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Abstract: Control of cellular function is extremely complex, being reliant on a wide range of compo-
nents. Several of these are small oxygen-based molecules. Although reactive compounds containing
oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also
instrumental in the control of the activity of a myriad of proteins, and control both the upregulation
and downregulation of gene expression. The formation of one oxygen-based molecule, such as
the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen
peroxide (H2O2) and the hydroxyl radical (·OH), each with their own reactivity and effect. Nitrogen-
based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both
instrumental among the suite of cell signaling components. These molecules do not act alone, but
form part of a complex interplay of reactions, including with several sulfur-based compounds, such
as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds
may alter the redox status of the cell and lead to programmed cell death, in processes referred to as
oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main
oxygen-based molecules involved, and the ramifications of their production, is given.

Keywords: carbon monoxide; hydrogen peroxide; hydroxyl radicals; hydrogen sulfide; NADPH
oxidase; nitric oxide; peroxynitrite; redox; superoxide

1. Introduction

Oxygen-based compounds are an instrumental part of the group of small, relatively
reactive molecules which control cellular activities. Traditionally such molecules have
been referred to as the reactive oxygen species (ROS) and include hydrogen peroxide
(H2O2), superoxide (O2

·−), and hydroxyl radicals (·OH). However, several other reactive
signaling molecules also contain oxygen, although referred to as reactive nitrogen species
(RNS). These include nitric oxide (NO) and peroxynitrite (ONOO−), and therefore could
be grouped together with the ROS as oxygen-based compounds. As discussed below, such
compounds often work together [1].

Historically, ROS were studied in biological systems as they are produced during a
pathogen challenge, and it was suggested that their reactivity was harnessed to kill the
invading organism [2]. Studies concentrated on the production of ROS in phagocytic cells
in animals, especially neutrophils, and the enzyme NADPH oxidase was characterized [3].
This was aided by the realization that patients with Chronic Granulomatous Disease (CDG)
had an impaired ROS generation and reduced pathogen tolerance. Interestingly, CGD can
be inherited in both a X-linked and autosomal fashion, enabling the different NADPH
oxidase components to be discovered [4].

In 1987, it was reported that endothelial-derived relaxing factor (EDRF) was in fact
the gas NO [5]. Although this was not the first work on this gas in a biological setting, for
example [6], the 1987 paper did focus researchers’ efforts, and it was soon realized that other
reactive compounds could partake in similar activities. NADPH oxidase homologues were
reported in a range of cells suggesting a role in cell signaling reviewed in [7]. Superoxide
anions were to an extent ruled out as they were charged and deemed not able to pass
through membranes, although once protonated this is not the case. Focus fell on H2O2,
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and ever since there has been an explosion of papers on this topic reviewed [8,9]. However,
the efforts did not stop there, and now there are papers showing that a range of small
molecules can partake in cell signaling events in an array of organisms. These molecules
include others which contain oxygen, such as ONOO− [10] and carbon monoxide (CO) [11],
but also others which do not contain oxygen, including reactive sulfur species (RSS), such
as hydrogen sulfide (H2S) [12], and hydrogen gas (H2) [13].

None of these molecules act in cell signaling events in isolation, and the interplay
between them has been quite extensively reviewed [14–16]. There is a complex interplay
between them which creates downstream signals. As will be discussed below, many of these
molecules are in competition with each other, potentially reacting with the same amino
acid groups, such as thiols. It can, therefore, be seen that oxygen-based small molecules
play a key part in the regulation of cellular function in a wide range of organisms.

2. Signaling by ROS

ROS can be produced from a range of places in cells. Oxygen, a diradical itself, can
scavenge “leaked” electrons from metabolic pathways, such as the electron transport chain
(ETC) in mitochondria [17,18]. The one electron reduction of O2 will yield O2

·−, but this
is relatively unstable and will readily dismute to H2O2 [19], especially in the presence of
protons, i.e., low pH. Complexes I and III appear to be the primary sources of mitochondrial
ROS [17,18]. However, other enzymes can generate ROS too. One of the main sources
of cellular ROS is from the NADPH oxidases [20]. There are a family of such enzymes
in animals, and homologues in plants, known as respiratory burst oxidase homologs
(RBOH) [21,22]. Although originally characterized from neutrophils, it was realized that
there were isoforms in a range of cells, and then further forms were found, such as the
DUOX proteins [23]. Each oxidase isoform will have different roles, locations, control and
kinetics, as briefly discussed below. Arabidopsis, for example, has ten RBOH isoforms [22].

