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Abstract: Sustainable long-term space missions require regenerative life support from plants. Tra-
ditional crop plants lack some features desirable for use in space environments. The aquatic plant
family Lemnaceae (duckweeds) has enormous potential as a space crop, featuring (i) fast growth,
with very high rates of O2 production and CO2 sequestration, (ii) an exceptional nutritional quality
(with respect to radiation-fighting antioxidants and high-quality protein), (iii) easy propagation and
high productivity in small spaces, and (iv) resilience to the stresses (radiation, microgravity, and
elevated CO2) of the human-inhabited space environment. These traits of Lemnaceae are placed
into the context of their unique adaptations to the aquatic environment. Furthermore, an overview
is provided of the challenges of galactic cosmic radiation to plant and human physiology and the
mechanisms involved in oxidative injury and the prevention/mitigation of such effects by antioxidant
micronutrients. A focus is placed on the carotenoid zeaxanthin accumulated by Lemnaceae in unusu-
ally high amounts and its role in counteracting system-wide inflammation, cognitive dysfunction,
and other oxidative injuries in humans.
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1. Introduction
1.1. Molecular Oxygen Plays Unique and Essential Roles for Life

Molecular oxygen (O2) is necessary for much of life on Earth to function. Most
of the oxygen in the atmosphere has been produced over the last two billion years by
photosynthetic organisms, which supported the evolution of multicellular organisms that
depend on aerobic respiration [1,2]. This dependency applies to both heterotrophs and
autotrophs, such as plants that can be killed when roots have diminished access to oxygen
because of insufficient aerobic respiration in water-logged soils [3] (except for specialist
plants with unique adaptations facilitating oxygen diffusion to the roots [4]).

For space travel and habitation, enough molecular oxygen must be transported or
continuously generated for long missions to sustain a human crew. Currently, molecular
oxygen is produced on the International Space Station through electrolysis or the splitting
of water [5]. For long human-crewed space missions, plants can serve as a regenerative
life support system that continuously produces O2 and removes CO2 [6,7] and provides
additional essential services (highlighted below).

1.2. Reactive Oxygen Can Kill

While essential for much of life on earth, oxygen is a double-edged sword. The first
mass species extinction event was likely caused by the rise in atmospheric O2 levels, deemed
the Great Oxidation Event [8,9]. Today, aerobic organisms carefully maintain internal redox
homeostasis, i.e., the balance between oxidants and antioxidants [10]. Notably, primary
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energy metabolism in the organellar powerhouses that interact with O2 (chloroplasts
and mitochondria) continuously creates reactive oxygen species (ROS; [10,11]). ROS are
essential in small doses, but excess ROS can cause a host of adverse effects (see below). The
life-supporting quality of oxygen is thus inextricably linked to its potential dangers.

In small quantities, ROS act as universal regulators of master control genes that or-
chestrate growth, development, aging, and various metabolic defenses of humans, plants,
and many microorganisms [12,13]. For example, ROS can stimulate the cell cycle as well
as trigger programmed cell death [14,15], both of which can be enhanced in spaceflight
environments [16] (for details, see the next section). One example of an ROS is superox-
ide (superoxide anion radical; O2

•−), which various organisms actively produce to kill
pathogens [17] and other unwanted cells. However, excess superoxide can cause cell dam-
age unless redox homeostasis is maintained by keeping ROS in check with antioxidants. A
lasting departure from redox homeostasis can cause continuous low-grade activation of the
human immune system with system-wide inflammation and a host of resulting diseases,
disorders, and dysfunctions (see below). In large quantities, ROS can be lethal. In viral
diseases (such as HIV-AIDS and, evidently, COVID-19), snowballing production of ROS
and other inflammation-promoting messengers (the cytokine storm) can lead to massive
organ damage (i.e., “cellular suicide” rather than direct “virological murder”; [18]).

