
Citation: Massaro, A. Multi-Level

Decision Support System in

Production and Safety Management.

Knowledge 2022, 2, 682–701. https://

doi.org/10.3390/knowledge2040039

Academic Editor: Jose María Merigo

Received: 27 October 2022

Accepted: 7 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Multi-Level Decision Support System in Production and
Safety Management
Alessandro Massaro 1,2

1 LUM Enterprise S.r.l., S.S. 100-Km.18, Parco il Baricentro, 70010 Bari, Italy; massaro@lum.it
2 Dipartimento di Management, Finanza e Tecnologia,

LUM—Libera Università Mediterranea “Giuseppe Degennaro”, S.S. 100-Km.18, Parco il Baricentro,
70010 Bari, Italy

Abstract: The proposed paper introduces an innovative approach based on the implementation of a
multi-level Decision Support System (DSS) modelling processes in the industry. Specifically, the work
discusses a theoretical Process Mining (PM) DSS model gaining digital knowledge by means of logics
that are able to select the best decisions. The PM model is applied to an open dataset simulating a
working scenario and defining a possible safety control method based on the risk assessment. The
application of the PM model provides automatic alerting conditions based on a threshold of values
detected by sensors. Specifically, the PM model is applied to worker security systems characterized by
the environment with a risk of emission of smoke and gases. The PM model is improved by Artificial
Intelligence (AI) algorithms by strengthening information through prediction results and improving
the risk analysis. An Artificial Neural Network (ANN) MultilaLayer Perceptron (MLP) algorithm is
adopted for the risk prediction by achieving the good computational performance of Mean Absolute
Error (MAE) of 0.001. The PM model is first sketched by the Business Process Modelling and Notation
(BPMN) method, and successively executed by means of the Konstanz Information Miner (KNIME)
open source tool, implementing the process-controlling risks for different working locations. The
goal of the paper is to apply the theoretical PM model by means of open source tools by enhancing
how the multi-level approach is useful for defining a security procedure to control indoor worker
environments. Furthermore, the article describes the key variables able to control production and
worker safety for different industry sectors. The presented DSS PM model also can be applied to
industry processes focused on production quality.

Keywords: production management; knowledge gain; IoT; process mining; safety management
process; artificial intelligence; multi-level management process

1. Introduction

Process mapping is a useful approach to optimize production, quality and security
across an entire supply chain scenario. In particular, Artificial Intelligence (AI) engines
provide further improvements to decision making processes by gaining knowledge and
tailoring operation processes: the prediction of variables allows for the addition of in-
formation, thus optimizing decisions over the medium and long term. The modelled
processes improved by AI are named Process Mining (PM) models [1–3]. The union of
PM together with AI constitutes a Decision Support System (DSS) system, which is able
to predict process quality [4] and worker risks (for example analyzing air quality [5]), and
to manage human resources [6]. Business Process Modelling and Notation (BPMN) is a
versatile approach for mapping processes as workflows. BPMN is adopted in different
applications’ explaining and simulating processes, both for predictive maintenance [7] and
for data flow in information systems [8]. Advanced PM models can be sketched by means
of BPMN workflows, integrating intelligent logics and AI algorithms, thereby structuring
a DSS [9]. A DSS implementing a multi-level logic can be a good solution to improve the
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efficacy of the monitoring processes regarding health scenarios integrating Artificial Neural
Network (ANN) MultiLayer Perceptron (MLP) predictive algorithms [10], as well as for
predictive maintenance applications [11]. The literature provides a classic definition of
“Process Mining” as an analytical discipline for discovering, monitoring, and improving
processes. The paper introduces a new definition of “Process Mining” as the discipline for
discovering, monitoring, and improving processes by means of a multi-level DSS behaving
as a decision-making engine based on AI algorithms. The DSS allows for the strength-
ening of the knowledge gain of the industry. The analyzed literature suggests the use of
the BPMN tool to sketch an innovative PM workflow oriented, in general, on industry
production and, more specifically, on the monitoring and control of worker environments.
By considering these goals, the paper is structured according to the following steps:

• A block diagram of a “proof of concept” of PM based on the implementation of a DSS
operating on different risk levels is formulated.

• The “proof of concept” of the PM model by a BPMN diagram by simplifying the DSS
into three levels is detailed.

• The PM model is applied to a process monitoring risks in worker environments, by
processing sensor data and by visualizing graphical risk dashboards.

• Different scenarios suitable for the application of the PM model in production quality
assessment and in security process in industry sectors by defining the most important
key variables to control are discussed.