Other enzymes can produce ROS too. These include the peroxidases [24] and xanthine
oxidase (xanthine oxidoreductase) [25]. This latter enzyme can, when oxygen is not readily
available, produce nitric oxide too [26].

Therefore, in cells ROS are going to be present, and it is now known that they have
signaling roles. One of the primary times that cells produce ROS is when they are under
stress, either from biotic or abiotic mechanisms [27]. This could be from a pathogen attack,
or in the presence of extreme temperature, heavy metals, too much salt, or too much light.
Note that not only does this apply to plants, but also to animals, however stress responses
usually see a generation of other reactive signals too, such as RNS [28]. Therefore, under
such conditions, ROS, RNS, along with H2S are all likely to be present together, allowing
both their competition for response mechanisms, as well as their direct interactions, as
discuss further below.

As well as being involved in normal physiology, and in the management of stress,
ROS are also thought to be instrumental in the aging process [29,30]. This theory was
mooted by Harman fifty years ago [31], but the idea still has traction [32] and shows that
the production and action of these oxygen-based compounds are an integral part of life,
and death, on earth.

2.1. Superoxide and Its Role

Superoxide anions (O2
·−) will be produced by the one electron reduction of molecular

oxygen. The added electron leads to the molecule being both charged and a free radical, and
therefore it is relatively reactive [33]. Dismutation is likely in biological systems [19] and is
catalyzed by superoxide dismutases (SOD) [34], producing H2O2. However, superoxide
can be measured, and early work with neutrophils assayed O2

·− by the reduction of
cytochrome c in the presence and absence of SOD, with a similar technique still being
employed [35].

One of the main sources of O2
·− in cells is the family of NADPH oxidases [20,36,37].

The oxidase from neutrophils was found to use NADPH as a cofactor, and on its oxidation,
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the electrons are sequentially passed to flavin, heme, and then oxygen. The enzyme had
several subunits, including two in the membrane (gp91-phox and p22-phox) and several
in the cytoplasm, which translocate to form a holistic enzyme. Among the cytoplasmic
subunits is a G protein, although phosphorylation seems to also be important as part of the
control mechanisms. In humans there are seven members of the NAPDH oxidase protein
family. These are Nox1-5 and Duox 1-2. While most produce O2

·−, some produce H2O2.
Other sources of O2

·−, as mentioned, include electron leakage from redox pathways such
as the ETC [17,18].

In signaling terms, the charge on the superoxide anion was thought to limit its move-
ment in cells and therefore its effectiveness as a cellular signal. However, it can become
protonated (HO2), removing the charge and therefore trans-membrane movement is poten-
tially possible. In this vein, signaling is known to be mediated by superoxide anions [38].
For example, O2

·− generation from mitochondrial Complex III mediates the hypoxia
inducible factor (HIF)-1α signaling pathway, which is part of the hypoxic response of
cells [39]. HIF acts as a key oxygen sensor in cells, ensuring optimal ATP production
through a complex interplay with ROS metabolism [40].

It has to be remembered too, that O2
·− is a redox molecule. The redox mid-point

potential of the O2/O2
·− couple has been estimated to be −160 mV relative to the Standard

Hydrogen Electrode (SHE) [41], and this will contribute to the overall cellular redox. It has
been discussed previously [42] that all the redox-active molecules will contribute to the
cellular redox and downstream control of cellular activities, so O2

·− will be part of this,
especially if the generation of superoxide is compartmentalized, as has been suggested for
ROS signaling and other redox signaling [43–45].

It is very difficult to separate the signaling effects of O2
·− from that of H2O2. It is often

assumed that the presence of O2
·− gives rise to H2O2 and it is the latter that has assumed

the signaling role.

2.2. Hydrogen Peroxide as a Signal

The sequential oxidation of molecule oxygen produces O2
·−, then H2O2, and finally

the hydroxyl radical (·OH) before the four election reduction results in water. Therefore,
once the O2

·− anion is formed, a cascade of further products is likely. As discussed below,
there are side reactions likely here too. For example, hypochlorous acid can be produced
in the presence of the enzyme myeloperoxidase [46]. However, when discussing ROS
signaling, H2O2 always rises to prominence.