Superoxide can be detoxified by antioxidant enzymes like superoxide dismutase that
converts two O2

− to one uncharged O2 and one doubly reduced O2
2− corresponding

to hydrogen peroxide (H2O2). H2O2 can, in turn, be converted to harmless water by
enzymes like catalase [19] or ascorbate peroxidase with the cofactor ascorbate (vitamin C,
an antioxidant metabolite) as the source of electrons [20]. While plants can produce
all necessary antioxidant metabolites de novo, humans must consume many of these
antioxidants with their diet to maintain internal redox homeostasis. Space crops with
superior antioxidant levels are needed to protect the plant and the human consumer from
radiation damage in space (see, e.g., [21]). For the future of space travel, astronaut diets
will need to strike the right balance to prevent the negative effects of excess ROS without
dampening the positive effects of small amounts of ROS.

2. The Challenges of Space Environments

A major challenge for human utilization of space is exposure to galactic cosmic radia-
tion (GCR, consisting of heavy ions/high-density charged particles [16,22]) that generates
dangerous amounts of ROS through radiolysis of water in all hydrated cells. This ROS
can lead to DNA mutations, and GCR can also produce direct DNA breaks (Figure 1; [23]).
The effects of GCR-induced ROS on gene regulation are complex and include induction
of some protective (e.g., antioxidant) effects as well as negative snowballing effects that
further exacerbate ROS production and DNA damage. For example, a feed-forward cycle
in space environments involves ROS stimulation of the human ROS-producing enzyme
NADPH oxidase [24,25] via genetic programs that normally potentiate superoxide pro-
duction during a pathogen attack. Specifically, an initial wave of ROS production triggers
consecutive waves of ROS production to activate and recruit other immune cells (as may
be warranted under pathogen attack [15]). Excess ROS production and DNA damage can
thus lead to signaling cascades that produce more and more ROS (Figure 1).

ROS and Chronic Inflammation in Astronauts

In humans, continuous exposure to excess ROS triggers immune-system dysfunction
with chronic, non-resolving inflammation [26]. Astronauts return from space missions with
elevated levels of inflammation markers and evidence of inflammation-related cognitive
dysfunction [27], cellular aging [28], and other adverse conditions [29]. Humans must
consume essential ROS-balancing antioxidant micronutrients in their diet to counter such
oxidative stress. Identification of space crops that produce high levels of essential dietary
antioxidants will thus be essential to oppose radiation damage and chronic inflammation
in human-inhabited space environments.
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Figure 1. A schematic flowchart of how galactic cosmic radiation can lead to the production of ROS
and DNA damage. Both ROS and DNA damage can either encourage (pink arrows) or prevent (pink
T-shaped lines) multiple gene regulation events, including those that support (blue arrow) or prevent
(pink T-shaped line) DNA repair.

3. The Multi-Hit Hypothesis: Interaction among Different Stresses in a
Space Environment

This section addresses additional factors present in space environments that can exac-
erbate the effects of GCR in plants or humans. This phenomenon and associated inquiry
have been described as the multi-hit hypothesis [30]. These additional stressors include
microgravity and elevated CO2 in a cabin environment. Microgravity can interfere with
DNA repair in humans [31] and exacerbate DNA damage, which leads to “genomic instabil-
ity” [32]. For example, the end portions of chromosomes (telomeres) that are determinants
of cellular aging and human lifespan increase in average length in space environments
and then rearrange within 48 h upon astronauts returning to earth, thereby revealing a
much shorter average telomere length post-space exposure [33,34]. This behavior is like
the increase of average telomere length observed on Earth under exposure to ionizing
radiation [23]. Telomere length has been found to respond directly to ROS level [16].

Inhibition of DNA repair by microgravity in the presence of GCR can, furthermore,
trigger programmed cell death [35] and inflammatory responses [36]. As shown in Figure 1,
both inhibitory and stimulatory effects of microgravity on DNA repair are principally possi-
ble. For example, an unusual radiation-resistant bacterium, Deinococcus radiodurans, exhib-
ited an increase in DNA repair and other defenses in the presence of microgravity [37,38].
More studies in spaceflight environments are needed to understand the synergistic effects
of radiation and microgravity in humans [39].

