.86% 32.96%

Cleveland 43.91% 43.35% 41.29%
Dermatology 28.41% 21.28% 14.33%
Hayes Roth 50.33% 38.56% 36.80%

Heart 20.61% 21.16% 19.99%
HouseVotes 4.07% 4.31% 3.58%
Ionosphere 12.14% 11.19% 9.23%

Liverdisorder 31.47% 33.01% 31.24%
Lymography 22.24% 22.57% 20.74%

Mammographic 18.66% 17.37% 15.71%
PageBlocks 7.95% 7.68% 6.81%
Parkinsons 17.28% 17.44% 13.86%

Pima 33.19% 31.94% 30.71%
Popfailures 6.65% 5.81% 5.24%

Regions2 26.33% 26.03% 22.25%
Saheart 36.11% 32.96% 34.45%

Segment 66.37% 58.33% 49.85%
Wdbc 7.38% 6.95% 7.68%
Wine 13.49% 11.55% 8.39%
Z_F_S 7.77% 7.59% 8.38%

ZO_NF_S 8.21% 7.52% 7.28%
ZONF_S 2.26% 1.87% 1.99%

ZOO 14.70% 12.30% 13.50%

AVERAGE 22.12% 20.41% 18.88%



Knowledge 2022, 2 423

Table 5. Experiments with different values of Nt parameter for the regression datasets.

DATASET Nt = 20 Nt = 40 Nt = 100

ABALONE 4.88 4.77 4.63
AIRFOIL 0.004 0.004 0.004

BASEBALL 69.83 65.37 69.72
BK 0.02 0.02 0.02
BL 0.006 0.005 0.007

CONCRETE 0.008 0.006 0.005
DEE 0.224 0.225 0.199

DIABETES 0.357 0.343 0.321
HOUSING 26.43 25.88 20.65

FA 0.019 0.019 0.017
MB 0.05 0.05 0.05

MORTGAGE 2.11 1.76 1.44
PY 0.02 0.018 0.022

QUAKE 0.042 0.037 0.037
TREASURY 2.37 2.12 1.48
WANKARA 0.0004 0.0003 0.0003

AVERAGE 6.65 6.29 6.16

Figure 2. Time comparison between the proposed method and a parallel implementation of Adam
algorithm. The comparison is made for the dataset PageBlocks.



Knowledge 2022, 2 424

Table 6. Experiments with the genetic method and various values of Nt for the classification datasets.

DATASET Nt = 100 Nt = 200 Nt = 400 Nt = 800

Appendicitis 17.70% 18.10% 18.87% 18.97%
Australian 33.00% 33.21% 33.16% 33.03%

Balance 9.09% 8.97% 9.43% 9.36%
Bands 34.87% 35.75% 33.92% 33.88%

Cleveland 54.91% 51.60% 57.25% 55.83%
Dermatology 33.59% 30.58% 24.83% 20.07%
Hayes Roth 58.44% 56.18% 57.21% 55.51%

Heart 30.20% 28.34% 29.65% 29.43%
HouseVotes 7.45% 6.62% 8.22% 8.02%
Ionosphere 14.69% 15.14% 10.02% 9.84%

Liverdisorder 33.30% 31.11% 33.24% 33.19%
Lymography 23.48% 23.26% 23.95% 25.45%

Mammographic 20.83% 19.88% 21.19% 21.13%
PageBlocks 8.28% 8.06% 8.04% 7.42%
Parkinsons 19.55% 18.05% 18.81% 19.14%

Pima 34.64% 32.19% 33.54% 33.62%
Popfailures 5.37% 5.94% 5.30% 5.38%

Regions2 29.11% 29.39% 28.54% 28.47%
Saheart 35.25% 34.86% 34.60% 34.93%

Segment 56.07% 57.72% 52.43% 51.00%
Wdbc 9.08% 8.56% 9.02% 9.19%
Wine 30.43% 19.20% 25.35% 21.55%
Z_F_S 18.23% 10.73% 11.94% 11.49%

ZO_NF_S 16.61% 8.41% 10.85% 10.09%
ZONF_S 2.70% 2.60% 2.75% 2.10%

ZOO 16.37% 16.67% 13.47% 13.33%

AVERAGE 25.12% 23.47% 23.68% 23.13%

Table 7. Experiments with the genetic method and various values of Nt for the regression datasets.