As well as arising from the dismutation of O2
·−, either spontaneously or catalyzed

by SOD [34], H2O2 can be generated by enzymes such as XO and peroxidases [47]. H2O2
is not charged and can easily translocate across lipid membranes, so is not likely to be
compartmentalized in organelles unless it is removed before it can diffuse. Removal will
be by its interaction with antioxidant biomolecules, as well as by catalysis by enzymes
such as catalase (Cat) [48]. Other systems will also be involved in H2O2 removal, including
peroxiredoxin [49] and glutathione peroxidase [50].

H2O2 has been the focus of ROS signaling [8,51,52]. One of the ways in which H2O2 is
known to alter cell function is by the oxidation of thiol groups in proteins [52], and such
modifications can be analyzed by proteomic techniques [53,54]. The -SH group is converted
to the sulfenic acid group, -SOH. This is in many ways akin to phosphorylation, and like
phosphorylation, the formation of the -SOH group is likely to force a conformational
change on the proteins and thus alter its activity. This is not necessarily activation. In
tyrosine phosphatase, the interaction with H2O2 leads to the formation of a sulfenyl-amide
intermediate and inhibition of the enzyme [55]. This means in the cell that the levels of
tyrosine phosphorylation are likely to increase, with the concomitant effects that leads to.

Oxidation of the thiol can continue, with the sequential formation of the sulfinic acid
group and then sulfonic acid. The latter modification is thought to be irreversible and fixes
the protein in a new conformation, and probably leads to protein removal, or if the H2O2
levels are high then cell death may result.
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Enzymes that are modified by H2O2 include those which are involved in metabolism,
such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [56]. Modification of this
protein can control its cellular location and hence function [57], showing that it acts like a
moonlighting protein. Other proteins modified include the transcription factors [51], and
hence gene expression of target genes may be increased or decreased, depending on the
gene involved [58]. Proteins involved here include nuclear factor kappa B (NF-κB) [59] and
nuclear factor erythroid 2-related factor 2 (nrf2) [60], although others are also involved [61].
Downstream of H2O2 kinase pathways can also be affected [62], particularly mitogen-
activated protein kinases (MAPKs). However, there are many more proteins which can be
affected by H2O2, in a variety of cellular locations. H2O2 signaling seem to be universal
across cell types and species, from plants to animals. Such studied have been reviewed by
others [63–65].

It is not only proteins which act as targets for H2O2, lipid peroxidation is often key
to the cellular effects seen [66] and is often part of the mechanism, which is harmful to
the cell [67]. In fact, H2O2 is part of the programmed cell death process [68], controlling
apoptosis for example [69].

As with all redox active molecules in cells, their presence and activity influence the
overall redox poise of the cell [42]. H2O2 is no exception here, and it is thought to be one of
the main influencers. The overaccumulation of H2O2 will lead to an oxidation of the cellular
redox and this is termed oxidative stress [9,70]. It is always deemed to be detrimental
and it has been argued that it can lead from normal cell function, to over proliferation
and eventually cell death, either from apoptosis or necrosis [42]. One of the main buffers
of redox stress is glutathione, which can be oxidized from the GSH state to the GSSG
form. The ratio of GSH:GSSG is often used to calculate the intracellular redox, and the
concentration of H2O2 in cells will have a direct influence on this. Other small thiol-based
compounds are also involved, including cysteine (Cys), cysteinyl-glycine (Cys-Gly), and
γ-glutamyl-cysteine (γ-Glu-Cys), and it has been suggested that it is all of these that need
to be considered [42].

However, oxidative stress is part of balancing act. It has been argued that redox has
a “Goldilocks zone”, where there are defined limits between which the redox of the cell
need to be held [71]. As well as oxidative stress, the opposite is now being recognized, i.e.,
reductive stress [72,73], and H2O2 production and accumulation will be a major part of
ensuring this balance is maintained.

2.3. Hydroxyl Radicals Can Be Signals Too

Hydroxyl radicals (·OH) are often produced in the presence of other ROS via the
Fenton reaction [74] or the Haber–Weiss reaction [75]. Transition metals are therefore
important for the formation of ·OH in cells. The formation of ·OH has been discussed by
others [76,77]. ·OH are extremely reactive and therefore not thought to be very functional
as a signal. However, there are a range of papers which show that this molecule does
have a role in controlling cell function [78]. ·OH has been shown to be involved in ion
movements in plant roots [79,80] and the control of kinase pathways [81]. This radical is
also involved in mitochondrial oxidative stress [82] and cytoplasmic oxidative stress [83],
and to participate in the modification of proteins and lipids and polysaccharides [84–86].