3.1. Specific Plant Responses

In land plants, microgravity can interfere with plant responses to radiation by in-
hibiting directional signal translocation between shoots and roots [40]. More research
is needed into the effect of microgravity in space environments as different species can
respond in different ways [41]. Elevated CO2 in a confined environment is also a concern.
Plants growing under elevated atmospheric CO2 levels can produce excessive levels of ROS
(Figure 2), which can lead to an imbalance in redox homeostasis [42]. Specifically, elevated
CO2 can enhance ROS production via carbohydrate backup as photosynthesis utilizes the



Oxygen 2022, 2 214

greater level of available CO2 to produce more sugars and starch. The resulting backup
of electrons in photosynthetic electron transport leads to the transfer of electrons and/or
excitation to oxygen, forming ROS [42]. Land plants tend to respond to prolonged exposure
to elevated CO2 with photosynthetic downregulation and growth inhibition, and accel-
erated senescence in some but not all species (Figure 2; [42]). In particular, elevated CO2
can exacerbate growth penalties imposed by other environmental factors [43–46]. In other
words, ROS production is additively increased by various environmental stressors that
offset the source-sink balance between carbohydrate production in leaves (sugar source)
relative to carbohydrate consumption in all the plant’s sugar sinks [42].
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Figure 2. Flowchart depicting the causes (top boxes) and effects (bottom boxes) of reactive oxygen
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Various additional environmental conditions can further unbalance the plant source-
sink ratio and enhance ROS production [47,48]. For example, excess light supply adds to
carbohydrate production and unfavorable nutrients/temperatures (Figure 2) slow growth
and the consumption of carbohydrates in plant sinks [49]. Whereas increased ROS produc-
tion generally triggers upregulation of ROS-detoxifying processes (see above), chlorophyll-
associated carotenoids exhibit a different response. One effect of excess ROS under source-
sink imbalance is downregulation of photosynthesis (as the sugar source) via repression
of photosynthetic proteins, including chlorophyll-binding proteins [50]. In plants grown
under elevated CO2 levels, lower chlorophyll levels were, furthermore, accompanied by
lower levels of the carotenoids that protect chlorophyll [51]. A lowering of plant antioxi-
dant metabolite content in space environments with elevated CO2 levels in the habitable
enclosure would be problematic. However, an intriguing possibility is that the combination
of elevated CO2 (lowering antioxidant production) and GCR (that may increase antioxi-
dant levels) could potentially offset each other to some extent in plants (that are able to
upregulate antioxidant metabolites).
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3.2. Human Physiology

To mitigate the risks associated with spaceflight, it is important to consider multiple
lifestyle factors for humans [52]. Diet, physical activity, and psychological stress (Figure 2)
all provide inputs into cellular redox homeostasis and thus affect health outcomes [53,54]
(see [55] for specific effects on telomere length). For example, the combination of physical
inactivity and chronic psychological stress can constitute additional “hits” in a space en-
vironment. Specifically, chronic stress fatigues the immune-suppressive stress response,
resulting in chronic (non-resolving) inflammation associated with excess ROS produc-
tion [56]. In addition, whereas physical activity triggers the synthesis of endogenous
antioxidant enzymes to combat ROS production during exercise, physical inactivity fails to
induce antioxidant enzymes [57] and thus to counter ROS production (Figure 2).

In addition to high levels of radiation and microgravity, the elevated levels of CO2
typical of a spacecraft cabin environment also have the potential to induce adverse physio-
logical changes in humans, including vascular leakage, edema, and interference with the
draining of cerebrospinal fluid [30,58,59].