DATASET Nt = 100 Nt = 200 Nt = 400 Nt = 800

ABALONE 6.88 7.17 6.28 6.49
AIRFOIL 0.008 0.003 0.04 0.01

BASEBALL 106.47 103.60 107.04 107.30
BK 0.65 0.027 0.038 0.097
BL 9.80 5.74 1.38 2.85

CONCRETE 0.017 0.01 0.29 0.42
DEE 0.36 1.01 0.48 0.25

DIABETES 38.04 19.86 13.70 13.50
HOUSING 38.44 43.26 36.51 35.81

FA 1.55 1.95 0.74 2.06
MB 0.61 3.39 1.13 0.62

MORTGAGE 2.12 2.41 1.94 1.84
PY 151.49 105.41 96.79 90.59

QUAKE 0.22 0.04 0.05 0.04
TREASURY 2.72 2.93 2.28 2.19
WANKARA 0.065 0.012 0.001 0.003

AVERAGE 22.47 18.55 16.74 16.51

4. Conclusions

An innovative method of training artificial neural networks was presented in this
paper. The method consists of two important phases: in the first phase, through a hybrid
genetic algorithm, an attempt is made to identify the optimal interval of initialization
and the training of the network parameters, and in the second phase, the training of the
parameters in the optimal intervals of the first phase is performed using a genetic algorithm.
The optimization of the optimal interval in the first phase is conducted by using partition



Knowledge 2022, 2 425

rules for the initial interval which are applied in order. This technique aims to reduce the
parameter search space and then significantly speed up network configuration training.

The proposed method was tested on a series of classification and regression datasets
from the relevant literature and the experimental results seem to be very promising com-
pared to the genetic algorithm procedure. However, since the method consists of two
computational phases, it is much slower than other training techniques for artificial neural
networks, and therefore, the use of parallel processing techniques is considered necessary.

Future improvements to the proposed method may include the incorporation of
additional global optimization techniques instead of genetic algorithms, the usage of
more advanced stopping rules and the application of the method to other types of neural
networks such as radial basis function networks (RBF).

Author Contributions: I.G.T., A.T. and E.K. conceived the idea and methodology and supervised the
technical part regarding the software. I.G.T. conducted the experiments, employing several datasets,
and provided the comparative experiments. A.T. performed the statistical analysis. E.K. and all other
authors prepared the manuscript. E.K. and I.G.T. organized the research team and A.T. supervised
the project. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The experiments of this research work were performed using the high-performance
computing system established at Knowledge and Intelligent Computing Laboratory, Dept. of In-
formatics and Telecommunications, University of Ioannina, acquired with the project “Educational
Laboratory equipment of TEI of Epirus” with MIS 5007094 funded by the Operational Programme
“Epirus”, 2014–2020, by ERDF and national funds.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
2. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [CrossRef]
3. Baldi, P.; Cranmer, K.; Faucett, T.; Sadowski, P.; Whiteson, D. Parameterized neural networks for high-energy physics. Eur. Phys.

J. C 2016, 76, 235. [CrossRef]
4. Valdas, J.J.; Bonham-Carter, G. Time dependent neural network models for detecting changes of state in complex processes:

Applications in earth sciences and astronomy. Neural Netw. 2006, 19, 196–207. [CrossRef]
5. Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 2017, 355, 602–606.