There is no doubt that ·OH can be detected in cells [87], and their modulation has
been suggested as beneficial [88,89], not just because they do damage but because they
have a positive influence.

Recently a gas, molecular hydrogen (H2), has been found to be a significant influence
on cell function in plants [90] and animals [91]. This is relevant here as it has been suggested
that H2 is a scavenger of ·OH [92], and thus explains its mode of action. However, this
would only be significant if ·OH did indeed have a signaling role in cells. However, this
scavenging role has been disputed [93,94].
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3. Signaling by RNS

As discussed above, the role of nitrogen-based signaling molecules came into focus
when EDRF was discovered to be in fact NO [5]. There was flurry of activity and the
enzyme responsible for the generation of NO in animals was soon found, i.e., nitric oxide
synthase (NOS) [95]. It was discovered that oxygen was used in the catalytic cycle of this
enzyme. Arginine acts as a substrate, but in the presence of NADPH and oxygen this is
converted to a non-released intermediate, hydroxyarginine. With a further input of oxygen
and NADPH the product is citrulline, and NO could be considered as a by-product. The
generation of citrulline is often used as an assay for NOS activity. Therefore, oxygen is
instrumental here in the generation of NO.

It was soon found that NO was involved in wide range of functions in both plants [96]
and animals [97]. Recently, we saw the fortieth anniversary of NO research in plants [98].
In 1992, NO was deemed to be the molecule of the year [99].

3.1. Nitric Oxide and Working with Other Oxygen-Based Molecules

Nitric oxide appears to be a simple molecule consisting of oxygen and nitrogen. It
is a radical and a gas, so seems like an unlikely biomolecule. Perhaps this explains the
interest in this molecule when it came to prominence in 1987 [5]. However, even though
it is often assumed that it is a radical, it can lose or gain electrons and therefore can have
other chemical characteristics, a facet often overlooked when NO donor molecules are
used.

NO has been found to be involved in the mediation of a wide range of biological
functions, from controlled blood flow in humans [100], to controlling stomatal apertures in
plants [101]. In animals, the main source is NOS. In humans, there are three isoforms of
this enzyme: eNOS, iNOS, and nNOS [102]. However, the existence of such an enzyme in
plants has been hotly contested and it is unlikely to exist, at least in the form that would
be easily recognizable [96]. It is more likely that in plants the main source of NO is the
enzyme nitrate reductase (NR) [103], although as mentioned above there are other sources
of NO in biological systems.

In animals, one of the main signaling targets of NO is the enzyme soluble guanylyl
cyclase (sGC) [104]. This enzyme contains a heme group which is the direct interaction with
NO, and this activates the enzyme so increasing the cellular accumulation of cGMP. This
molecule can then control a range of mediators including kinases and phosphodiesterases.
However, the use of this pathway in plants has recently been disputed [105].

A universal mechanism of NO signaling is the modification of protein thiol groups,
in what has been dubbed S-nitrosylation [106]. However, this terminology is technically
incorrect, and this modification should preferably be called S-nitrosation [107]. Either
way, this is the formation of the -SNO group, and like the formation of -SOH by H2O2,
this formation of -SNO causes a conformational change on the protein and therefore a
modulation of its activity or function. As this is a reversable reaction it is again akin to
phosphorylation. However, the thiols are also able to be oxidized, as discussed, so there is
likely to be competition for the thiol between the oxidation by ROS and nitrosation by NO.
Furthermore, the same thiols may be under attack by H2S, in S-sulfhydration [108,109], as
well as being able to be glutathionylated [110]. Which thiol modification actually results
depends on the environment of the thiol and the relative concentrations of the molecule
trying to attack it. As many of these reactions are reversible, the whole system is likely to
be very dynamic, allowing different modifications happening with time and in different
locations.

Proteins can also be nitrated on tyrosine. Therefore, NO can mediate the modifica-
tion of polypeptides in more than one manner [111], and such changes are not mutually
exclusive.