4. Redox-Based Orchestration of Growth, Development, and Defenses
4.1. Early-Warning Systems for Oxidative Stress

A hallmark of metabolically active cells is to allow for moderate amounts of ROS to
play fundamental roles in cellular metabolism and other biological processes [60,61] while
avoiding unwanted effects of excess ROS. To support this redox homeostasis, macromole-
cules—particularly sensitive to oxidation—serve as sentinels for rising internal ROS pro-
duction. For example, oxidation products of highly oxidation-prone polyunsaturated fatty
acids (PUFAs) of membrane lipids serve as gene regulators [62,63]. These regulators target
antioxidant production and other protective responses [64,65] as well as multiple other
processes that are redox-modulated (see above). In humans, immunostimulatory regulators
are mainly derived from omega-6 PUFAs and inflammation-resolving regulators mainly
from omega-3 PUFAs [66]. In addition, easily oxidized thiol-containing proteins are also
linked to redox-based gene-regulation [67–69].

4.2. Gene Regulation by Derivatives of Lipid Peroxidation and the Need for Dietary
Antioxidant Metabolites

Just like ROS and their various products, antioxidant systems are potent modulators of
redox-modulated signaling networks and genes [70]. Dietary membrane-embedded antiox-
idants keep the formation of PUFA-derived regulators in check and thus control and resolve
acute inflammation in humans [71]. Furthermore, a balanced dietary ratio of omega-3 to
omega-6 fatty acids is critical to support immunity and avoid non-resolving inflammation.

The human brain is particularly susceptible to non-resolving inflammation due to
its large complement of biological membranes, with a high proportion of PUFAs and
a high level of oxygenation that increases the propensity for PUFA oxidation [72–74].
Resulting non-resolving neuroinflammation leads to low mental function in otherwise
healthy individuals as well as to mental and learning disorders and neurodegenerative
diseases [54,75]. Antioxidation is needed to prevent neuroinflammation [54,76].

Whereas a whole suite of diet-derived antioxidant metabolites can operate in aqueous
environments, only a few are able to dissolve in biological membranes. These latter
lipophilic antioxidant metabolites include the antioxidant vitamin E (tocopherol) and
carotenoids [54,77,78]. The structure of these molecules determines their orientation in the
membrane, and two carotenoids can integrate into biological membranes in a way that
can provide stabilization [79] and oppose PUFA oxidation [54,80,81]. These two are the
xanthophyll (oxygen-containing) carotenoids zeaxanthin and lutein [54,80] (see also [82]).

Zeaxanthin is the more potent antioxidant of the two [83], exhibiting a particularly
stabilizing orientation in biological membranes [84] (see also [26] for a recent review).
Zeaxanthin and/or lutein can reduce neuroinflammation [54,85,86]. Specifically, sup-
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plementation with zeaxanthin and lutein lowered markers of inflammation [87,88] (see
also [89,90]) and enhanced cognitive function [54,91–94] (see also [95–97]).

The dietary supply of zeaxanthin and lutein is thus highly relevant for humans
living and working in space environments. Healthy astronauts exposed to elevated levels
of GCR for even a few weeks developed significant cognitive dysfunction, even when
signs of accelerated cellular aging and increased chronic disease were mild. Commercial
airline pilots are also at an elevated risk of exposure to GCR; pilots who consumed greater
levels of zeaxanthin exhibited significantly reduced levels of inflammation and decreased
cumulative DNA damage [98]. Future research should test the attractive hypothesis that
astronauts will benefit from zeaxanthin and/or lutein supplementation in conjunction with
(i) additional dietary antioxidant metabolites capable of recycling oxidized carotenoids (see
below) and (ii) sufficient intake of omega-3 PUFAs such as docosahexaenoic acid (DHA).
Supplementation with a combination of xanthophylls and DHA (i) enhanced memory as
well as the rate and efficiency of learning [96] and (ii) resulted in positive outcomes in
patients with Alzheimer’s disease [97].