[CrossRef]
6. Shirvany, Y.; Hayati, M.; Moradian, R. Multilayer perceptron neural networks with novel unsupervised training method for

numerical solution of the partial differential equations. Appl. Soft Comput. 2009, 9, 20–29. [CrossRef]
7. Malek, A.; Beidokhti, R.S. Numerical solution for high order differential equations using a hybrid neural network—Optimization

method. Appl. Math. Comput. 2006, 183, 260–271. [CrossRef]
8. Topuz, A. Predicting moisture content of agricultural products using artificial neural networks. Adv. Eng. 2010, 41, 464–470.

[CrossRef]
9. Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of Artificial

Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Appl. Sci. 2020, 10, 3835.
[CrossRef]

10. Shen, L.; Wu, J.; Yang, W. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks. J. Chem.
Theory Comput. 2016, 12, 4934–4946. [CrossRef]

11. Manzhos, S.; Dawes, R.; Carrington, T. Neural network-based approaches for building high dimensional and quantum dynamics-
friendly potential energy surfaces. Int. J. Quantum Chem. 2015, 115, 1012–1020. [CrossRef]

12. Wei, J.N.; Duvenaud, D.; Aspuru-Guzik, A. Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent. Sci.
2016, 2, 725–732. [CrossRef]

13. Falat, L.; Pancikova, L. Quantitative Modelling in Economics with Advanced Artificial Neural Networks. Procedia Econ. Financ.
2015, 34, 194–201. [CrossRef]

http://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
http://dx.doi.org/10.1016/j.neunet.2006.01.006
http://dx.doi.org/10.1126/science.aag2302
http://dx.doi.org/10.1016/j.asoc.2008.02.003
http://dx.doi.org/10.1016/j.amc.2006.05.068
http://dx.doi.org/10.1016/j.advengsoft.2009.10.003
http://dx.doi.org/10.3390/app10113835
http://dx.doi.org/10.1021/acs.jctc.6b00663
http://dx.doi.org/10.1002/qua.24795
http://dx.doi.org/10.1021/acscentsci.6b00219
http://dx.doi.org/10.1016/S2212-5671(15)01619-6


Knowledge 2022, 2 426

14. Namazi, M.; Shokrolahi, A.; Maharluie, M.S. Detecting and ranking cash flow risk factors via artificial neural networks technique.
J. Bus. Res. 2016, 69, 1801–1806. [CrossRef]

15. Tkacz, G. Neural network forecasting of Canadian GDP growth. Int. J. Forecast. 2001, 17, 57–69. [CrossRef]
16. Baskin, I.I.; Winkler, D.; Tetko, I.V. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov. 2016, 11,

785–795. [CrossRef]
17. Bartzatt, R. Prediction of Novel Anti-Ebola Virus Compounds Utilizing Artificial Neural Network (ANN). Chem. Fac. 2018, 49,

16–34.
18. Tsoulos, I.G.; Gavrilis, D.; Glavas, E. Neural network construction and training using grammatical evolution. Neurocomputing

2008, 72, 269–277. [CrossRef]
19. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
20. Chen, T.; Zhong, S. Privacy-Preserving Backpropagation Neural Network Learning. IEEE Trans. Neural Netw. 2009, 20, 1554–1564.

[CrossRef]
21. Riedmiller, M.; Braun, H. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP algorithm. In Proceedings

of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; pp. 586–591.
22. Pajchrowski, T.; Zawirski, K.; Nowopolski, K. Neural Speed Controller Trained Online by Means of Modified RPROP Algorithm.

IEEE Trans. Ind. Inform. 2015, 11, 560–568. [CrossRef]
23. Hermanto, R.P.; Nugroho, A. Waiting-Time Estimation in Bank Customer Queues using RPROP Neural Networks. Procedia

Comput. Sci. 2018, 135, 35–42. [CrossRef]
24. Robitaille, B.; Marcos, B.; Veillette, M.; Payre, G. Modified quasi-Newton methods for training neural networks. Comput. Chem.