The contribution of the paper is to provide a new PM theoretical model based on the
concept of a DSS operating at different levels, where each level characterizes an alerting
condition. The alerting condition defines a risk level: the first risk level (Level 1) is a minor
danger condition; the second risk level (Level 2) is more dangerous, and so on (the last,
Level n, is the most dangerous). The PM-DSS multi-level model can be used mainly to
classify interventions to perform when an alerting level is enabled. The PM multi-level
model can be applied to control the production or safety in industrial processes. More
details about the multi-level model are provided in Section 2. In order to explain the model
mechanisms, the article discusses an example of safety control in working environments.
The topics discussed in the paper are significant for digital transformation of companies.
Table 1 summarizes typical problems encountered by the digital transformation process
by industries, as well as current solutions, and the aspects of originality introduced in
the article.

Table 1. Problems of digital transformation, current solutions, and aspects concerning originality of
the study.

Problems of Digital Transformation
Involving PM Current Solutions [1] Originality of the Study

Knowledge Gain (KG)

Digital transformation process in
industry involves the creation of a

Knowledge Base (KB) and the possibility
to gain information. Typically, the KG of
a company is provided by the processing

of data detected by Internet of Things
(IoT) sensors. AI algorithms are also used

to create KG.

The KG is also obtained by processing, in
different phases, the digital data of sensors,

thus providing incremental information
about risks: the possibility of processing data

by implementing specific logic conditions
can strengthen decision making.
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Table 1. Cont.

Problems of Digital Transformation
Involving PM Current Solutions [1] Originality of the Study

Risk mapping and risk prediction

The ‘AS IS’ and the ‘TO BE’ risk mapping
is sketched by BPMN approach,
integrating AI algorithms’ risk

predictions.

The risks are estimated by a multi-level DSS,
which simultaneously integrates specific

logics and risk forecasting. The prediction is
mainly indicated for the ‘TO BE’ processes

matched with the medium and the long
period. The prediction activity is performed
by AI algorithms that gain information about

possible risks, thereby improving the risk
assessment. A preliminary analysis of the
correlation of variables is important for a

‘precise’ prediction (selection of the variables
having a major weight for the specific

analysis).

Decision-making for intervention
Decision making processes are driven by
AI results (robotic handling, predictive

maintenance, etc.).

The decision-making processes are classified
into intervention classes depending on the

estimated alerting levels. The efficacy of the
intervention is increased.

Real time alerting process

Real time data processing is fundamental
for adopting rapid interventions by

avoiding the risk degeneration for health
and for the breakage of components.

Real time data processing can be activated
only when it is required, thereby making

computing resources more efficient.

2. Materials and Methods: Process Mining (PM) Model Implementing a Multi-Level
DSS Engine

Figure 1 shows the block diagram of the “proof of concept” of the proposed PM multi-
level model integrating DSS. The DSS is structured to operate on different data processing
levels (n generic levels, depending on the variable to process and on the logic conditions to
implement), representing a specific decision-making process. AI algorithms are applied
in the main process to control the production and the safety conditions of the working
environment, thus gaining knowledge. The inputs of the model are data detected by IoT
sensors. The data output of the PM model defines the possible alerting conditions and the
procedures to adopt.

The BPMN method is used to describe the PM diagram of Figure 1 in detail by
explaining all the process flows. The tool adopted for the BPMN model of Figure 2 is the
open source Draw.io tool [12], having the BPMN symbols available as libraries (BPMN
2.0 downloadable plugin). The symbols to represent the PM workflow of Figure 1 are
mainly pools containing sub-processes, tasks (symbols as rectangular boxes), start and
stop events, and gateways structuring decisional logics (by means of exclusive event based
gateways behaving as decision-making objects) and actions of process splitting (by means
of parallel gateways). The BPMN workflow of Figure 2 sketches a model based on three
DSS levels, and it is structured by the following elements:

• DSS Alerting Level 1. This sub-workflow represents the first level of the whole PM
model. The first alerting level is constituted by a first DSS based on the simultaneous
analysis (parallel gateway), threshold check (detection of alert conditions in the short
period), and AI prediction supporting the risk evaluation over the medium or long
period. The processed dataset is the IoT input dataset or an extraction of the original
dataset obtained by filtering the most relevant attributes. The logic condition is
modelled by the ‘Exclusive Event Based’ symbol: for a positive check of the monitored
variables (values do not overcoming specific thresholds), the production quality (or
the security condition) is guaranteed and no interventions are required. Besides, in a
negative case, the system provides a first alerting condition, enabling interventions
(intervention type 1 named “Intervention 1”), and data are processed in the second
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DSS level (pool named “DSS Alerting Level 2”), providing more details about worker
risks (higher level of the risk). Additionally, in the case of a positive check, for an
additional security, the second sub-workflow of Level 2 can be executed.