Last, NO can partake in some direct reactions with other important redox molecules.
One of the most significant is the generation of S-nitrosoglutathione (GSNO). This not
only removes glutathione from its important role as a redox mediator, especially in ROS
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metabolism, as discussed above [42], but it also creates a new signaling molecule. It
has been suggested that GSNO is a buffer for NO, GSNO formation being reversed by
S-nitrosoglutathione reductase (GSNOR) [112], but it may also be able to be moved around
an organism in the vasculature [113], so allowing long-range NO signaling. NO can also
react with H2S in the formation of nitrosothiol, which can act as a signal as well [114].
Furthermore, such a reaction lowers the accumulation of both NO and H2S, so may have
significance to other signaling pathways.

As can be seen, NO is an immensely important signaling molecule which can alter the
activity of enzymes in a variety of ways: by targeting transitions metals, such as in heme;
S-nitrosation; and nitration. NO can also alter other pathways, either directly by reacting
with ROS (see below), glutathione, or H2S, or by inducing antioxidant activity [115].

3.2. Peroxynitrite, as a Signal

The reaction of ROS, particularly O2
·−, and NO will yield peroxynitrite (ONOO−).

This is relatively reactive compound, but it is known to partake in signaling in cells [10].
Peroxynitrite is produced during the hypersensitive response of plants, which is a

result of pathogen challenge. The effects of peroxynitrite accumulation are mediated by
tyrosine nitration of proteins [116]. Peroxynitrite can also react with amino acids, such as
cysteine, methionine, and tryptophan [117]. As well as amino acids, RNA nitration is also
possible [118]. Through nitration reactions, as well as oxidation effects, peroxynitrite can
alter the phosphorylation levels in cells, by affecting both kinases and phosphatase activi-
ties [119], which would have significant consequences for signal transduction pathways. A
profound effect of peroxynitrite can be seen in its control of the intrinsic apoptosis pathway,
mediated by MAPK and Akt signaling [120], which would lead to cell death.

Therefore, peroxynitrite may have effects on signaling, but may be a significant
mediator of NO signaling pathways, especially if ROS are accumulating spatially and
temporally together with NO.

4. The Signaling of Carbon Monoxide

The last oxygen containing small signaling molecule considered here is carbon monox-
ide (CO) [11]. Unlike the ROS and RNS compounds, CO appears to have a more indepen-
dent mode of action. Many of the effects of CO are mediated through the action of heme
oxygenase [121,122]. This enzyme degrades heme to produce biliverdin, ferrous ions, and
CO.

In a similar manner to ROS and RNS, CO is inherently toxic [123]. It can inhibit the
activity of Complex IV of the mitochondrial ETC, for example. Even so, as it can inherently
interact with metal containing proteins, it is known to modulate the activities of several
enzymes, and this can lead to changes to the accumulation of ROS and NO. It can also alter
cGMP levels, an instrumental intracellular signaling molecule. Furthermore, CO effects
can be mediated by MAPK pathways and by changes in the activity of ion channels [124].
One of the mechanisms of action of H2 is thought to be mediated by heme oxygenase [125],
which would then impinge on CO signaling.

It can be seen therefore, that CO, another oxygen-containing gaseous signal, has im-
portant effects in cells, and has even been suggested, despite its toxicity, to be a therapeutic
agent [126].

5. Discussion and Conclusions

Evolution would have started in the absence of oxygen, but as the atmospheric oxygen
concentration increased, this relatively reactive di-radical, and products which could be
generated, had to be tolerated. Many of the compounds to which cells became exposed
would have been toxic, including ROS, RNS, and H2S. Instead of simply managing the
presence of these molecules, cells adapted to adopt these compounds as signal molecules,
and many are now instrumental in the control of cellular activity [127]. Interestingly, they
are often involved in stress responses, being produced by cells deliberately. Furthermore,
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such generation of these molecules is often spatial and temporally the same. This can
lead to competitions and interactions between them, making the downstream effects often
difficult to unravel.

Evolution has therefore resulted in the use of a range of cell signaling molecules which
are both instrumental to cellular control and contain oxygen (Figure 1). These may be
reduced states of molecular oxygen, or have oxygen covalently bonded to nitrogen (NO) or
carbon (CO). Each of these has potentially different roles in the cell, but they rarely work in
isolation.

Figure 1. A simplified overview of oxygen-based molecules in signaling. Oxygen and oxygen-based signaling molecules
are shown in red.