Eng. 1996, 20, 1133–1140. [CrossRef]
25. Liu, Q.; Liu, J.; Sang, R.; Li, J.; Zhang, T.; Zhang, Q. Fast Neural Network Training on FPGA Using Quasi-Newton Optimization

Method. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1575–1579. [CrossRef]
26. Yamazaki, A.; de Souto, M.C.P.; Ludermir, T.B. Optimization of neural network weights and architectures for odor recognition

using simulated annealing. In Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN’02), Honolulu,
HI, USA, 12–17 May 2002; Volume 1, pp. 547–552.

27. Da, Y.; Xiurun, G.; An improved PSO-based ANN with simulated annealing technique. Neurocomputing 2005, 63, 527–533.
[CrossRef]

28. Leung, F.H.F.; Lam, H.K.; Ling, S.H.; Tam, P.K. Tuning of the structure and parameters of a neural network using an improved
genetic algorithm. IEEE Trans. Neural Netw. 2003, 14, 79–88 [CrossRef]

29. Yao, X. Evolving artificial neural networks. Proc. IEEE 1999, 87, 1423–1447.
30. Zhang, C.; Shao, H.; Li, Y. Particle swarm optimisation for evolving artificial neural network. In Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, Nashville, TN, USA, 8–11 October 2000; pp. 2487–2490.
31. Yu, J.; Wang, S.; Xi, L. Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 2008, 71, 1054–1060.

[CrossRef]
32. Ivanova, I.; Kubat, M. Initialization of neural networks by means of decision trees. Knowl.-Based Syst. 1995, 8, 333–344. [CrossRef]
33. Yam, J.Y.F.; Chow, T.W.S. A weight initialization method for improving training speed in feedforward neural network. Neurocom-

puting 2000, 30, 219–232. [CrossRef]
34. Chumachenko, K.; Iosifidis, A.; Gabbouj, M. Feedforward neural networks initialization based on discriminant learning. Neural

Netw. 2022, 146, 220–229. [CrossRef]
35. Shahjahan, M.D.; Kazuyuki, M. Neural network training algorithm with possitive correlation. IEEE Trans. Inf. Syst. 2005, 88,

2399–2409. [CrossRef]
36. Treadgold, N.K.; Gedeon, T.D. Simulated annealing and weight decay in adaptive learning: the SARPROP algorithm. IEEE Trans.

Neural Netw. 1998, 9, 662–668. [CrossRef] [PubMed]
37. Leung, C.S.; Wong, K.W.; Sum, P.F.; Chan, L.W. A pruning method for the recursive least squared algorithm. Neural Netw. 2001,

14, 147–174. [CrossRef]
38. lonen, J.; Kamarainen, J.K.; Lampinen, J. Differential Evolution Training Algorithm for Feed-Forward Neural Networks. Neural

Processing Lett. 2003, 17, 93–105.
39. Baioletti, M.; Bari, G.D.; Milani, A.; Poggioni, V. Differential Evolution for Neural Networks Optimization. Mathematics 2020, 8, 69.

[CrossRef]
40. Salama, K.M.; Abdelbar, A.M. Learning neural network structures with ant colony algorithms. Swarm Intell. 2015, 9, 229–265.

[CrossRef]
41. Tsoulos, I.G.; Gavrilis, D.; Glavas, E. Solving differential equations with constructed neural networks. Neurocomputing 2009, 72,

2385–2391. [CrossRef]
42. Martínez-Zarzuela, M.; Díaz Pernas, F.J.; Díez Higuera, J.F.; Rodríguez, M.A. Fuzzy ART Neural Network Parallel Computing on

the GPU. In Computational and Ambient Intelligence; Sandoval, F., Prieto, A., Cabestany, J., Graña, M., Eds.; IWANN 2007; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4507.