• DSS Alerting Level 2. This workflow includes the ‘AND’ logic condition between
true results of the DSS Alerting Level 1 and other variables. For a positive check of the
monitored variables not overcoming specific thresholds, the process is secure. Besides,
for a negative case, the system provides a second alerting condition addressing specific
interventions (intervention type 2 named “Intervention 2”), and data are processed in
the third level DSS analysis (pool named “DSS Alerting Level 3”).

• DSS Alerting Level 3. This last workflow has the same structure of the previous DSS
workflows. The final dashboard indicates the entire summary of the results, as well.
If the third level also indicates a risk, an immediate intervention is executed (very
dangerous risk condition characterized by a higher risk level).

The execution of the theoretical PM model of Figure 2 is performed by developing
the Konstanz Information Miner (KNIME) workflows [13,14]. The KNME workflows are
applied to the open dataset of [15] concerning an IoT application (see in Appendix A more
details of the analyzed dataset). The open dataset [15] is hypothesized to be acquired
into a generic working environment, allowing for a simulation of scenarios of possible
risk conditions.
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Figure 1. Block diagram of the “proof of concept” of the main PM model controlling production and
worker safety by means of a multi-level DSS interconnected to AI algorithms.
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Figure 2. PM BPMN model describing the “proof of concept” of Figure 1 by considering three DSS
levels (model simplified).

3. Results: Example of PM Application is Safety Management

This section discusses the application of the PM model of Figure 2 by processing
the dataset [15] (see Appendix A). The dataset contains the variables which potentially
have a major weight concerning worker security, such as carbon monoxide emission
(co), liquid petroleum gas (lpg) emission, and the presence of smoke (smoke), indicating a
generic malfunction of the plant. The KNIME workflow is executed to implement logic
conditions of the three DSS levels and the ANN-MLP algorithm is applied to predict the
alerting condition.

3.1. KNIME Model Implementing a Three DSS Level Based on Logic Conditions

This workflow of Figure 3 ‘translates’ the scheme of Figure 2 by using KNIME blocks.
Two different KNIME workflows model the logic conditions (threshold checking action)
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and the ANN-MLP prediction (AI prediction checking), respectively. The three DSS levels
are connected in series by linking the following elements (named KNIME blocks):

• CSV Reader: the dataset [15] is imported in the local repository to be processed by
the other blocks;

• Row filter: three IoT electronic boards are located in three different work environments
(location 1, location 2, and location 3) where the production plant parts are located;
each ‘Row Filter’ will select the sensor data of the specific location;

• Role Engine (DSS level 1): the Exclusive Event Based gateway is modelled by this
block, enabling logic control of the first level (“DSS Alerting Level 1” of Figure 1);
in this case, the basic secure condition is that the light is switched on for the three
locations (in the negative case the first alerting condition is enabled, “Alert 1”);

• Pie/Donut Chart: pie charts are used as dashboards for all of the levels;
• Role Engine (DSS level 2): these blocks implement the second logic control (“DSS

Alerting Level 2” of Figure 2); the logic condition activates the alerting condition
(“Alert 2”) when “Alert 1” AND variable smoke > = 0.02 is True;

• Role Engine (DSS level 3): these blocks implement the third logic control (DSS
Alerting Level 3 of Figure 2); the logic condition enabling the final alerting condition
(“Alert 3”) is when “Alert 2” AND variable co > = 0.005 AND variable lpg > = 0.008
are True.

The main block configurations (pseudocodes and parameters) are listed in Appendix A.
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Figure 3. KNIME workflow model based on threshold checking and implementing three-DSS levels
for worker safety control. The workflow executes the open dataset [15]. The horizontal flux of the
KNIME workflows model the vertical BPMN structure of Figure 2.

The implemented logic conditions represent a simulating scenario of working environ-
ments with production machines emitting smoke and gases in case of malfunctions. The
logic rules are based on the following criteria:

• The first level of alert is the checking of lighting (first condition guaranteeing a basic
security level).

• The second level of alert is when the light is switched off and, simultaneously, the
smoke variable overcomes a specified threshold (0.02 ppm %).
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• The third level of alert (most dangerous condition) is when the second level condition
and the carbon monoxide and liquid petroleum gas overcoming specific thresholds
are simultaneously checked (0.005 ppm % and 0.008, respectively).