4.3. Zeaxanthin and Lutein Protect Photosynthesis

Unlike humans, plants synthesize zeaxanthin and lutein de novo for specific roles in
the prevention of radiation damage. Whereas lutein is constitutively present in leafy crops,
zeaxanthin is formed only under bright light and quickly removed again when light levels
drop in these photosynthetic systems [99]. Only leafy greens harvested and eaten shortly
after exposure to bright light thus deliver significant levels of zeaxanthin. In contrast, leafy
green produce purchased at a grocery store provides lutein but little to no zeaxanthin.
Moreover, typical edible crops are fast-growing annual plants that accumulate much less
zeaxanthin than the inedible leaves of slow-growing evergreens [99] (see next paragraph
for details). Food other than leaves can provide high levels of zeaxanthin and lutein on
earth, including orange peppers, corn, and eggs (Figure 3; [100–103]). Zeaxanthin was
named after the yellow color of an ear of corn (genus Zea, with “xanthos” the Greek word
for golden/yellow). While being unable to synthesize carotenoids de novo, most animals
do accumulate carotenoids when they have access to carotenoid-containing food [104].
For example, chickens raised with alfalfa-based feed, corn, or other sources of zeaxanthin
and lutein transfer considerable amounts of these carotenoids into their eggs [105,106].
However, egg production is not feasible on a spaceship, and the growth of peppers or ears
of corn is much less volume-efficient than a crop like duckweed that is 100% edible.
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Figure 3. Images of whole food sources that contain high levels of zeaxanthin and lutein including,
duckweed (see below), eggs (see above), orange peppers (see below), and corn (see above).

The above-mentioned general tradeoff between fast growth and accumulation of high
levels of zeaxanthin in photosynthetic plant organs occurs because zeaxanthin diverts light
away from photochemical pathways and into alternative nonphotochemical pathways [99].
Such removal of absorbed light energy is desirable only when more light is absorbed than
can be utilized in photosynthesis. Under exposure to full sunlight, fast-growing crops
with high maximal photosynthesis rates experience much less excess absorbed light than
slow-growing evergreens with low maximal photosynthesis rates. Consequently, leaves of
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slow-growing plants accumulate more zeaxanthin than those of fast-growing plants [99].
Due to this inverse relationship between photosynthesis/growth rate and zeaxanthin
accumulation, fast-growing, rapidly photosynthesizing crops produce high oxygen levels
and consume large quantities of CO2 but accumulate little zeaxanthin.

On the other hand, slow-growing plants produce less oxygen, consume less CO2, and
accumulate more zeaxanthin [99]. Bacteria growing on a radioactive site in Japan had
an exceptionally high zeaxanthin content suggesting an additional role of zeaxanthin in
protection against ionizing radiation [107]. In contrast to zeaxanthin, lutein is a constitutive
component of the photosynthetic apparatus in plants growing naturally across a wide
range of light environments, from deep shade to full sunlight [108] (see also [99]).

To extend the lifetime of xanthophylls in membranes, their oxidation products must
be recycled (by re-reduction) to prevent them from becoming harmful oxidants themselves
(Figure 4; [109,110]). The recycling of zeaxanthin radicals by membrane-soluble vitamin E
and/or water-soluble vitamin C (and other water-soluble antioxidants), neither of which
can be synthesized by humans, has been studied extensively in lipid bilayers [78]. It is
thus desirable to provide a balanced mix of antioxidant metabolites in the human diet,
preferably through the consumption of whole foods rich in essential micronutrients [111],
because high-dose antioxidant supplementation can have negative effects [112]. Specifically,
excess dietary consumption of antioxidants from high-dose supplements can lower ROS
levels to the extent that essential ROS signals fail to be produced and, e.g., the synthesis
of endogenous antioxidant enzymes is suppressed [57]. Due to the benefits of whole food
as well as the finite lifetime of vitamin supplements, nutritious crops will be critical to
extended space missions.
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Figure 4. A schematic depiction of the interconnectedness of duckweed (left) and astronauts (right).
In the center is a schematic depiction of the intertwined cycle of detoxification of ROS and the
recycling of vitamin E and zeaxanthin by water-soluble antioxidants. A mother frond (leaf-like
structure) is the initial source for photosynthetically produced sugars and its daughter fronds and
rootlets are sinks for the sugars until the synthesis of sugars by daughter fronds exceeds the import
of sugars and they, in turn, become source tissues.
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5. The Case for Lemnaceae as Space Crops
5.1. An Unusual Combination of Multiple Attractive Traits