43. Huqqani, A.A.; Schikuta, E.; Chen, S.Y.P. Multicore and GPU Parallelization of Neural Networks for Face Recognition. Procedia
Comput. Sci. 2013, 18, 349–358. [CrossRef]

http://dx.doi.org/10.1016/j.jbusres.2015.10.059
http://dx.doi.org/10.1016/S0169-2070(00)00063-7
http://dx.doi.org/10.1080/17460441.2016.1201262
http://dx.doi.org/10.1016/j.neucom.2008.01.017
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/TNN.2009.2026902
http://dx.doi.org/10.1109/TII.2014.2359620
http://dx.doi.org/10.1016/j.procs.2018.08.147
http://dx.doi.org/10.1016/0098-1354(95)00228-6
http://dx.doi.org/10.1109/TVLSI.2018.2820016
http://dx.doi.org/10.1016/j.neucom.2004.07.002
http://dx.doi.org/10.1109/TNN.2002.804317
http://dx.doi.org/10.1016/j.neucom.2007.10.013
http://dx.doi.org/10.1016/0950-7051(96)81917-4
http://dx.doi.org/10.1016/S0925-2312(99)00127-7
http://dx.doi.org/10.1016/j.neunet.2021.11.020
http://dx.doi.org/10.1093/ietisy/e88-d.10.2399
http://dx.doi.org/10.1109/72.701179
http://www.ncbi.nlm.nih.gov/pubmed/18252489
http://dx.doi.org/10.1016/S0893-6080(00)00093-9
http://dx.doi.org/10.3390/math8010069
http://dx.doi.org/10.1007/s11721-015-0112-z
http://dx.doi.org/10.1016/j.neucom.2008.12.004
http://dx.doi.org/10.1016/j.procs.2013.05.198


Knowledge 2022, 2 427

44. Hansen, E.; Walster, G.W. Global Optimization Using Interval Analysis; Marcel Dekker Inc.: New York, NY, USA, 2004.
45. Markót, M.C.; Fernández, J.; Casado, L.G.; Csendes, T. New interval methods for constrained global optimization. Mathematics

2006, 106, 287–318. [CrossRef]
46. Žilinskas, A.; Žilinskas, J. Interval Arithmetic Based Optimization in Nonlinear Regression. Informatica 2010, 21, 149–158.

[CrossRef]
47. Rodriguez, P.; Wiles, J.; Elman, J.L. A Recurrent Neural Network that Learns to Count. Connect. Sci. 1999, 11, 5–40. [CrossRef]
48. Chandra, R.; Zhang, M. Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocom-

puting 2012, 86, 116–123. [CrossRef]
49. Dagum, L.; Menon, R. OpenMP: An industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 1998, 5,

46–55. [CrossRef]
50. Kaelo, P.; Ali, M.M. Integrated crossover rules in real coded genetic algorithms. Eur. J. Oper. Res. 2007, 176, 60–76. [CrossRef]
51. Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566.

[CrossRef]
52. Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S.; Sánchez, L.; Herrera, F. KEEL Data-Mining Software Tool: Data Set

Repository, Integration of Algorithms and Experimental Analysis Framework. J. -Mult.-Valued Log. Soft Comput. 2011, 17, 255–287.
53. Weiss, S.M.; Kulikowski, C.A. Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine

Learning, and Expert Systems; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1991.
54. Quinlan, J.R. Simplifying Decision Trees. Int. Man Mach. Stud. 1987, 27, 221–234. [CrossRef]
55. Shultz, T.; Mareschal, D.; Schmidt, W. Modeling Cognitive Development on Balance Scale Phenomena. Mach. Learn. 1994, 16,

59–88. [CrossRef]
56. Zhou, Z.H.; Jiang, Y. NeC4.5: Neural ensemble based C4.5. IEEE Trans. Knowl. Data Eng. 2004, 16, 770–773. [CrossRef]
57. Setiono, R.; Leow, W.K. FERNN: An Algorithm for Fast Extraction of Rules from Neural Networks. Appl. Intell. 2000, 12, 15–25.