It is observed that the threshold values are assumed only to prove the correct im-
plementation of the KNIME workflow (testing of the model), thus, a real scenario can be
different, according to local laws or policies. The pie dashboards of Figure 4a–i summarize
the results regarding all risks in the three locations where the sensor matrices are positions.
As shown in Figure 4, location 3 exhibits a more dangerous condition, having a higher
impact of “Alert 3” condition if compared with the other two locations (location 1 is simply
characterized by a no lighting condition, and location 3 is in a ‘no risk’ zone).
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Figure 4. KNIME dashboards (output of the “Pie/Donut charts” blocks of the KNIME workflow of
Figure 1). Alerting level 1 dashboards of location 1 (a), location 2 (b), and location 3 (c). Alerting
level 2 dashboards of location 1 (d), location 2 (e), and location 3 (f). Alerting level 3 dashboards and
summary of other alerting levels of location 1 (g), location 2 (h), and location 3 (i).

3.2. KNIME Model Implementing ANN-MLP Network Supporting Decisions

The PM model of Figure 2 additionally takes into account the check of predicted
results, providing a complete risk scenario regarding the medium and the long periods.
For the analyzed case, the attention is focused on DSS level 2 because it has no ability
to predict the light condition. We note that it is important to predict mainly the smoke
variable because it represents a sure condition of a plant/machine malfunction or failure.
The KNIME workflow of Figure 5 indicates all the data processing phases of the ANN-MLP
algorithm predicting the smoke variable. The phases are classified as:

• data input: Data importing action (csv containing IoT datasets).
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• data pre-processing: Selection of the main variables (key variables) to process as
inputs of the ANN-MLP network (variables chosen by analyzing the correlation
matrix by means the “Linear Correlation” block); column filtering process able to
clean the dataset from the other variables; partitioning process (“Partitioning” block)
splitting the input dataset into two dataset (first partition for the training data process,
and second partition for the testing data processing).

• data processing: Training (by “RProp Learner” block) and testing (by “MultiLayer-
Perceptron Predictor” block) phases.

• data reporting: Plot of the predicted results versus other key variables (by “Scatter
Plot” block); performance of the algorithm provided by error’s estimation.
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Figure 5. KNIME workflow implementing ANN-MLP network predicting important variables about
worker security (in the analyzed case is predicted the labelled variable smoke).

The key variables to be processed by the ANN-MLP algorithm are suggested by the
correlation matrix analysis. This analysis takes into account the variables characterized
by a strong correlation as the input nodes of the ANN-MLP network. By supposing that
the smoke and the carbon monoxide are emitted together at the same time (and after
this emission appear lpg due to a deeper machine damage happening after a long period
of smoke emission), the variables to process are essentially smoke and co; this choice is
enhanced by the correlation analysis illustrated in Figure 6a,b, where the correlation matrix
values using a colored scale and double precision numbers are indicated, respectively.

The outputs of the KNIME workflow of Figure 5 are illustrated in Figure 7a,b and
Figure 8a,b. The plots of location1 indicate that the predicted smoke and co variables are
mainly under the threshold, and, consequently, there is a no risk condition. Besides, a
moderate predicted alert for location 2 and a high predicted alert for the location 3 are
observed. A very low Means Absolute Error (MAE) of 0.001 (estimated by means the
“Numeric Scorer” block of Figure 5) is checked for the prediction analysis, thus proving the
good performance of the applied ANN-MLP algorithm. The ANN-MLP hyper-parameters
and the related model used for the calculus are listed in Appendix A.

In Table 2, the results of the threshold checking and the ANN-MLP predicted alert
are summarized.
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Figure 7. KNIME ANN-MLP algorithm predicting smoke variable. Plots of smoke versus predicted
smoke (a), and co versus predicted smoke (b). The red area represents the alerting condition.

Table 2. Alerting conditions as results of the check of thresholds and of the ANN-MLP predicted alert.

Location Alert 1 Alert 2 Alert 3 Predicted Alert MAE

Location 1 Yes Low Low No alert 0.001
Location 2 No No No Moderate alert 0.001
Location 3 Yes Yes Yes High Alert 0.001
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4. Discussion

The first step adopted to process data is to define the key variables influencing the
worker security in a specified environment. In the analyzed case are considered four key
variables: lighting condition, smoke, carbon monoxide, and liquid petroleum gas. The
implemented logic conditions (AND logic conditions) take the overcoming of specific
thresholds into account as risk conditions (alerting conditions). The proposed security
multi-level PM model is powered by means of the prediction of the smoke variable, given
the hypothesis that the dangerous condition occurs in the following steps:

• The smoke is first emitted from the machine together with carbon monoxide gas.
• For a break condition (after the smoke emission), the liquid petroleum gas is also

emitted, introducing a further risk of fire or explosion (stronger risk).