Successful long-term space missions will likely require regenerative life-support from
plants that provide oxygen, recycle waste and CO2, and produce high-quality food, includ-
ing micronutrients that mitigate radiation damage (Figure 4). In addition, a space crop
must be resilient under the stresses of the space environment. The first step in identifying
suitable food crops and cultivation conditions for long-duration missions is understanding
the effect of the space environment on crop physiology, especially growth, propagation,
and nutritional quality.

Traditional model plants lack some features desirable for space crops. The enormous
potential of the aquatic plant family Lemnaceae (duckweeds) as both model species (for,
e.g., radiobiology and genomic studies) and edible space crops has been recognized since
the beginning of the space program (Figure 5). Lemnaceae were the very first plants
studied for photosynthesis in space, grew well under these conditions [113], and have
been recommended as a good candidate for bioregenerative life support systems [114–117].
Additional flight experiments, including NASA STS-4 Getaway Special (1982), Russian
satellite Bion 8 (1987), Russian satellite Bion 10 (1992), NASA STS-60 Getaway Special
(1994), and STS-67 (1995), indicated the tolerance of Lemnaceae to GCR and microgravity
of space.
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Lemnaceae are consumed around the globe and hailed as a new superfood (e.g., [118]).
Lemnaceae have multiple features that make them particularly attractive candidates for
space crops (Figure 5). In addition to fast growth, which entails very high rates of O2
production and CO2 sequestration, Lemnaceae have an exceptional nutritional quality
(especially radiation-fighting antioxidants and high-quality protein with all essential amino
acids for humans; see next section for further details), is highly volume-efficient (with
particularly small size and the complete or near-complete absence of non-photosynthetic
parts), and easy to propagate, allowing for rapid multi-generational studies [119]. Addi-
tionally, Lemnaceae have a higher edible protein content than any known terrestrial plant
as they accumulate storage protein throughout the whole plant.

5.2. Can the Aquatic Lifestyle Be Seen as a Pre-Adaptation for Spaceflight Environments

The attractive traits of Lemnaceae for spaceflight environments listed in Figure 5 can
be traced back to apparent selective pressures acting on plants in aquatic environments [46].
In other words, evolution may have led to a group of plants with traits that can be viewed
as pre-adaptations for spaceflight environments.
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To design a plant suitable as a regenerative life support system for a space environment
(Figure 4), one would want the plant to consist mainly, or only, of leaves—that produce O2
and take in CO2—with little to no tissue allocated to stems, roots, or any other parts that
consume O2 and release CO2. Aquatic plants like the Lemnaceae naturally consist mostly
or entirely of photosynthetic tissue. Duckweed’s almost total (or total in some species)
absence of non-photosynthetic tissue makes it such that all photosynthetically produced
sugar can be reinvested in more photosynthetic tissue that supports more O2 production
and sequesters more CO2. By re-investing most, or all, photosynthetically produced sugars
into additional photosynthetic tissue, aquatic plants can also sustain much higher growth
rates than land plants that must invest substantial resources in non-photosynthetic tissues
(see Figure 5; [51]).