[CrossRef]
58. Demiroz, G.; Govenir, H.A.; Ilter, N. Learning Differential Diagnosis of Eryhemato-Squamous Diseases using Voting Feature

Intervals. Artif. Intell. Med. 1998, 13, 147–165.
59. Hayes-Roth, B.; Hayes-Roth, B.F. Concept learning and the recognition and classification of exemplars. J. Verbal Learning Verbal

Behav. 1977, 16, 321–338. [CrossRef]
60. Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl.

Intell. 1997, 7, 39–55. [CrossRef]
61. French, R.M.; Chater, N. Using noise to compute error surfaces in connectionist networks: A novel means of reducing catastrophic

forgetting. Neural Comput. 2002, 14, 1755–1769. [CrossRef] [PubMed]
62. Dy, J.G.; Brodley, C.E. Feature Selection for Unsupervised Learning. J. Mach. Learn. Res. 2004, 5, 845–889.
63. Perantonis, S.J.; Virvilis, V. Input Feature Extraction for Multilayered Perceptrons Using Supervised Principal Component

Analysis. Neural Process. Lett. 1999, 10, 243–252. [CrossRef]
64. Garcke, J.; Griebel, M. Classification with sparse grids using simplicial basis functions. Intell. Data Anal. 2002, 6, 483–502.

[CrossRef]
65. Elter, M.; Schulz-Wendtland, R.; Wittenberg, T. The prediction of breast cancer biopsy outcomes using two CAD approaches that

both emphasize an intelligible decision process. Med. Phys. 2007, 34, 4164–4172. [CrossRef]
66. Malerba, F.E.F.D.; Semeraro, G. Multistrategy Learning for Document Recognition. Appl. Artif. Intell. 1994, 8, 33–84.
67. Little, M.A.; McSharry, P.E.; Hunter, E.J.; Spielman, J.; Ramig, L.O. Suitability of dysphonia measurements for telemonitoring of

Parkinson’s disease. IEEE Trans. Biomed. Eng. 2009, 56, 1015–1022. [CrossRef]
68. Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S. Using the ADAP learning algorithm to forecast the onset

of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care, Minneapolis, MN, USA,
8–10 June 1988; pp. 261–265.

69. Lucas, D.D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y. Failure analysis of parameter-induced
simulation crashes in climate models. Geosci. Model Dev. 2013, 6, 1157–1171. [CrossRef]

70. Giannakeas, N.; Tsipouras, M.G.; Tzallas, A.T.; Kyriakidi, K.; Tsianou, Z.E.; Manousou, P.; Hall, A.; Karvounis, E.C.; Tsianos, V.;
Tsianos, E. A clustering based method for collagen proportional area extraction in liver biopsy images. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan, Italy, 25–29 August 2015;
pp. 3097–3100.

71. Hastie, T.; Tibshirani, R. Non-parametric logistic and proportional odds regression. JRSS-C Appl. Stat. 1987, 36, 260–276.
[CrossRef]

72. Dash, M.; Liu, H.; Scheuermann, P.; Tan, K.L. Fast hierarchical clustering and its validation. Data Knowl. Eng. 2003, 44, 109–138.
[CrossRef]

73. Wolberg, W.H.; Mangasarian, O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology.
Proc. Natl. Acad. Sci. USA 1990, 87, 9193–9196. [CrossRef]

74. Raymer, M.; Doom, T.E.; Kuhn, L.A.; Punch, W.F. Knowledge discovery in medical and biological datasets using a hybrid Bayes
classifier/evolutionary algorithm. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2003, 33 , 802–813. [CrossRef]