The AI data processing is performed by considering the steps of the physical phenom-
ena and the correlation analysis of all the variables. The ANN-MLP analysis considers
that the smoke and the carbon monoxide are strongly correlated; the input variables of the
algorithm, then, are the smoke and the co, predicting the smoke condition. The prediction
could also detect some alerting conditions even when the thresholds are not exceeded. The
self-learning approach of ANN-MLP supervised algorithms based on the data processing
of historical data (training phase) allows for the provision of further dashboards over
the medium and long periods. The dashboards of Figure 4 represent imminent risks or
dangerous conditions in the short period. Besides, the dashboards of Figures 7 and 8 are
related the medium and the long periods. Sensors and IoT systems are able to detect data
useful to control production and ensure worker security. In Table 3, different key variables
influencing quality and worker security conditions are listed.

Detection of the key variable values is achieved by reading sensor data. The automa-
tism about product quality corrections and security management (thought acoustic or
visual alerting tools) can be achieved by mechatronic systems linked to programmable
logic controller (PLC) interfaces stopping production machines, vehicles, and tools. The
DSS structure in more levels allows for the definition of more detailed risk maps based on
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the classification of hazard levels. In Table 4, some indicative research works about possible
topics involving PM model and the potential applications of the proposed multi-level
approach as research advances are listed.

Table 3. Classes of key variables to control production quality and worker security.

Industry Production
Sector Key Variables to Control for the Quality Process Key Variables to Control for the Worker Security

Manufacturing

Defects magnitude (defect classification)
controlling processing tolerance, quality of

assembled parts (check of welds), quality of cut
parts, process temperature (for productions

controlled in temperature), pressure of machine,
product alignment on the machine, smoke

(machine malfunction), correct use of
electronic/mechatronic tools in advanced

manufacturing and in additive manufacturing [1].

Distance from machine, breathing emitted gas,
presence small parts shot in the air due to the tool
processing (danger for eyes), temperature of the

environment, correct use of the manual tool,
smoke emission, lighting of the environment,

worker distractions, improper movements, tools
misuse, failure to follow safety instructions,

unauthorized repair of defects in equipment [16].

Chemical Check of chemical compositions, toxicity level [17],
clean tools (contaminants detection).

Breathing of emitted gases, interaction between
chemical liquids, fire/explosion risk, intoxication

level [18].

Logistics

Key Performance Indicators (KPI) about fleet
management (loads, patterns, vehicle traceability

by satellite Global Positioning System (GPS)
sensors, fuel consumption, etc.) [19].

Distances from vehicles (intralogistics operations),
health of drivers (requiring a real time monitoring

system [20]).

Energy Production

Energy balancing, KPI for energy, produced
current/voltage (renewable energy systems),

correct setting of energy tools (energy of inverters,
power of electrical transformers, correct

orientation and efficiency of photovoltaic panels,
wind turbine vibrations [21], etc.) [22].

Electric power (exposition to high voltages),
electrical insulation of the components to handle,

distance from high voltage electrical cable
(according to the local laws) [23].

Engineering Services Time to develop the engineering design.
Correct use of tools for engineering design and

plant maintenance, following of guidelines about
inspection procedures.

Human Resource (HR)
selection

Adoption of psychological methods to check the
worker suitability (humor, micro- and macro-

expressions [24], worker movements during the
interview) [25].

No particular elements.

Food

Temperature (in roasting/cooking processes and in
general processes requiring ovens) [26] and Near

Infrared Spectroscopy (NIR) [27], disinfection,
presence of contaminants.

Interaction with food processing machine (mainly
food processes are automatic).

Agriculture DSS applied in agriculture scenarios (precision
agriculture) [28,29] Correct use of agriculture machines in the field.

Figure 9 illustrates a flowchart indicating PM model advantages regarding risk assess-
ment and conformance of the intervention plan (outputs of the PM model). Specifically, the
diagram highlights the PM operating phases as:

(1) Preliminary Analysis of Risks: A preliminary analysis of the process to perform
defines the main scenario (about production or safety risks); the preliminary analysis
includes the ‘AS IS’ BPMN process mapping.

(2) Classification of Risk Levels: The preliminary analysis provides a first classification
of hazard levels, thus establishing the number of the alerting levels to consider in the
PM model.