Land plants must invest resources into substantial structures to hold themselves in
place and display their photosynthetic organs for efficient light capture, mine for water
and nutrients in the soil, and transport the latter from roots to shoots. Their upright
shoots and downward-growing roots also make land plants susceptible to disruption of
the necessary directional communication between these organs by microgravity [41,120].
In contrast, aquatic plants consisting of fronds with minimal or no roots, stems, and
branches are apparently impervious to the lack of gravity; in fact, Lemnaceae exhibited
growth stimulation rather than inhibition under microgravity (Figure 5; [115]). Moreover,
unlike most land plants, Lemnaceae can be propagated indefinitely without requiring the
processes, such as flowering, pollination, seed development, or seed germination, which
can be susceptible to disruption by microgravity (see Figure 5; [40,121]).

Each green leaf-like structure of Lemnaceae is, in fact, a plant that divides and forms
clonal colonies vegetatively. When conditions are not conducive to growth, Lemnaceae
produce vegetative storage forms that can quickly resume growth when conditions per-
mit [119]. Due to their diminutive size and aquatic nature, Lemnaceae can be grown on
thin films of water that adhere to shallow growth trays, making them independent of
gravity and allowing stacking of multiple layers for an exceptionally high volumetric
yield (Figure 5; [122]).

A good space crop should also recycle human nitrogenous waste (Figure 5). Unlike
land plants that typically prefer to take up nitrogen from the soil as nitrate, aquatic plants
have an exceptional genetic capacity to take up ammonium from animal waste [123],
efficiently convert it to amino acids [124,125], and accumulate large amounts of protein.
This protein is accumulated throughout the whole plant (rather than mainly in seeds like
land plants), which helps avoid the ammonium toxicity seen in most land plants [126] (see
also below). The protein accumulated in Lemnaceae contains all essential amino acids
needed by humans [127]. The combination of duckweed’s small size and high capacity
to store vegetative protein throughout the plant results in 20 times greater edible protein
production per plant-cultivating area compared to soybean [128].

A combination of several classes of essential antioxidant micronutrients that act in
tandem to protect the human consumer against GCR-induced ROS production and its
multiple adverse effects (Figure 1; for more details, see next section) is also desirable in a
space crop. These antioxidants are needed in the plant to remove excess ROS under the
influence of GCR (Figure 5). Such antioxidant protection will likely be instrumental in
allowing space crops to render their life-supporting services.

5.3. Exceptional Antioxidant Content

Duckweeds are an exception to the general trend that fast-growing plants do not
accumulate large amounts of zeaxanthin in their leaves. Two Lemna species showed
similarly high levels of zeaxanthin accumulation as sun-grown slow-growing land plants
when the duckweeds were grown either under full natural sunlight or in continuous low
light in growth chambers [129,130]. Moreover, Lemna exhibited uniquely high levels of
zeaxanthin when grown under continuous high light in a growth chamber [129,130], where
zeaxanthin levels reached 0.4 mg/g plant dry weight (based on [129]), which corresponds to
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3.4 mg/100 g plant fresh weight (assuming 8.5% dry weight; [127]). Therewith, duckweed’s
zeaxanthin levels fall within the range reported for orange peppers as a superb zeaxanthin
source. Typical values for orange pepper range from 1.4 mg/100 g fresh weight [131] and
1.7 mg/100 g fresh weight [132] to 6.2 mg/100 g fresh weight [133] (see also [134,135]).

Duckweed is thus the only known plant that accumulates high levels of zeaxanthin
in its photosynthetic organs while also growing very rapidly [51]. Duckweed may also
be unique among dietary zeaxanthin sources in providing a particularly well-rounded
cocktail of dietary factors that interact synergistically with zeaxanthin in opposing in-
flammation. Duckweed also has a high content of vitamin E [130,136] and phenolic
antioxidants [137,138]. In addition, duckweed has a high ratio of inflammation-resolving
omega-3 PUFAs to immunostimulatory omega-6 PUFAs (Figure 5; [128]).