http://dx.doi.org/10.1007/s10107-005-0607-2
http://dx.doi.org/10.15388/Informatica.2010.279
http://dx.doi.org/10.1080/095400999116340
http://dx.doi.org/10.1016/j.neucom.2012.01.014
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1016/j.ejor.2005.07.025
http://dx.doi.org/10.1007/BF01589118
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://dx.doi.org/10.1007/BF00993174
http://dx.doi.org/10.1109/TKDE.2004.11
http://dx.doi.org/10.1023/A:1008307919726
http://dx.doi.org/10.1016/S0022-5371(77)80054-6
http://dx.doi.org/10.1023/A:1008280620621
http://dx.doi.org/10.1162/08997660260028700
http://www.ncbi.nlm.nih.gov/pubmed/12079555
http://dx.doi.org/10.1023/A:1018792728057
http://dx.doi.org/10.3233/IDA-2002-6602
http://dx.doi.org/10.1118/1.2786864
http://dx.doi.org/10.1109/TBME.2008.2005954
http://dx.doi.org/10.5194/gmd-6-1157-2013
http://dx.doi.org/10.2307/2347785
http://dx.doi.org/10.1016/S0169-023X(02)00138-6
http://dx.doi.org/10.1073/pnas.87.23.9193
http://dx.doi.org/10.1109/TSMCB.2003.816922


Knowledge 2022, 2 428

75. Zhong, P.; Fukushima, M. Regularized nonsmooth Newton method for multi-class support vector machines. Optim. Methods
Softw. 2007, 22, 225–236. [CrossRef]

76. Koivisto, M.; Sood, K. Exact Bayesian Structure Discovery in Bayesian Networks. J. Mach. Learn. Res. 2004, 5, 549–573.
77. Nash, W.J.; Sellers, T.L.; Talbot, S.R.; Cawthor, A.J.; Ford, W.B. The Population Biology of Abalone (_Haliotis_ Species) in Tasmania. I.

Blacklip Abalone (_H. rubra_) from the North Coast and Islands of Bass Strait; Report No. 48; Sea Fisheries Divisio, Department of
Primary Industry and Fisheries: Taroona, Australia, 1994 .

78. Brooks, T.F.; Pope, D.S.; Marcolini, A.M. Airfoil Self-Noise and Prediction; Technical Report, NASA RP-1218; National Aeronautics
and Space Administration: Washington, DC, USA, 1989.

79. Simonoff, J.S. Smooting Methods in Statistics; Springer: Berlin/Heidelberg, Germany , 1996.
80. Yeh, I.C. Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808.

[CrossRef]
81. Harrison, D.; Rubinfeld, D.L. Hedonic prices and the demand for clean ai. J. Environ. Econ. Manag. 1978, 5, 81–102. [CrossRef]
82. King, R.D.; Muggleton, S.; Lewis, R.; Sternberg, M.J.E. Drug design by machine learning: the use of inductive logic programming

to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proc. Nat. Acad. Sci.
USA 1992, 89, 11322–11326. [CrossRef]

83. Kingma, D.P.; Ba, J.L. ADAM: A method for stochastic optimization. In Proceedings of the 3rd International Conference on
Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

84. Klima, G. Fast Compressed Neural Networks. Available online: https://rdrr.io/cran/FCNN4R/ (accessed on 23 May 2022 ).
85. Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies. Evol. Comput. 2002, 10, 99–127.

[CrossRef] [PubMed]

http://dx.doi.org/10.1080/10556780600834745
http://dx.doi.org/10.1016/S0008-8846(98)00165-3
http://dx.doi.org/10.1016/0095-0696(78)90006-2
http://dx.doi.org/10.1073/pnas.89.23.11322
https://rdrr.io/cran/FCNN4R/
http://dx.doi.org/10.1162/106365602320169811
http://www.ncbi.nlm.nih.gov/pubmed/12180173

	Introduction 
	Method Description 
	Locating the Best Rules 
	Initialization Step
	Termination Check Step
	Genetic Operations Step

	Fitness Evaluation for the Rule Genetic Algorithm
	Crossover for the Rule Genetic Algorithm
	Mutation for the Rule Genetic Algorithm
	Second Phase
	Initialization Step
	Termination Check Step
	Genetic Operations Step
	Local Search Step


	Experiments 
	Experimental Datasets 
	Experimental Results

	Conclusions
	References