(3) Classification of Key variables to Process: The classification of the alerting levels
allows the definition of the key variable to be processed for each level (variables to
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process for each level of the PM model); this phase includes the definition of the logics
of the DSS to be implemented for the checking phase (phase 4).

(4) Threshold checking and AI Prediction checking: The checking of the key variable’s
overcoming of a threshold and the prediction analysis are executed by considering
the logic rules of phase 3 (DSS logics).

(5) Update of the Risk Assessment Criteria (output of the PM model): The risk assess-
ment model is based on the analysis of the PM outputs; the hazard levels could be
updated according to PM results.

(6) Update of the Intervention planning (output of the PM model): According to the
PM output and to the update of the risk assessment model, the intervention planning
is scheduled and updated.

Table 4. Literature and research gap concerning main research topics involving PM.

Research Topic Topic Description Proposed Research Advances (Possible
Applications)

Process improvement [30–33]

Optimization for sustainable product process
improvement, modeling analytic hierarchy

processes for the development of new
products, solutions for computerised

decision support systems, multi-criteria
approach for the development of a process

reference model for
supply chain operations.

The sustainability of product process
improvement can be analyzed by analyzing

different crucial aspect classified as for
hierarchical models, where the ‘root node’
represents the main problem to solve. The
multi-level model allows to improve the
hierarchical model by defining the key

variables contributing for process
improvement.

Process simulation [34–36]

Simulations for optimal process flow
improving productivity, algorithms for
BPMN approach simulating business
processes, simulations as production

planning methods.

Processes can be easily simulated by
simultaneously considering the real time

monitoring checking threshold overcoming of
the analyzed variable and forecasting (see

Figure 2).

Process prediction [37–39]
Prediction of product quality, dynamic

predicting models for process engineering,
prediction for job scheduling.

The decision making is performed by merging
the statistical analysis with the predicted one.
The variables to analyze can be pre-processed
in order to select ones having a major weight

for the prediction (the other irrelevant
variables are not considered in the calculus

thus avoiding computing consumption and the
redundancy of information).

Risk management [10,20,40–43]

Risk management in the conditions of
economic transformation, Industry 4.0

environmental risk assessment, safety risk
assessment, worker/patient health risk

control, production risk, supply chain district
management.

Interventions are planned in function of the
detected risk defining different hazard levels.

This principle is applied for production
monitoring and for worker health control.

Market Decisions [44,45]
Decision making using AI optimizing

recommendations of information/products
and regulatory compliance processes.

The proposed PM model is suitable to be
applied also in the strategic marketing field, by
defining hierarchical risk levels according to

new specific key variables as for [44,45].

In Table 5, the main advantages of the PM outputs are listed.
According to the example proposed in this paper about safety in the workplace, the

PM provides the following results, which optimize the process controlling security:

• Extraction of the process features to map the ‘TO BE’ safety control process (update
of the risk assessment and of the intervention plan): the dashboards of Figure 4
highlight that only location 3 exhibits a more dangerous condition, having a higher
impact of “Alert 3” (application of the DSS algorithm based on the logics explicated in
Appendix A); this allows for an update of the risk assessment only of location 3 by
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controlling machines; the interventions to plan are related mainly to location 3; more
responsible and attentive workers will be allocated to location 3; a periodic control
plan of machine of location 3 is required by storing an hourly event log; location 1
shows a low alerting risk (no intervention need be planned);

• Further decisions supported by AI prediction: the key variables to control are smoke,
lpg, and co (see correlation matrix of Figure 6); with smoke being the most important key
variable (after the smoke emission are lpg and co) the ANN-MLP forecasting analysis
of the smoke highlights a no-risk prediction (see Figure 7) for location 1. Consequently,
the machine can be revised without stopping the production, and the hazard level is
updated as lower level (see Figure 9); the no-alert prediction of location 1 confirms that
no interventions will be planned over the short and medium period; the prediction
of smoke at location 2 enhances a potential risk (moderate alert), thus suggesting
activation of a monitoring plan; the prediction of smoke at location 3 confirms that an
urgent intervention should be performed.
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Table 5. Main advantages of the PM outputs.

PM Output Production Safety in Workplace

Guidelines for risk
assessment

Reduction of costs related to machine malfunctions;
optimization of the management of raw materials;
optimization of the checkpoints according to the

standard ISO 9001:2015; major control of the
product’s defects; formulation of exit strategies due

to a high production risk.

Definition of the best rules for worker’s behavior;
selection of responsible for the safety of a specific

area (safety manager); improvement of the control of
plants, of machines and of working conditions;

adoption of risk containment measures.