Overall, duckweed has a unique pigment composition with an emphasis on carotenoids
that prevent radiation damage [129,130]. The architecture of Lemnaceae is consistent with
the exceptionally high antioxidant production in this group of plants [129,130]. Specifically,
the relatively thin fronds and absence of a fixed tiered canopy maximize light receipt as well
as exposure to excess light in high-light environments. The high antioxidant levels support
the plant’s ability to avoid radiation damage and could thus provide its life-sustaining
services to a crew in space environments. The essential human antioxidant metabolites ac-
cumulated by duckweed counter chronic inflammation and associated mental dysfunction
as well as other adverse health outcomes experienced by astronauts.

5.4. Performance under Elevated CO2

Growth under the elevated CO2 levels typical of a space cabin environment was unim-
paired in Lemnaceae even under continuous very high light levels that lead to carbohydrate
build-up [51]. In contrast, the other candidates of leafy vegetable species considered for
use on the International Space Station, such as Chinese cabbage (Brassica rapa cv. Tokyo
Bekana), exhibited decreases in growth, leaf number and leaf area, and shoot dry biomass
under elevated CO2 concentrations [139]. The robustness of Lemnaceae may be related
to (i) a relaxation of the controls on growth rate acting in land plants [140] and (ii) prefer-
ential use of ammonium over nitrate. It is the use of nitrate as a nitrogen source that can
enhance ROS production under elevated CO2 [47]. The combination of high nitrate levels
and elevated CO2 can trigger premature senescence in land plants [43,45,141]. In terms
of environmental controls on growth, most land plants quickly curb growth when water
or nutrients begin to become limiting, which is accompanied by carbohydrate build-up
that causes feedback downregulation of photosynthesis (see above) and speeds up the
completion of the plant life cycle [142]. In contrast, Lemnaceae floating on water and with
large nitrogen stores (in the form of storage protein) exhibited unabated growth across
a wide range of environmental conditions irrespective of carbohydrate build-up under
earth-ambient CO2 levels [129,130].

On the other hand, exposure to elevated CO2 did cause some of the same regula-
tory adjustments in the photosynthetic apparatus in Lemna as commonly seen in C3 land
plants, with a lowered content of protein and chlorophyll [129,130]. Furthermore, the
lower chlorophyll level was associated with lower levels of the antioxidants that protect
chloroplasts from radiation damage [51]. In theory, elevated CO2 could thus make plants,
including Lemnaceae, more vulnerable to damaging effects by GCR because of lowered
plant antioxidant levels. However, there is an intriguing possibility that GCR may offer
some protection against the loss of nutritional quality under elevated CO2, especially for
zeaxanthin. The enzyme zeaxanthin epoxidase (ZEP) removes zeaxanthin when plants
exposed to high light are returned to low light levels and operates concurrently with the
zeaxanthin-forming enzyme violaxanthin de-epoxidase [143,144] in high light. There are
several reports that ZEP is downregulated under conditions of oxidative stress [145–147].
Such inhibition of zeaxanthin removal can be expected to enhance zeaxanthin levels across
a range of light levels.
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6. Conclusions

Here we identify the importance as well as the dangers of oxygen and the formation of
ROS. Organisms need to maintain a delicate balance between antioxidants and oxidants to
support cellular redox homeostasis and cell signaling in support of growth, development,
and stress protection. Space environments expose plants and astronauts to additional
stresses. Identification of plant species with superior rates of production of oxygen and
essential human micronutrients as well as the removal of CO2 and recycling of human
waste, are essential to the success of future long-term space missions (Figure 4). Plants of
the family Lemnaceae have multiple traits that may help minimize the negative impacts
of the combination of stressors encountered in space environments. Unlike land plants,
Lemnaceae showed a stimulation, rather than inhibition, of growth under microgravity
and exhibited relatively low sensitivity to elevated CO2. Lemnaceae’s exceptional an-
tioxidant content may also reduce its sensitivity to GCR. These attractive genetic traits
of Lemnaceae for space environments are features of the plants adapted to the unique
aquatic environment.
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