The accumulation of ROS and RNS has been implicated in normal and dysfunctional
cellular function. ROS is seen as instrumental in hypoxia for example [39,40]. Cell growth,
proliferation [128], and death [129] are also mediated by oxygen-based signaling molecules.
This has implications for cancer and therapy, where many ROS- and RNS-modified proteins
are being identified [130]. As well as direct control of proteins, ROS has been shown to
control gene expression [131] and has been implicated in a range of diseases, including
diabetes [132], neurodegenerative, and inflammatory diseases [133,134].

Overaccumulation of ROS leads to what is referred to as oxidative stress [8,9]. In
this condition, the redox of the inside of the cell is pushed to an oxidized state, and this
can lead to the onset of apoptosis (programmed cell death) or even necrosis [42]. Many
biomolecules are damaged by ROS, including proteins, lipids, and nucleotides [135]. In
a similar manner, overaccumulation of RNS can lead to nitrosative stress, with similar
consequences. It is now thought that these two cellular conditions need to be considered
together, in what has been referred to as nitro-oxidative stress [136].

As discussed above, there are many enzymes which can produce ROS and RNS, as
well as non-enzymatic sources. It would be likely therefore, that there would be localized
nitro-oxidative stress in cells, as the production of these molecules is likely to be in a
diffusion gradient away from their site of generation. Such effects of signaling gradients
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are well known for other signals such as cAMP [137] and calcium ions (Ca2+) [138]. The
cell will have numerous mechanisms to keep the levels of ROS and RNS in check. These
include the presence of scavenging molecules such as glutathione. The levels and redox
states of glutathione (i.e., GSH and GSSG) are used to measure the redox state of the cell, to
give an estimation of oxidative stress [42]. However, there are many other small scavenging
molecules, including ascorbate and α-tocopherol. Many of these are obtained by organisms
in their diet. Enzymes too are present to remove harmful redox molecules. SOD will
remove superoxide anions to produce H2O2. Catalase (Cat) will remove H2O2.

Some of the products of what appears to be scavenging have a useful signaling role.
The production of H2O2, for example, may be important, allowing signaling that O2

·− may
not be able to mediate. The reaction of glutathione with NO can lead to S-nitrosoglutathione
(GSNO) [112], which may be able to move around an organism giving long-distance
signaling which NO would not be able to partake in owing to its reactivity [113].

Cells, however, need to control the accumulation of these reactive molecules but still
allow their concentrations to transiently rise to a level which allows them to signal to the
next component in the cell’s signal transduction pathway. To do this, compartmentalization
is almost certainly the key [44]. Enzymes such as SOD are compartmentalized. There are
specific SODs in the mitochondria which contain manganese as their prosthetic groups,
while the SOD of the cytoplasm contains copper and zinc. These will have different kinetics
as well as location. Compartmentalization is known in other signaling arenas, such as
those involving cAMP [137] and Ca2+ [138], and it is now becoming more recognized in
signaling involving ROS, RNS, H2S, and CO [43–45].

Oxidative stress is on the spectrum of the redox scale, but there is now a recognition
that cells can also undergo reductive stress [72,73]. This highlights how the generation
and removal of reactive oxygen-containing small molecules is a balance. Like all signaling,
there will be a point at which signaling is stopped, and threshold levels above which
signaling proceeds. In redox, the notion of a “Goldilocks zone” has been mooted [71] and
should be considered more when this type of signaling is researched and discussed.

In conclusion, there are a range of oxygen-based small, and often relatively reactive,
molecules which are instrumental to signaling in cells. This applies across the kingdoms
of organisms, from prokaryotes [139], through plants and animals to humans. These
reactive molecules have a complex interplay which can lead to a range of responses.
Metabolic enzymes, such as GAPDH [57], as well as gene expression [51] may be controlled
by these molecules. The production of ROS, RSS, and RNS was not only tolerated by
organisms during the early stages of evolution, but they have since been adopted as
instrumental signaling components [127]. A better understanding of how the balance and
compartmentalization of these molecules is achieved in cells, along with the pathologies
and diseases in which they are involved, will allow such metabolism to be better controlled,
with the concomitant benefits that will bring. There is still much research to carry out to
measure the spatial and temporal accumulation of these molecules, and it is becoming more
apparent that they should not be studied in isolation, but a holistic view of oxygen-based
signaling molecules should, be taken.
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