Intervention plan

Formulation of a predictive maintenance plan;
definition of a strategy avoiding the risk of

production stoppage; guarantee of continuity of
production; increase of production efficiency;

increase of product quality.

Preventive actions addressed on risk prevention;
staff displacement according to their behavior;

predictive maintenance of parts which could be a
risk for the worker; training plan about work

behavior and the correct use of machines or tools.
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In Table 6, the PM outcomes of the analyzed case are listed.

Table 6. PM outcomes of the case.

PM Outcome
(Application of the PM

Model)
Outcome Description

Definition of risk hazard
levels (alerting levels of

the PM model)

According to the risk assessment model of Figure 9, the first step to apply of the PM model is to
define the risk levels (phases 1 and 2 of Figure 9). The classification of the key variables to process

(phase 3 of Figure 9) are the variables having a major weight regarding worker security impact: the
whole dataset (see Appendix A) provides the temperature, humidity, light, motion, smoke, gas (lpg),
and CO, but only light, smoke, CO, and gas are the key variables to be indicated in the preliminary

risk analysis.
Therefore, the matching of the PM model of Figure 1 with the dataset allows for the establishment of

three alerting level: the first is related to the lighting condition, the second takes into account the
smoke emission, and the third also considers the gas and the CO emission. This preliminary

classification allows for a risk assessment characterized by the alerting thresholds (the hypnotized
thresholds are 0.02 ppm % for smoke, 0.05 ppm % for co, and 0.08 for lpg).

First alerting level
(lighting condition of the
working environment)

The lighting of worker environment represents a ‘basic risk’: the case of absence of light enables
the urgent first intervention to activate light. According to the dashboards of Figure 4,

location 1 and location 3 are the environments at which the first intervention should be urgently
applied (control of the entire lighting system due to frequent absence of light). Further, we note that
the AI prediction in this stage (as indicated in the first pool of Figure 1) is unnecessary, because the
prediction of lighting condition does not depend on causes of breakdown of machines. In any case, in
the presence or in absence of lightning, the second level check phase is enabled (see dashed lines of

Figure 1 starting at the first pool and ending at the second pool).

Second alerting level (high-
risk level)

The simultaneous condition of absence of light (Alert 1) and the presence of smoke represents a
high-risk condition (second level of the hazard risk scale defined by the overcoming of the smoke

threshold value of 0.05 % ppm). The smoke variable is classified as the second important key variable,
because after its emission, gases will appear due to deeper machine damage happening after a long

period of smoke emission (very high-risk level). By observing Figure 4, location 3 is mainly
characterized by this risk (Alert 2). Besides, for location 2, there is a lower probability of this risk, and

for location 1, this risk is not present.
A very urgent intervention is required for location 3 (control of lighting condition and of the

machine status). A deeper analysis is performed by means of the AI prediction check (see second
pool of Figure 2). The AI prediction (see second pool of Figure 1) is performed by analyzing

the most-correlated key variables smoke and co (see Figure 6). The ANN-MLP prediction shows a
no-risk prediction (see Figure 7)

for location 1: the machines are checked without stopping production, and the hazard level of
location 1 is updated as lower level (according to phase 5 of Figure 9), and no very urgent

interventions are planned over the short and medium period. On the other side, the
prediction of smoke at location 2 represents a potential risk, activating a monitoring plan. Finally,

the prediction of smoke at location 3 confirms the very critical condition, thus requiring a very
urgent intervention (by stopping production machines if necessary).

Third alerting level (very
high-risk level)

A very high alert condition (Alert 3) is verified when Alert 2 condition and the threshold
overcoming conditions of 0.05 ppm % for co, and 0.08 for lpg are simultaneously verified. Further,

we note that the AI prediction at this stage is unnecessary (as indicated in the third pool of Figure 1)
because the prediction performed in the second level is enough to confirm the execution of the plan.

Results confirm that location 3 exhibits a very dangerous condition (Alert 3); this allows for an
update of the risk assessment (according to the phase 5 of Figure 9) for location 3 by

periodically controlling the machines updating, as well as the related intervention plan (according
to the phase 6 of Figure 9):

a possible solution is to assign more responsible and attentive workers to location 3.

The application of the PM theoretical model to another case study will provide different
outcomes, but the method to be applied remains the same.
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5. Conclusions

The study introduces a “proof concept” of PM implementing a DSS multi-level engine
supporting decision-making processes. In the analyzed case, the DSS integrates logic
functions and an ANN-MLP algorithm providing prediction of air parameters critical
for safety. The method adopted to sketch the PM model is the BPMN model. KNIME
workflows are used for the application of the BPMN model, providing risk dashboards.
The discussed considerations about the PM results refer to the specific safety process to
control and change depending on the working scenario. Different key variables and logics
will be considered according to the preliminary risk assessment evaluation for the specific
scenario being analyzed. The PM results facilitate the extraction of guidelines for risk
assessment and for the optimized scheduling of the interventions to ensure worker safety.
The proposed example provides the reading keys of the PM outputs and the method to
control a specific process. The DSS algorithm to be applied includes the possibility to
integrate AI supervised or unsupervised algorithms that can improve the PM decision-
making model [42]. In this direction, the KNIME tool is suitable for the implementation
of algorithms modeling the same workflow of the analyzed process [42,43]. For the first
time, the PM model is structured into a multi-level model able to provide a risk assessment
based on the characterization of hazard levels. The main assumption of the proposed
methodology is the preliminary analysis of risks identifying the key variables to process by
means of the DSS engine. The limitations are mainly in the automatisms to be implemented
to achieve a self-adaptive model, because AI algorithms cannot entirely replace human
intervention. Furthermore, a big dataset is required, as regards the analyzed case, in order
to execute AI algorithms with good computational performance. Future works will address
the last aspects of finding new solutions for an automatic DSS solution and for the use of
augmented data-improving AI models. Additionally, the proposed PM approach can be
adapted for quality control and management of production monitoring machines tools and
product defects. The PM model is formulated to automate safety procedures, addressing
research on Industry 5.0 processes and advanced systems.
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“Giuseppe Degennaro”.

Conflicts of Interest: The author declare no conflict of interest.

Appendix A. Dataset Description and Data Processing Information

The analyzed open dataset is found in [15]. The data are detected by three identical IoT
breadboard-based sensor arrays through Queuing Telemetry Transport (MQTT) network
protocol. Each IoT device is placed in a specific location (named location 1, location
2, and location 3). The same technology can be applied in real scenarios of industrial
sectors. The analyzed variables are: temperature (temp variable expressed in Fahrenheit
units), humidity (humidity variable expressed in percentage), carbon monoxide (co variable
expressed in ppm %), liquid petroleum gas (lpg variable expressed in ppm %), smoke
(smoke variable expressed in ppm %), light (light boolean variable), motion (motion boolean
variable indicating the presence of a worker into a specific location), timestamp (ts variable
indicating in epoch unit the timestamp of event), and device (string indicating the unique
device name). In Figure A1 is illustrated a screenshot of the dataset imported in the local
repository of a personal computer adopted for the calculus. Figure A2 illustrates some
trends of variables having a major weight about worker security control (co, lpg, and smoke).
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Concerning KNIME block configurations, in Figure A3 is illustrated the screenshot
of the KNIME Graphical User Interface (GUI) configuring Row Filter block selecting a
working location (each IoT device is located in a different location).

Below is listed the pseudocodes of the “Role Engine” blocks of Figure 3 (logic condi-
tions implementing the DSS multi-level system):

• Logic condition of the “Role Engine” Logic Control 1 block of Figure 3:

– $light$ = “false” => “Alert 1”;
– $light$ = “true” => “ok”.

• Logic condition of the “Role Engine” Logic Control 2 block of Figure 3:

– ($Alerting Message$ = “Alert 1” AND $smoke$ >=0.02 )=> “Alert 2”;
– $smoke$ < 0.02 => “ok”.
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• Logic condition of the “Role Engine” Logic Control 3 block of Figure 3 (summarizing
all the conditions):

– ($Alerting Message 2$ = “Alert 2” AND $co$ >=0.005 AND $lpg$ >=0.008 )=> “Alert 3”;
– ($Alerting Message 2$ = “Alert 2” AND $co$ < 0.005 AND $lpg$ < 0.008 )=> “Alert 2”;
– $Alerting Message$ = “Alert 1” => “Alert 1”;
– $Alerting Message$ = “ok” => “ok”.
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The ANN-MLP hyper-parameters adopted for the calculus are: 100 epochs (maximum
number of iterations), 1 hidden layer, 10 hidden neurons per layer, smoke as labelled variable,
70% of the dataset for training process, 30% of the dataset for testing process, co and smoke
as input nodes. The processed data refers to the location 1 (device 1). 405,184 records
are processed for the prediction of the smoke variable. In Figure A4 is sketched the used
ANN-MLP model according to the selected hyper-parameters.
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